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Abstract: Let S H,K = {S H,K
t , t ≥ 0} be the sub-bifractional Brownian motion (sbfBm) of dimension 1,

with indices H ∈ (0, 1) and K ∈ (0, 1].We primarily prove that the increment process generated by the
sbfBm

{
S H,K

h+t − S H,K
h , t ≥ 0

}
converges to

{
BHK

t , t ≥ 0
}

as h → ∞, where
{
BHK

t , t ≥ 0
}

is the fractional
Brownian motion with Hurst index HK. Moreover, we study the behavior of the noise associated to
the sbfBm and limit theorems to S H,K and the behavior of the tangent process of sbfBm.
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1. Introduction

Recently, [1] introduced the process S H,K = {S H,K
t , t ≥ 0} on the probability space (Ω, F, P) with

indices H ∈ (0, 1) and K ∈ (0, 1], named the sub-bifractional Brownian motion (sbfBm) and defined as
follows:

S H,K
t =

1
2(2−K)/2 (BH,K

t + BH,K
−t ),

where {BH,K
t , t ∈ R} is a bifractional Brownian motion (bfBm) with indices H ∈ (0, 1) and K ∈ (0, 1],

namely, {BH,K
t , t ∈ R} is a centered Gaussian process, starting from zero, with covariance

E[BH,K
t BH,K

s ] =
1

2K

[
(|t|2H + |s|2H)K − |t − s|2HK

]
,

with H ∈ (0, 1) and K ∈ (0, 1].
Clearly, the sbfBm is a centered Gaussian process such that S H,K

0 = 0, with probability 1, and
Var(S H,K

t ) = (2K − 22HK−1)t2HK . Since (2H − 1)K − 1 < K − 1 ≤ 0, it follows that 2HK − 1 < K.
We can easily verify that S H,K is self-similar with index HK. When K = 1, S H,1 is the sub-fractional
Brownian motion (sfBm). For more on sub-fractional Brownian motion, we can see [2–5] and so on.

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023063


1241

The following computations show that for all s, t ≥ 0,

RH,K(t, s) = E(S H,K
t S H,K

s ) = (t2H + s2H)K −
1
2

(t + s)2HK −
1
2
|t − s|2HK (1.1)

and
C1|t − s|2HK ≤ E[(S H,K

t − S H,K
s )2] ≤ C2|t − s|2HK , (1.2)

where
C1 = min{2K − 1, 2K − 22HK−1}, C2 = max{1, 2 − 22HK−1}. (1.3)

(See [1]). [6] investigated the collision local time of two independent sub-bifractional Brownian
motions. [7] obtained Berry-Esséen bounds and proved the almost sure central limit theorem for the
quadratic variation of the sub-bifractional Brownian motion. For more on sbfBm, we can see [8–10].

Reference [11] studied the limits of bifractional Brownian noises. [12] obtained limit results of
sub-fractional Brownian and weighted fractional Brownian noises. Motivated by all these studies, in
this paper, we will study the increment process

{
S H,K

h+t − S H,K
h , t ≥ 0

}
of S H,K and the noise generated by

S H,K and see how close this process is to a process with stationary increments. In principle, since the
sub-bifractional Brownian motion is not a process with stationary increments, its increment process
depends on h.

We have organized our paper as follows: In Section 2 we prove our main result that the increment
process of S H,K converges to the fractional Brownian motion BHK . Section 3 is devoted to a different
view of this main result and we analyze the noise generated by the sub-bifractional Brownian mo-
tion and study its asymptotic behavior. In Section 4 we prove limit theorems to the sub-bifractional
Brownian motion from a correlated non-stationary Gaussian sequence. Finally, Section 5 describes the
behavior of the tangent process of sbfBm.

2. The limiting process of increment process of S H,K

In this section, we prove the following main result which says that the increment process of the
sub-bifractional Brownian motion S H,K converges to the fractional Brownian motion with Hurst index
HK.

Theorem 2.1. Let K ∈ (0, 1). Then, as h→ ∞,{
S H,K

h+t − S H,K
h , t ≥ 0

} d
⇒

{
BHK

t , t ≥ 0
}
,

where
d
⇒ means convergence of all finite dimensional distributions and BHK is the fractional Brownian

motion with Hurst index HK.
In order to prove Theorem 2.1, we first show a decomposition of the sub-bifractional Brownian

motion with parameters H and K into the sum of a sub-fractional Brownian motion with Hurst param-
eter HK plus a stochastic process with absolutely continuous trajectories. Some similar results were
obtained in [13] for the bifractional Brownian motion and in [14] for the sub-fractional Brownian mo-
tion. Such a decomposition is useful in order to derive easier proofs for different properties of sbfBm
(like variation, strong variation and Chung’s LIL).
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We consider the following decomposition of the covariance function of the sub-bifractional Brow-
nian motion:

RH,K(t, s) = E(S H,K
t S H,K

s ) = (t2H + s2H)K −
1
2

(t + s)2HK −
1
2
|t − s|2HK

=
[
(t2H + s2H)K − t2HK − s2HK

]
+

[
t2HK + s2HK −

1
2

(t + s)2HK −
1
2
|t − s|2HK

]
. (2.1)

The second summand in (2.1) is the covariance of a sub-fractional Brownian motion with Hurst param-
eter HK. The first summand turns out to be a non-positive definite and with a change of sign it will be
the covariance of a Gaussian process. Let {Wt, t ≥ 0} a standard Brownian motion, for any 0 < K < 1,
define the process XK = {XK

t , t ≥ 0} by

XK
t =

∫ ∞

0
(1 − e−θt)θ−

1+K
2 dWθ. (2.2)

Then, XK is a centered Gaussian process with covariance:

E(XK
t XK

s ) =
∫ ∞

0
(1 − e−θt)(1 − e−θs)θ−1−Kdθ

=

∫ ∞

0
(1 − e−θt)θ−1−Kdθ −

∫ ∞

0
(1 − e−θt)e−θsθ−1−Kdθ

=

∫ ∞

0
(
∫ t

0
θe−θudu)θ−1−Kdθ −

∫ ∞

0
(
∫ t

0
θe−θudu)e−θsθ−1−Kdθ

=

∫ t

0
(
∫ ∞

0
θ−Ke−θudθ)du −

∫ t

0
(
∫ ∞

0
θ−Ke−θ(u+s)dθ)du

=
Γ(1 − K)

K

[
tK + sK − (t + s)K

]
, (2.3)

where Γ(α) =
∫ ∞

0
xα−1e−xdx.

Therefore we obtain the following result:
Lemma 2.1. Let S H,K be a sub-bifractional Brownian motion, K ∈ (0, 1) and assume that {Wt, t ≥

0} is a standard Brownian motion independent of S H,K . Let XK be the process defined by (2.2). Then the

processes
{√

K
Γ(1−K) X

K
t2H + S H,K

t , t ≥ 0
}

and
{
S HK

t , t ≥ 0
}

have the same distribution, where
{
S HK

t , t ≥ 0
}

is a sub-fractional Brownian motion with Hurst parameter HK.

Proof. Let Yt =
√

K
Γ(1−K) X

K
t2H + S H,K

t . Then, from (2.1) and (2.3), we have, for s, t ≥ 0,

E(YsYt) =
K

Γ(1 − K)
E

(
XK

s2H XK
t2H

)
+ E

(
S H,K

s S H,K
t

)
= t2HK + s2HK − (t2H + s2H)K

+(t2H + s2H)K −
1
2

(t + s)2HK −
1
2
|t − s|2HK

Electronic Research Archive Volume 31, Issue 3, 1240–1252.



1243

= t2HK + s2HK −
1
2

(t + s)2HK −
1
2
|t − s|2HK ,

which completes the proof.
Lemma 2.1 implies that

{
S H,K

t , t ≥ 0
} d
=

S HK
t −

√
K

Γ(1 − K)
XK

t2H , t ≥ 0
 (2.4)

where d
= means equality of all finite-dimensional distributions.

By Theorem 2 in [13], the process XK has a version with trajectories that are infinitely differentiable
trajectories on (0,∞) and absolutely continuous on [0,∞).

Reference [15] presented a decomposition of the sub-fractional Brownian motion into the sum of a
fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. Namely,
we have the following lemma.

Lemma 2.2. Let BH be a fractional Brownian motion with Hurst parameter H, S H be a sub-
fractional Brownian motion with Hurst parameter H and B = {Bt, t ≥ 0} is a standard Brownian
motion. Let

YH
t =

∫ ∞

0
(1 − e−θt)θ−

1+2H
2 dBθ. (2.5)

(1) If 0 < H < 1
2 and suppose that BH and B are independent, then the processes{√

H
Γ(1−2H)Y

H
t + BH

t , t ≥ 0
}

and
{
S H

t , t ≥ 0
}

have the same distribution.

(2) If 1
2 < H < 1 and suppose that S H and B are independent, then the processes{√

H(2H−1)
Γ(2−2H) YH

t + S H
t , t ≥ 0

}
and

{
BH

t , t ≥ 0
}

have the same distribution.

Proof. See the proof of Theorem 2.2 in [15] or the proof of Theorem 3.5 in [14].
By (2.4) and Lemma 2.2, we get, as 0 < HK < 1

2 ,

{
S H,K

t , t ≥ 0
} d
=

BHK
t +

√
HK

Γ(1 − 2HK)
YHK

t −

√
K

Γ(1 − K)
XK

t2H , t ≥ 0
 (2.6)

and as 1
2 < HK < 1,

{
S H,K

t , t ≥ 0
} d
=

BHK
t −

√
HK(2HK − 1)
Γ(2 − 2HK)

YHK
t −

√
K

Γ(1 − K)
XK

t2H , t ≥ 0

 . (2.7)

The following Lemma 2.3 comes from Proposition 2.2 in [11].
Lemma 2.3. Let XK

t be defined by (2.2). Then, as h→ ∞,

E
[(

XK
(h+t)2H − XK

h2H

)2
]
=
Γ(1 − K)

K
2KH2K(1 − K)t2h2(HK−1)(1 + o(1)).

Therefore, as h→ ∞, {
XK

(h+t)2H − XK
h2H , t ≥ 0

} d
⇒ {Xt ≡ 0, t ≥ 0} .
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Lemma 2.4. Let YH
t be defined by (2.5). Then, as h→ ∞,

E
[(

YHK
h+t − YHK

h

)2
]
= 22HK−2Γ(2 − 2HK)t2h2(HK−1)(1 + o(1)).

Therefore, as h→ ∞, {
YHK

h+t − YHK
h , t ≥ 0

} d
⇒ {Yt ≡ 0, t ≥ 0} .

Proof. By Proposition 2.1 in [15], we have

E
(
YH

t YH
s

)
=

 Γ(1−2H)
2H

[
t2H + s2H − (t + s)2H

]
, if 0 < H < 1

2 ;
Γ(2−2H)

2H(2H−1)

[
(t + s)2H − t2H − s2H

]
, if 1

2 < H < 1.

When 0 < HK < 1
2 , we get

E
(
YHK

t YHK
s

)
=
Γ(1 − 2HK)

2HK

[
t2HK + s2HK − (t + s)2HK

]
.

In particular, for every t ≥ 0,

E
[(

YHK
t

)2
]
=
Γ(1 − 2HK)

2HK
(2 − 22HK)t2HK .

Hence, we obtain

E
[(

YHK
h+t − YHK

h

)2
]
= −
Γ(1 − 2HK)

2HK
22HK

[
(h + t)2HK + h2HK

]
+
Γ(1 − 2HK)

2HK
2(2h + t)2HK .

Then, for every large h > 0, by using Taylor’s expansion, we have

I :=
2HK

Γ(1 − 2HK)
E

[(
YHK

h+t − YHK
h

)2
]

= −22HK
[
(h + t)2HK + h2HK

]
+ 2(2h + t)2HK

= −22HKh2HK
[
(1 + th−1)2HK + 1

]
+ 2h2HK(2 + th−1)2HK

= −22HKh2HK
[
2 + 2HKth−1 + HK(2HK − 1)t2h−2(1 + o(1))

]
+2h2HK

[
22HK + 22HK−12HKth−1 + 22HK−2HK(2HK − 1)t2h−2(1 + o(1))

]
= 22HK−1HK(1 − 2HK)t2h2(HK−1)(1 + o(1)).

Thus,
E

[(
YHK

h+t − YHK
h

)2
]
= 22HK−2(1 − 2HK)Γ(1 − 2HK)t2h2(HK−1)(1 + o(1))

= 22HK−2Γ(2 − 2HK)t2h2(HK−1)(1 + o(1)).

Similarly, we can prove the case 1
2 < HK < 1. Therefore we finished the proof of Lemma 2.4.

Proof of Theorem 2.1. It is obvious that Theorem 2.1 is the consequence of (2.6), (2.7), Lemma
2.3 and Lemma 2.4.
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3. Sub-bifractional Brownian noise

In this section, we can understand Theorem 2.1 by considering the sub-bifractional Brownian noise,
which is increments of sub-bifractional Brownian motion. For every integer n ≥ 0, the sub-bifractional
Brownian noise is defined by

Yn := S H,K
n+1 − S H,K

n .

Denote
R(a, a + n) := E(YaYa+n) = E

[(
S H,K

a+1 − S H,K
a

) (
S H,K

a+n+1 − S H,K
a+n

)]
. (3.1)

We obtain
R(a, a + n) = fa(n) + g(n) − g(2a + n + 1), (3.2)

where
fa(n) =

[
(a + 1)2H + (a + n + 1)2H

]K
−

[
(a + 1)2H + (a + n)2H

]K

−
[
a2H + (a + n + 1)2H

]K
+

[
a2H + (a + n)2H

]K

and
g(n) =

1
2

[
(n + 1)2HK + (n − 1)2HK − 2n2HK

]
.

We know that the function g is the covariance function of the fractional Brownian noise with Hurst
index HK. Thus we need to analyze the function fa to understand “how far” the sub-bifractional
Brownian noise is from the fractional Brownian noise. In other words, how far is the sub-bifractional
Brownian motion from a process with stationary increments?

The sub-bifractional Brownian noise is not stationary. However, the meaning of the following
theorem is that it converges to a stationary sequence.

Theorem 3.1. For each n, as a→ ∞, we have

fa(n) = 2H2K(K − 1)a2(HK−1)(1 + o(1)) (3.3)

and
g(2a + n + 1) = 22HK−2HK(2HK − 1)a2(HK−1)(1 + o(1)). (3.4)

Therefore lima→∞ fa(n) = 0 and lima→∞ g(2a + n + 1) = 0 for each n.
Proof. (3.3) is obtained by Theorem 3.3 in Maejima and Tudor. For (3.4), we have

g(2a + n + 1) =
1
2

[
(2a + n + 2)2HK + (2a + n)2HK − 2(2a + n + 1)2HK

]
= 22HK−1a2HK

(1 + n + 2
2

a−1
)2HK

+

(
1 +

n
2

a−1
)2HK
− 2

(
1 +

n + 1
2

a−1
)2HK

= 22HK−1a2HK

1 + 2HK
n + 2

2
a−1 + HK(2HK − 1)

(
n + 2

2

)2

a−2(1 + o(1))

+1 + 2HK
n
2

a−1 + HK(2HK − 1)
(n
2

)2
a−2(1 + o(1))
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−2
1 + 2HK

n + 1
2

a−1 + HK(2HK − 1)
(
n + 1

2

)2

a−2(1 + o(1))


= 22HK−2HK(2HK − 1)a2(HK−1)(1 + o(1)).

Hence the proof of Theorem 3.1 is completed.
We are now interested in the behavior of the sub-bifractional Brownian noise (3.1) with respect to

n (as n→ ∞). We have the following result.
Theorem 3.2. For integers a, n ≥ 0, let R(a, a + n) be given by (3.1). Then for large n,

R(a, a + n) = HK(K − 1)
[
(a + 1)2H − a2H

]
n2(HK−1)+(1−2H) + o(n2(HK−1)+(1−2H)).

Proof. By (3.2), we have

R(a, a + n) = fa(n) + g(n) − g(2a + n + 1).

By the proof of Theorem 4.1 in [11], we get, for large n, the term fa(n) behaves as

HK(K − 1)
[
(a + 1)2H − a2H

]
n2(HK−1)+(1−2H) + o(n2(HK−1)+(1−2H)).

We know that the term g(n) behaves as HK(2HK −1)n2(HK−1) for large n. For g(2a+n+1), it is similar
to the computation for Theorem 3.1, we can obtain g(2a+ n+ 1) also behaves as HK(2HK − 1)n2(HK−1)

for large n. Hence we have finished the proof of Theorem 3.2.
It is easy to obtain the following corollary.
Corollary 3.1. For integers a ≥ 1 and n ≥ 0, let R(a, a + n) be given by (3.1). Then, for every

a ∈ N, we have ∑
n≥0

R(a, a + n) < ∞.

Proof. By Theorem 3.2, we get that the main term of R(a, a + n) is n2HK−2H−1, and since 2HK −
2H − 1 < −1, the series is convergent.

4. Limit theorems to the sub-bifractional Brownian motion

In this section, we prove two limit theorems to the sub-bifractional Brownian motion. Define a
function g(t, s), t ≥ 0, s ≥ 0 by

g(t, s) =
∂2RH,K(t, s)
∂t∂s

= 4H2K(K − 1)(t2H + s2H)K−2(ts)2H−1 + HK(2HK − 1)|t − s|2HK−2

−HK(2HK − 1)(t + s)2HK−2

=: g1(t, s) + g2(t, s) − g3(t, s), (4.1)

for (t, s) with t , s, t , 0, s , 0 and t + s , 0.
Theorem 4.1. Assume that 2HK > 1 and let

{
ξ j, j = 1, 2, · · ·

}
be a sequence of standard normal

random variables. g(t, s) is defined by (4.1). Suppose that E(ξiξ j) = g(i, j). Then, as n→ ∞,n−HK
[nt]∑
j=1

ξ j, t ≥ 0

 d
⇒

{
S H,K

t , t ≥ 0
}
.
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Remark 1. Theorem 4.1 and 4.2 (below) are similar to the central limit theorem and can be used as
a basis for many subsequent studies.

In order to prove Theorem 4.1, we need the following lemma.
Lemma 4.1. When 2HK > 1, we have∫ t

0

∫ s

0
g(u, v)dudv = (t2H + s2H)K −

1
2

(t + s)2HK −
1
2
|t − s|2HK .

Proof. It follows from the fact that g(t, s) = ∂2RH,K (t,s)
∂t∂s for every t ≥ 0, s ≥ 0 and by using that

2HK > 1.
Proof of Theorem 4.1. It is enough to show that, as n→ ∞,

In := E


n−HK

[nt]∑
i=1

ξi


n−HK

[ns]∑
j=1

ξ j


→ E(S H,K

t S H,K
s ).

In fact, we have

In = n−2HK
[nt]∑
i=1

[ns]∑
j=1

E(ξiξ j) = n−2HK
[nt]∑
i=1

[ns]∑
j=1

g(i, j).

Note that

g
( i
n
,

j
n

)
= 4H2K(K − 1)

[( i
n

)2H

+

( j
n

)2H]K−2 ( i j
n2

)2H−1

+HK(2HK − 1)
∣∣∣∣∣ i
n
−

j
n

∣∣∣∣∣2HK−2

− HK(2HK − 1)
( i
n
+

j
n

)2HK−2

= n2(1−HK)g(i, j). (4.2)

Thus, as n→ ∞,

In = n−2HK
[nt]∑
i=1

[ns]∑
j=1

n2HK−2g
( i
n
,

j
n

)

= n−2
[nt]∑
i=1

[ns]∑
j=1

g
( i
n
,

j
n

)

→

∫ t

0

∫ s

0
g(u, v)dudv

= (t2H + s2H)K −
1
2

(t + s)2HK −
1
2
|t − s|2HK

= E(S H,K
t S H,K

s ).

Hence, we finished the proof of Theorem 4.1.
We now consider more general sequence of nonlinear functional of standard normal random vari-

ables. Let f be a real valued function such that f (x) does not vanish on a set of positive measure,
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E[ f (ξ1)] = 0 and E[( f (ξ1))2] < ∞. Let Hk denote the k-th Hermite polynomial with highest coefficient
1. We have

f (x) =
∞∑

k=1

ckHk(x),

where
∑∞

k=1 c2
kk! < ∞ and ck = E[ f (ξ j)Hk(ξ j)] (see e.g. [16]). Assume that c1 , 0. Let η j = f (ξ j), j =

1, 2, · · · , where
{
ξ j, j = 1, 2, · · ·

}
is the same sequence of standard normal random variables as before.

Theorem 4.2. Assume that 2HK > 3
2 and let

{
ξ j, j = 1, 2, · · ·

}
be a sequence of standard normal

random variables. g(t, s) is defined by (4.1). Suppose that E(ξiξ j) = g(i, j). Then, as n→ ∞,n−HK
[nt]∑
j=1

η j, t ≥ 0

 d
⇒

{
c1S H,K

t , t ≥ 0
}
.

Proof. Note that η j = f (ξ j) = c1ξ j +
∑∞

k=2 ckHk(ξ j). We obtain

n−HK
[nt]∑
j=1

η j = c1n−HK
[nt]∑
j=1

ξ j + n−HK
[nt]∑
j=1

∞∑
k=2

ckHk(ξ j).

Using Theorem 4.1, it is enough to show that, as n→ ∞,

E


n−HK

[nt]∑
j=1

∞∑
k=2

ckHk(ξ j)


2→ 0. (4.3)

In fact, we get

Jn := E


n−HK

[nt]∑
j=1

∞∑
k=2

ckHk(ξ j)


2

= n−2HK
[nt]∑
i=1

[nt]∑
j=1

∞∑
k=2

∞∑
l=2

ckclE
[
Hk(ξi)Hl(ξ j)

]
.

We know that, if ξ and η are two random variables with joint Gaussian distribution such that E(ξ) =
E(η) = 0, E(ξ2) = E(η2) = 1 and E(ξη) = r, then

E
[
Hk(ξ)Hl(η)

]
= δk,lrkk!,

where

δk,l =

{
1, if k = l;
0, if k , l.

Thus,

Jn = n−2HK
[nt]∑
i=1

[nt]∑
j=1

∞∑
k=2

c2
k

(
E(ξiξ j)

)k
k!

= n−2HK[nt]
∞∑

k=2

c2
kk! + n−2HK

[nt]∑
i, j=1;i, j

∞∑
k=2

c2
kk![g(i, j)]k.

Electronic Research Archive Volume 31, Issue 3, 1240–1252.



1249

Since |g(i, j)| ≤ (E(ξ2
i ))

1
2 (E(ξ2

j ))
1
2 = 1, we get, by (4.2),

Jn ≤ n−2HK[nt]
∞∑

k=2

c2
kk! + n−2HK

[nt]∑
i, j=1;i, j

∞∑
k=2

c2
kk![g(i, j)]2

= n−2HK[nt]
∞∑

k=2

c2
kk! + n−2HK

∞∑
k=2

c2
kk!

[nt]∑
i, j=1;i, j

[g(i, j)]2

≤ tn1−2HK
∞∑

k=2

c2
kk! + n2(HK−1)

 ∞∑
k=2

c2
kk!

 n−2
[nt]∑

i, j=1;i, j

[
g
( i
n
,

j
n

)]2

. (4.4)

On one hand, by
∑∞

k=2 c2
kk! < ∞ and 2HK > 3

2 > 1, we get, as n→ ∞,

tn1−2HK
∞∑

k=2

c2
kk!→ 0. (4.5)

On the other hand, we have

n−2
[nt]∑

i, j=1;i, j

[
g
( i
n
,

j
n

)]2

= n−2
[nt]∑

i, j=1;i, j

[
g1

( i
n
,

j
n

)
+ g2

( i
n
,

j
n

)
− g3

( i
n
,

j
n

)]2

≤ 3n−2
[nt]∑

i, j=1;i, j

{[
g1

( i
n
,

j
n

)]2

+

[
g2

( i
n
,

j
n

)]2

+

[
g3

( i
n
,

j
n

)]2}
.

Since |g1(u, v)| ≤ C(uv)HK−1 and 2HK > 3
2 > 1, we obtain

n−2
[nt]∑

i, j=1;i, j

[
g1

( i
n
,

j
n

)]2

→

∫ t

0

∫ t

0
g2

1(u, v)dudv ≤ C
∫ t

0

∫ t

0
(uv)2HK−2dudv < ∞. (4.6)

We know that

n−2
[nt]∑

i, j=1;i, j

[
g3

( i
n
,

j
n

)]2

→

∫ t

0

∫ t

0
g2

3(u, v)dudv

= H2K2(2HK − 1)2
∫ t

0

∫ t

0
(u + v)4HK−4dudv

< ∞, (4.7)

since 2HK > 3
2 > 1.

We have also

n−2
[nt]∑

i, j=1;i, j

[
g2

( i
n
,

j
n

)]2

→

∫ t

0

∫ t

0
g2

2(u, v)dudv
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= H2K2(2HK − 1)2
∫ t

0

∫ t

0
(u − v)4HK−4dudv

< ∞, (4.8)

since 2HK > 3
2 . Thus (4.3) holds from (4.4)–(4.8) and 2HK > 3

2 . The proof is completed.
Remark 2. [11] pointed out, when 2HK > 1, the convergence of

n2(HK−1)n−2
[nt]∑

i, j=1;i, j

[
g2

( i
n
,

j
n

)]2

had been already proved in [16]. But we can not find the details in [16]. Here we only give the proof
when 2HK > 3

2 , because the holding condition for (4.8) is 2HK > 3
2 .

5. The behavior of the tangent process of sbfBm

In this section, we study an approximation in law of the fractional Brownian motion via the tangent
process generated by the sbfBm S H,K .

Theorem 5.1. Let H ∈ (0, 1) and K ∈ (0, 1). For every t0 > 0, as ϵ → 0, we have, the tangent
process S H,K

t0+ϵu − S H,K
t0

ϵHK , u ≥ 0

 d
⇒

{
BHK

u , u ≥ 0
}
, (5.1)

where BHK
u is the fractional Brownian motion with Hurst index HK.

Proof. As 0 < HK < 1
2 , by (2.6), we get{

S H,K
t , t ≥ 0

} d
=

BHK
t +

√
HK

Γ(1 − 2HK)
YHK

t −

√
K

Γ(1 − K)
XK

t2H , t ≥ 0
 .

By (2.5) in [12], there exists a constant C(H,K) > 0 such that

E


XK

(t0+ϵu)2H − XK
(t0)2H

ϵHK

2 = C(H,K)t2(HK−1)
0 u2ϵ2(1−HK)(1 + o(1)),

which tends to zero, as ϵ → 0, since 1 − HK > 0.
On the other hand, similar to the proof of Lemma 2.4, we obtain

E

YHK
t0+ϵu − YHK

t0

ϵHK

2 = 22HK−2Γ(2 − 2HK)t2(HK−1)
0 u2ϵ2(1−HK)(1 + o(1)),

which also tends to zero, as ϵ → 0. Therefore (5.1) holds. Similarly, (5.1) also holds for the case
1
2 < HK < 1.We finished the proof.

6. Conclusions

In this paper, we prove that the increment process generated by the sub-bifractional Brownian mo-
tion converges to the fractional Brownian motion. Moreover, we study the behavior of the noise as-
sociated to the sbfBm and the behavior of the tangent process of the sbfBm. In the future, we will
investigate limits of Gaussian noises.
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