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Abstract: Unsupervised domain adaptation (UDA) is an emerging research topic in the field of
machine learning and pattern recognition, which aims to help the learning of unlabeled target domain
by transferring knowledge from the source domain. To perform UDA, a variety of methods have been
proposed, most of which concentrate on the scenario of single source and the single target domain
(1S1T). However, in real applications, usually single source domain with multiple target domains are
involved (1SmT), which cannot be handled directly by those 1S1T models. Unfortunately, although a
few related works on 1SmT UDA have been proposed, nearly none of them model the source domain
knowledge and leverage the target-relatedness jointly. To overcome these shortcomings, we herein
propose a more general 1SmT UDA model through transferring both the source-knowledge and target-
relatedness, UDA-SKTR for short. In this way, not only the supervision knowledge from the source
domain but also the potential relatedness among the target domains are simultaneously modeled for
exploitation in the process of 1SmT UDA. In addition, we construct an alternating optimization
algorithm to solve the variables of the proposed model with a convergence guarantee. Finally,
through extensive experiments on both benchmark and real datasets, we validate the effectiveness and
superiority of the proposed method.
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1. Introduction

In the field of machine learning and pattern recognition, some tasks are posed with amount of
labeled data, while other tasks with abundant unlabeled data. Generally, a discriminant estimator with
good generalization is relatively easier to generate for the former tasks since abundant supervision prior
is available to train the desired estimator. By contrast, it is very challenging to build a discriminative
model with good generalization for the latter tasks since no or very limited discrimination is available.
A natural way of handing this problem is to apply the knowledge from those supervised tasks to benefit
the unsupervised tasks. However, the data distributions of these tasks are usually not consistent. To
overcome such challenges, the learning paradigm of domain adaptation was proposed [1].

In domain adaptation, we refer to the dataset with labels as the source domain, and the dataset to
be transferred with no labels or few labels as the target domain [2–4]. In general, the source domain
and the target domain have different distributions [5, 6]. From the perspective of whether target
domain contains labeled samples, domain adaptation can be divided into semi-supervised domain
adaptation [7] and unsupervised domain adaptation (UDA) [8]. Compared with semi-supervised
domain adaptation, UDA is more challenging to distinguish the transfer relationship from source
domain to target domain. In this paper, we mainly study UDA. In order to perform UDA from the
source domain to the target domain, three levels of modeling strategy have been proposed, as follows.

Instance-Level Adaptation When the source domain and the target domain share the same
distribution, the distribution of the target domain can usually be deduced through the probability
distribution of the source domain, so as to complete the transferring on different domains. However,
in UDA, the source domain and the target domain usually follow different probability distributions, or
the feature weights of samples between the source and the target domain are different, which makes it
difficult to directly deduce the data feature distribution matching of the target domain from the source
domain. To this end, the instance reweighting strategy was proposed to perform UDA for such
scenarios [9–15]. Such strategy typically resamples samples from the source domain, weight them to
match the target domain, and then combine them with the target samples to train estimators on the
target domains.

Feature-Level Adaptation In many application scenarios, the feature representation distributions
between the source domain and the target domain are not the same, e.g., heterogeneous feature spaces.
To achieve the goal of UDA, the strategy of feature adaptation was presented [16–20]. Such methods
mainly align the distributions of the domains involved through minimizing the feature distribution
inconsistency characterized by, for example, Maximum Mean Discrepancy (MMD) or its variants [16,
17]. Although such UDA strategy has been widely used and achieved promising results, it tends to
over-adaptive when the domain feature differences are too large.

Classifier-Level Adaptation When the target domain is not consistent with the source domain, the
pattern estimators (e.g., classifier, regressor) trained on the source domain would not be applicable to
the target domain. To make the estimators applicable from source domain to the target domains, a
common classifier is usually employed to connect these domains [21, 22], in which how to generate
a common classifier from multiple domains is one of the critical issues. To this end, these methods
usually gradually classify the samples of the target domain, add those with high confidences into the
training set, and in turn update the classifier in iterative manner until convergence. However, one
critical drawback is they usually cannot effectively learn all the samples, bringing about not so high
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estimation accuracy.
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Figure 1. Three typical unsupervised domain adaptation scenarios: (a) single source and
single target domain (1S1T), (b) multi-source and single target domains (mS1T), and (c)
single source and multi-target domains (1SmT).

According to the numbers of source domain and target domain, we can group UDA methods into
three scenarios: single source domain with single target domain (1S1T) [23–25], single source
domain with multi-target domains (1SmT) [26] and multi-source domains with single target domain
(mS1T), as shown in Figure 1. Although the 1S1T scenarios are widely researched, the target domain
usually cannot be completely covered by the single source domain, resulting in the target domain
cannot transfer enough knowledge during the process of UDA learning [27]. To overcome this
shortcoming, the paradigm of mS1T was proposed by combining knowledge from multiple source
domains to the single target task [28] and achieved better results than the 1S1T methods. All the
methods in both 1S1T and mS1T concentrate on tasks with a single target domain. However, if
multiple target domains are involved, they will definitely become unapplicable. To this end, the 1SmT
modeling strategy has been proposed. One of the representative is the PA-1SmT [26], which achieved
UDA by transferring knowledge from the source domain to each of the target domains. However, it
does not consider the domain shift in distributions when aligning the target domains to the source. To
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this end, in this paper, we concentrate on 1SmT and proposes a UDA model through transferring both
the source-knowledge and target-relatedness, coined as UDA-SKTR for short. In addition, we also
present an alternating optimization algorithm to solve the proposed model with convergence
guarantee. Overall, the contributions of this paper are three-fold as follows.

1) A 1SmT UDA model, coined as UDA-SKTR for short, is constructed by transferring both the
source-knowledge and the target-relatedness, especially through the target-shared transfer
component matrix Q and the target-individual transfer component matrix Vm to reconstruct the
each of the target models, which is more flexible to better cater for real UDA scenarios and is
solved by a specially designed alternating algorithm with convergence guarantee.

2) Different from existing methods that transfer directly from source domain data, we perform
domain knowledge transfer from the source domain projection rather than the source domain
data itself, which better protecting the privacy of the source data.

3) Extensive evaluation experiments testify the effectiveness and superiority of the proposed method.

The rest of this paper is organised as follows. Section 2 reviews the works related to this paper.
Section 3 elaborates the proposed model and the optimization algorithm, and gives theoretical
convergence proof. Section 4 reports experimental evaluations and provides analysis. Finally, Section
5 concludes this paper and gives future research direction.

2. Related work

In this section, we briefly review several methods mostly related to our work, i.e., SLMC, STC, TSC,
TFSC, PA-1SmT. Before introducing these method, some parameters should be defined. Assuming
that the source domain is defined as {xi, yi}

nS
i=1 and the target domain is defined as {xi}

nT
i=1. The joint

distribution of the source domain is represented as PS (x, y). Similarly, the joint distribution for target
domain can be defined by PT (x, y) where PT (x, y) , PS (x, y). The other parameters in our model are
defined in Table 1.

2.1. Clustering method

Soft Large-Margin Clustering (SLMC) [23] is typical clustering method from the viewpoint of
label space along the large-margin principle. It combines the advantages of soft label and
large-margin clustering and achieves great performance in many scenes of clustering. SLMC enjoys
the advantages of large-margin modeling and soft-label assignment. On the one hand, it could obtain
the maximum of between-class boundaries. On the other hand, it could capture the data inherent
structure by clustering each instance with soft-label assignment. However, The SLMC method suffer
from the way of clustering encoding. In addition, as an clustering algorithm, SLMC cannot be
suitable for domain adaptation due to the missing source domain. In fact, the instances in SLMC is
the target domain indeed which limits the use of the method.
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Table 1. Definition of symbols involved in this paper.

Notation Dimension Meaning

d R The feature dimension of the data samples
K, Km

T R, R The classes number of the source domain
and the mth target domain, respectively

NS , Nm
T R, R The samples number of the source domain

and the mth target domain, respectively
M R The number of target domains

WS , Wm
T Rd×K , Rd×Km

T The projection matrices of the source
domain and the mth target domain,
respectively

Um RKm
T ×Nm

T The clustering membership matrix on the
mth target domain

xm
T,i Rd The ith instance from the mth target domain
D Rd×r The target-relatedness dictionary

Vm RK×Km
T The target-individual transfer component

matrix on the mth target domain from the
source domain

Vm
T Rr×Km

T The target-relatedness component matrix on
the mth target domain

Q Rd×d The target-shared transfer component matrix

In addition, Self-Taught Clustering (STC) [24] performs clustering through co-clustering using both
the target instances and massive unlabeled auxiliary instances, so that these unlabeled data desirably
affects the target clustering through their shared feature representation. STC makes use of the joint
knowledge from both the target domain and the auxiliary samples for co-clustering, so as to obtain
better clustering results. However, this method does not apply the correlations between those auxiliary
samples and the target samples, meanwhile is not available to multiple domains clustering.

Transfer Spectral Clustering (TSC) [29] performs co-clustering for multiple tasks simultaneously
by embedding their shared knowledge. In this way, each of the clustering tasks can be improved by the
cooperative clustering. However, TSC characterizes the correlations between the tasks, it requires the
number of classes in different task domains must be equal, which is not applicable for scenarios where
the task domains do not share the same classes.

Additionly, Transfer Fuzzy Subspace Clustering (TFSC) [25] implements clustering for both the
source and target domains through minimizing the distance gap from the target instances to source
domain centers. Although the TFSC method has taken into account the relationships between source
and target domains, it is not suitable for handling scenarios with multi-target domains.
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2.2. PA-1SmT

PA-1SmT [26] was constructed based on the SLMC model by additionally incorporating cross-
domain knowledge transferring terms between the source and target domains, under the assumption
that the target domains are covered by the source domain. Although PA-1SmT has made use of the
relationships between the source and target domains, it does not consider the domain shift factors and
the common information when aligning the target domains to the source domain and the modeling
motivation is seemingly conflicting with the fact that the target domain space is subset of the source
domain.

2.3. Deep domain adaptation

Recently, the methods of deep DA [30–34], which is combined with deep neural networks, have
achieved better performance than traditional shallow methods. For example, Ganin et al. [30]
designed the simplest DANN model, in which three components (label predictor, domain classifier,
and feature extractor) are embedded, and they also illustrated the efficacy of their method. In
iDANN [31], the authors adopted a different strategy and addressed the DA problem incrementally, by
adapting the model to a new domain in an iterative manner. In addition, the CORAL [32] model was
extended with deep nonlinear networks to match alignments between the layer activations. Moreover,
DTA [33] was proposed to leverage adversarial dropout to learn strongly discriminative features by
enforcing the cluster assumption. Besides, DeepJDOT [34] was designed to align the data
representations between the source and target domains while preserving the discriminative
information of the domain classifier. However, the above methods focus merely on the 1S1T scenario
and does not carry out in-depth exploration from perspective of the 1SmT scenario.

3. Unsupervised domain adaptation through transferring source-knowledge and
target-relatedness

3.1. Motivation

In the scenario of 1SmT UDA learning, single source domain together with multiple target domains
are involved. On the one hand, it definitely needs to transfer knowledge from the source domain to
the target domains in the procedure of UDA learning. On the other hand, the target domains typically
share some similar characteristics with each other, meaning that relatedness exists among them. As
a result, we should perform 1SmT UDA learning for each of the target domains by transferring not
only the knowledge from the source domain, but also the relatedness from the other target domains.
Similar with other work above, the source domain is defined as {xi, yi}

nS
i=1 and the target domain is

defined as {xm
i }

nm
T

i=1 where nS means the number of source domain instances and nm
T means the number

of the m-th target domain instances. Assume the joint distribution of the source domain instances is
represented as PS (x, y), with x and y denote the instance and its label from the source domain task.
Similarly, the joint distribution for the mth of M target domains can be defined by Pm

T (x, y). Generally,
Pm

T (x, y) , Pk
T (x, y) , PS (x, y), (m , k). Considering that the class spaces of the target domains are

usually a subset of the source domains [26], which is equal that Km
T ⊆ KS where KS denote the classes

set of the source domain and {Km
T }

M
m=1 indicate the classes set of M target domains, we can propose to

construct the target model by representing it using the source model. However, the domain shift from
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the source domain to the target domains may be large. To handle it, we need to introduce a shared
matrix to extract the common information and increase the matching flexibility from the source to
target domains. In addition, to exploit the relatedness among the target domains, we can establish a
common knowledge dictionary to relate the target domains. The complete scheme is shown in Figure
2.
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Figure 2. The overview of unsupervised domain adaptation through transferring both the
source domain and target-relatedness knowledge. The target model parameters {Wi

T }
M
i=1 are

learned based on unlabeled data {Xi
T }

M
i=1 by transferring knowledge from the discriminant

source model WS and cross target-domain knowledge characterized by the shared dictionary
D.

3.2. Formulation

3.2.1. Knowledge transfer from source domain to target domains

To perform 1SmT UDA, we obviously need to transfer knowledge from the source domain to the
target domains. Considering that the target domains are not consistent with each other and the domain
shift from the source to these targets, it is necessary to introduce a target-shared transfer component
matrix (denoted as Q) to extract the common information and increase their matching flexibility. Along
this line, we can mathematically formulate the scheme above as

min
{Wm

T ,Q,V
m}

M∑
m=1

(∥∥∥Wm
T −QWS Vm

∥∥∥2

F
+ α∥Vm∥2,1

)
s.t. QT Q = I

(3.1)

In Eq (3.1), the first term is responsible for knowledge transfer from the source domain WS to the
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target domains Wm
T , due to the fact that the target domain space is subset of the source domain. In

addition, it may lead to poor matching effect, if we only focus on the specific information. Therefore,
in this model, both target-shared transfer component matrix Q and target-individual transfer component
matrix Vm are characterized to construct each of the target models, which focus on both specific and
common information, thus improving the classification accuracy in the respective target domain tasks.
WS is learned from K-means algorithm. The second term encourages the UDA to select the most
related knowledge components from the source domain to the targets. α is a nonnegative parameter to
keep a balance between the two terms. In order to prevent degenerated solutions of the target-shared
transfer component matrix Q, we restrict it column-orthogonal by QT Q = I.

3.2.2. Knowledge transfer between target domains

In the 1SmT scenario, multiple target domains are involved, which frequently exhibit potential
promising correlations among them. Such relatedness may contribute to the target models training. To
exploit these shared knowledge among these target domains, we propose to establish a over-complete
representation dictionary to potentially extract such target-relatedness. Along this line, we can
consequently construct the formulation for knowledge transfer between the multi-target domains as
follows,

min
{Wm

T ,D,V
m
T }

M∑
m=1

∥∥∥Wm
T − DVm

T

∥∥∥2

F
+ β

∥∥∥Vm
T

∥∥∥
2,1

(3.2)

In Eq (3.2), the shared dictionary D among the M target domains plays the role of bridging them
and exploring their relatedness to facilitate their learning. More specifically, the shared dictionary D is
established in the targets common space and it is over-complete to cover each of the target domains.
That is, the projection matrix Wm

T for the mth target domain can be recovered by D with its
reconstruction coefficient Vm

T . In this way, the potential relatedness among the target domains is
integrated into their learning. The second term of Eq (3.2) aims to select the most knowledge
components from the dictionary to corresponding target domain.

3.2.3. Unsupervised domain adaptation by considering both source-knowledge and target-relatedness

Through taking into account both the considerations aforementioned in Sections 3.2.1 and 3.2.2,
we achieve incorporating both the source-knowledge and target-relatedness into 1SmT UDA. In
consideration that we concentrate on supervised source domain and unsupervised target domains,
without loss of generality, we readily take the SLMC objective function for target domain clustering.
Eventually, we can consequently build the complete objective function of the UDA model through
transferring source-knowledge and target-relatedness, UDA-SKTR for short, as follows,
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min
{Wm

T ,D,V
m
T ,V

m,um
k,i,Q}

M∑
m=1

(
1
2

Km
T∑

k=1

Nm
T∑

i=1

(um
k,i)

2∥lm
k − (Wm

T )T xm
T,i∥

2

+
λ1

2
∥Wm

T ∥
2
F +
λ2

2
∥Wm

T −QWS Vm∥2F

+
λ3

2
∥Wm

T − DVm
T ∥

2
F

)
+ λ4

(
∥Vm∥2,1 +

M∑
m=1

∥Vm
T ∥2,1

)

s.t.
Km

T∑
k=1

um
k,i = 1, 1 ≤ m ≤ M

0 ≤ um
k,i ≤ 1

QT Q = I

(3.3)

where λ1 to λ4 are nonnegative tradeoff parameters. The first two terms are the objective w.r.t. SLMC
on the target domains, the third term models target-relatedness among the M target domains, while the
fourth term transfers knowledge from the source to the target domains.

3.3. Remark

At first glance, the proposed UDA-SKTR method (see Eq (3.3)) is seemingly similar to
PA-UDA [26]. Nevertheless, there are two significant differences between them as follows. On one
hand, the source domain model of PA-UDA is modeled to be reconstructed completely by each of the
target domains with respective components, which is seemingly conflicting with the fact that the
target domain space is subset of the source domain. In contrast, we construct the target models in
UDA-SKTR through leveraging knowledge from the source model (see the third term of Eq (3.3)),
which is consistent with the UDA setting. On the other hand, the PA-UDA approach relates each of
the target models to the source model merely through the target’s individual components. By
comparison, in UDA-SKTR, each of the target models is constructed by transferring both
target-shared (via the target-shared transfer component matrix Q) and target-specific (via the
target-individual transfer component matrix Vm) knowledge from the source domain model (also see
the third term of Eq (3.3)), which is more flexible to better cater for real UDA scenarios.

3.4. Optimization

We can obviously see that, six variables are involved in Eq (3.3) such that it is marginal convex with
each of the variables, i.e., Wm

T ,D,V
m
T ,V

m,Q, um
k,i. To this end, we establish an alternating optimization

algorithm to solve for each of the variables by fixing all the others until the objective converges. The
specific steps are as follows:
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3.4.1. Solve Wm
T by fixing D,Vm

T ,V
m,Q, um

k,i

Let

JWm
T
=

1
2

∥∥∥Wm
T

∥∥∥2

F

+
λ1

2

Km∑
k=1

Nm
t∑

i=1

(
um

k,i

)2 ∥∥∥lm
k −

(
Wm

T
)T xm

t,i

∥∥∥2

2

+
λ2

2

∥∥∥Wm
T −QWS Vm

∥∥∥2

F

+
λ3

2

∥∥∥Wm
T − DVm

T

∥∥∥2

F

(3.4)

Then, calculating the derivative of JWm
T

w.r.t. Wm
T and making it to zero yields:

∂JWm
T

∂Wm
T
=Wm

t + λ1

Km∑
k=1

Xm
t Ûm

k
(
Xm

t
)TWm

T + λ3Wm
T+

λ2Wm
T − λ1

Km∑
k=1

Xm
t Ûm

k
(
Lm

k
)T

− λ3DVm
T − λ2QWS Vm = 0

(3.5)

where Ûm
k = diag

((
um

k,1

)2
, · · · ,

(
um

k,Nm
k

)2
)

and Lm
k ∈ R

Km
T ×Nm

T stands for a matrix with all entities being 0

except for the k-th row being 1. From Eq (3.5), we can get the closed-form solution of Wm
T as:

Wm
T=

I + λ1

Km∑
k=1

Xm
t Ûm

k
(
Xm

t
)T
+ λ2I + λ3I

−1

λ1

Km∑
k=1

Xm
t Ûm

k
(
Lm

k
)T
+λ3DVm

T+λ2QWS Vm


(3.6)

where I is an identity matrix of proper size.

3.4.2. Solve um
k,i by fixing Wm

T ,D,Vm
T ,V

m,Q

When Wm
T ,D,V

m
T ,V

m,Q are fixed, Eq (3.3) can be equivalently transformed as:

min
{um

k,i}

λ1

2

M∑
m=1

Km∑
k=1

Nm
t∑

i=1

(
um

k,i

)2 ∥∥∥lm
k −

(
Wm

T
)T xm

t,i

∥∥∥2

2

s.t.
Km∑
k=1

um
k,i = 1

0 ≤ um
k,i ≤ 1

(3.7)

Electronic Research Archive Volume 31, Issue 2, 1170–1194.



1180

Let

Jum
k,i
=

Km∑
k=1

Nm
T∑

i=1

(
um

k,i

)2 ∥∥∥lm
k −

(
Wm

T
)T xm

t,i

∥∥∥2

2

−

Nm
T∑

i=1

ξm
i

 Km∑
k=1

um
k,i − 1


(3.8)

where ξm
i represent the Lagrangian multipliers. Then, calculating the derivative of Jum

k,i
w.r.t. um

k,i and
making it to zero yields

∂Jum
k,i

∂um
k,i

= um
k,i

∥∥∥lm
k −

(
Wm

T
)T xm

t,i

∥∥∥2

2
− ξm

i (3.9)

Combining Eq (3.9) with
Km∑
k=1

um
k,i = 1, we can get the closed-form solution as

um
k,i =

∥∥∥lm
k −

(
Wm

T
)T xm

t,i

∥∥∥−2

2
Km∑
r=1

∥∥∥lm
r −

(
Wm

T
)T xm

t,i

∥∥∥−2

2

(3.10)

3.4.3. Solve Vm by fixing Wm
T ,D,V

m
T ,Q, um

k,i

Let
JVm =

λ2

2

∥∥∥Wm
T −QWS Vm

∥∥∥2

F
+ λ4∥Vm∥2,1 (3.11)

Calculating the derivative of JVm w.r.t. Vm and making it to zero, we can obtain the following
analytic solution for Vm

Vm =
(
λ2

(
QWS

)T (
QWS

)
+ 2λ4Mm

)−1(
λ2

(
QWS

)T Wm
T

) (3.12)

where Mm is a diagonal matrix whose ith diagonal element Mm
(i,i) =

1
2∥(Vm∗)i∥2

in which Vm∗ denotes the
solution of Vm obtained in previous iteration.

3.4.4. Solve Vm
T by fixing Wm

T ,D,V
m,Q, um

k,i

Similar to Vm, the solution of Vm
T can be generated as:

Vm
T=

(
λ3DT D+2λ4Mm

T

)−1 (
λ3DT Wm

T

)
(3.13)

where Mm
T is a diagonal matrix whose i-th diagonal element Mm

T (i, i) = 1
2
∥∥∥∥(Vm∗

T )i
∥∥∥∥

2

in which Vm∗
T denotes

the solution of Vm
T updated in last iteration.

Electronic Research Archive Volume 31, Issue 2, 1170–1194.



1181

Algorithm 1 The Optimization Algorithm for UDA-SKTR
Input: {Xm

T }
M
m=1: Training data for M target domains;

WS : Projection matrix trained in source domain;
λ1, λ2, λ3, λ4 and r: Hyper-parameters;

Output: {Wm
T }

M
m=1: Projection matrices for the target domains;

U: Clustering membership matrix;
Initialize U, D, Vm

T , Vm

repeat
Update Wm

T based on Eq (3.6), m = 1, ...,M
Update um

ki based on Eq (3.10)
repeat

Update Vm based on Eq (3.12)
Update MS

until Convergence
repeat

Update Vm
T based on Eq (3.13), m = 1, ...,M

Update Mm
T , m = 1, ...,M

until Convergence
Update the dictionary D based on Eq (3.15)
Update Q based on Eq (3.18)

until Convergence

3.4.5. Solve D by fixing Wm
T ,V

m
T ,V

m,Q, um
k,i

Let
JD = λ3

∥∥∥Wm
T − DVm

T

∥∥∥2

F
(3.14)

Calculating the derivative of JD w.r.t D and letting it to zero yields

D =
 M∑

m=1

Wm
T
(
Vm

T
)T

  M∑
m=1

Vm
T
(
Vm

T
)T

−1

(3.15)

3.4.6. Solve Q by fixing Wm
T ,D,V

m
T ,V

m, um
k,i

When Wm
T ,D,V

m
T ,V

m, um
k,i are fixed, Eq (3.3) can be equivalently rewritten as

min
Q

M∑
m=1

λ2

∥∥∥Wm
T −QWS Vm

∥∥∥2

F

s.t. QT Q = I

(3.16)

The objective function of Eq (3.16) is an orthogonal ProCrustes problem [35]. To solve it, we first

perform SVD on
M∑

m=1

(
Wm

T (WS Vm)T
)

as

M∑
m=1

(
Wm

T (WS Vm)T
)
= UΣVT (3.17)

Electronic Research Archive Volume 31, Issue 2, 1170–1194.



1182

Then, Q can be constructed as

Q = UVT . (3.18)

We repeat the above six steps alternately until convergence and can eventually generate the optimal
solutions of the variables of Eq (3.3). The complete optimization procedure is elaborated in Algorithm
1.

3.5. Time complexity analysis

The time complexity of UDA-SKTR in Algorithm 1 is mainly consisted of the alternating
optimization steps. More specifically, the complexity of Eq (3.6) is O(d2Nm

T + d3 + dNm
T Km

T ). The
complexity of Eq (3.10) is O(d(Km

T )2). The complexity of Eq (3.12) is O(d2KS + d3). The complexity
of Eq (3.13) is O(dr2 + drKm

T ). The complexity of Eq (3.15) is O(
∑M

m=1 Km
T dr + KS dr) and the

complexity of Eq (3.18) is O(d3+d2KS ). Assume that Algorithm 1 converges after Lmax iterations, and
let Nmax and Kmax denote the maximum sample number and class number of the target domains.
Taking into accounts all the time costs, we conclude that the total time complexity in Algorithm 1 is
O(LNmax

T d2 + LNmax
T d(Kmax

T )3+Ld3).

3.6. Convergence analysis

In this section, we provide the convergence analysis for Algorithm 1. For convenience of
clarification, we denote the objective value of Eq (3.3), at the t-th optimization iteration, as
J(um(t)

ki ,W
m(t)
T ,V

m(t),Vm(t)
T ,D

(t),Q(t)). At the beginning of iteration t+1, we fix um(t)
ki ,V

m(t),Vm(t)
T ,D

(t),Q(t),
then Eq (3.3) is convex w.r.t. Wm

T and we denote the objective value after solving it as
J
(
um(t)

ki ,W
m(t+1)
T ,Vm(t),Vm(t)

T ,D
(t),Q(t)

)
, and it holds that

J
(
um(t)

ki ,W
m(t+1)
T ,Vm(t),Vm(t)

T ,D
(t),Q(t)

)
≤ J

(
um(t)

ki ,W
m(t)
T ,V

m(t),Vm(t)
T ,D

(t),Q(t)
)
.

(3.19)

Then, we fix Wm(t+1)
T ,Vm(t),Vm(t)

T ,D
(t),Q(t) and then Eq (3.3) is convex w.r.t. um

ki, and we denote the
objective value of Eq (3.3) after updating um

ki, based on Eq (3.10), as J
(
um(t+1)

ki ,Wm(t+1)
T ,

Vm(t),Vm(t)
T ,D

(t),Q(t)
)
, then it holds that

J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t),Vm(t)

T ,D
(t),Q(t)

)
≤ J

(
um(t)

ki ,W
m(t+1)
T ,Vm(t),Vm(t)

T ,D
(t),Q(t)

)
.

(3.20)

For both Vm and Vm
T , the objective function of Eq (3.3) is convex w.r.t each of them when fixing all

the other variables. After updating them based on Eqs (3.12) and (3.13), the overall objective value of
Eq (3.3) can be updated, and it respectively holds that

J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t)

T ,D
(t),Q(t)

)
≤ J

(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t),Vm(t)

T ,D
(t),Q(t)

)
.

(3.21)
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and

J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t+1)

T ,D(t),Q(t)
)

≤ J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t)

T ,D
(t),Q(t)

)
.

(3.22)

Also, Eq (3.3) is convex w.r.t D and Q. After respectively updating them, we similarly have

J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t+1)

T ,D(t+1),Q(t)
)

≤ J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t+1)

T ,D(t),Q(t)
)
.

(3.23)

and

J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t+1)

T ,D(t+1),Q(t+1)
)

≤ J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t+1)

T ,D(t+1),Q(t)
)
.

(3.24)

All in all, we can draw the following conclusions

J
(
um(t+1)

ki ,Wm(t+1)
T ,Vm(t+1),Vm(t+1)

T ,D(t+1),Q(t+1)
)

≤ J
(
um(t)

ki ,W
m(t)
T ,V

m(t),Vm(t)
T ,D

(t),Q(t)
)
.

(3.25)

It means that the entire objective value of Eq (3.3) descends with increased iterations. In addition,
since the squared Frobenius-norm and the 2,1-norm of matrices are both non-negative, so that the
objective value of Eq (3.3) is totally non-negative and is consequently lower bounded. Moreover,
the entire objective of Eq (3.3) is marginal-convex with each of the variables, so the objective value
descends monotonously after optimizing each of the variables. Eventually, the value of Eq (3.3) will
definitely converge after finite iterations, which concludes the proof.

4. Experiment

To evaluate the proposed methods, we performed evaluation experiments on both benchmark and
real datasets from the viewpoints of performance comparison, parameter analysis and convergence
validation.

4.1. Dataset

We chose the widely used benchmark dataset, i.e., Office + Caltech, as well as real face datasets,
i.e., AgeDB, Morph2 and CACD, for UDA evaluation. Moreover, an additional experiment on PIE
datasets for evaluating the accuracy on the scene of unequal classes. For the benchmark datasets, the
Office dataset includes three different subdatasets, that is Amazon, DSLR and Webcam. These
subdatasets share ten common object categories. For Caltech, it is widely used for object recognition.
In experiments, we apply the version of their ten classes to generate four different data fields.
According to [36], we extracted SURF features from these datasets. For convenience, we denote the
Amazon dataset as ‘A’, DSLR as ‘D’, Webcam as ‘W’ and Caltech as ‘C’. As for the real face
datasets, the AgeDB dataset [37] contains more than 16,000 face images of 568 people aged between
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(d) Caltech(d) Caltech(b) Webcam(b) Webcam(a) Amazon(a) Amazon (c) DSLR(c) DSLR

(e) AgeDB (g) CACD(g) CACD(f) Morph(f) Morph

Figure 3. Image examples from the benchmark (first row) and real (second row) datasets.

0 and 100 years. The Morph2 dataset [38] is composed of over 55,000 face images aged between 16
and 77 years. The CACD database [39] is the largest cross age face dataset, containing more than
160,000 images with face aged from 14 to 62 years. The PIE database, which is constructed at
Carnegie Mellon University in the year 2000, has been proven particularly important to the
progression of research in face recognition across a variety of poses and lighting conditions. The PIE
datasets include 40,000 photos from 68 people, including 13 postural conditions, 43 lighting
conditions and 4 facial expressions for each person. Image examples of these databases are
demonstrated in Figure 3.

4.2. Setup

In the experiments, we compared the proposed method with the related methods, i.e., SLMC,
LSS [40], STC, TSC, TFSC, PA-1SmT, MT-MTDA [41]. In addition, we took the Normalized Mutual
Information (NMI) and the Rand Index (RI) [42] criteria as performance measure on the benchmark
datasets, while the Mean Absolute Errors (MAE) [43] and the Cumulative Scores (CS) [44] as
evaluation measures on the real face datasets. Moreover, all hyper-parameters were set through
five-fold cross-validation which assigned the value of λ1 to λ4 in the range of {1e-4, 1e-3, 1e-2, 1e-1,
1, 1e1, 1e2} and the dictionary dimension r in the range of {5, 10, 15, 20, 25}. With these setting, we
adopted the feature representations associated with the Office + Caltech datasets for evaluation. For
face datasets, we extracted BIF coefficients [45] as feature representation from normalized 32 × 32
face region and reduced their dimensions to 200 through PCA [46]. For each evaluation, we run it
thirty times with random data partitions.
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Table 2. NMI comparison on Office and Caltech datasets. DS and DT respectively denote
the source domain and target domains.

DS DT
Clustering method 1S1T domain adaptation 1SmT domain adaptation

SLMC LSS STC TFSC TSC
PA-

1S1T
UDA-
SKTR

DANN DTA PA-1SmT
UDA-
SKTR

w/o (3.1)

UDA-
SKTR

w/o (3.2)

UDA-
SKTR

w/o (Q)
UDA-SKTR

A
W 0.1222 0.1467 0.1759 0.1628 0.1680 0.2600 0.2795 0.2678 0.2821 0.3011 0.2846 0.2974 0.2630 0.3175
D 0.1569 0.1684 0.2292 0.1716 0.2310 0.2483 0.2643 0.2598 0.6392 0.2753 0.2634 0.2706 0.2493 0.2811

C
W 0.1222 0.1467 0.1189 0.1413 0.1237 0.1677 0.2396 0.2276 0.2389 0.2637 0.2423 0.2623 0.1688 0.2960
D 0.1569 0.1684 0.1856 0.1849 0.1852 0.1986 0.2265 0.2245 0.2280 0.2897 0.2792 0.2870 0.1992 0.3033

A
W 0.1222 0.1467 0.1759 0.1628 0.1680 0.2600 0.2967 0.2956 0.2963 0.3332 0.3038 0.3168 0.2631 0.3429
D 0.1569 0.1684 0.2292 0.1716 0.2310 0.2483 0.2695 0.2632 0.2649 0.2866 0.2710 0.3069 0.2491 0.3150
C 0.0639 0.1564 0.2105 0.1960 0.2040 0.1909 0.2045 0.2010 0.2039 0.2119 0.1608 0.2012 0.1917 0.2122

C
W 0.1222 0.1467 0.1189 0.1413 0.1237 0.1677 0.2058 0.2013 0.2137 0.2706 0.2466 0.2647 0.1688 0.2841
D 0.1569 0.1684 0.1856 0.1849 0.1852 0.1986 0.2627 0.2598 0.2619 0.3009 0.2748 0.3081 0.2005 0.3143
A 0.0717 0.0723 0.2380 0.1683 0.2487 0.2107 0.2261 0.2254 0.2267 0.2353 0.1755 0.2275 0.2124 0.2538

4.3. Results and analysis

4.3.1. On benchmark datasets

We first performed evaluations on the Office and Caltech datasets. Specifically, we took the Amazon
and Caltech datasets as source domain while DSLR and Webcam as target domain. Besides, in hte
scenario settings, the source domain categories contains the target ones while target domain may not
share the same categories necessarily. Therefore, in this experiment, the first four categories in each
target domain are selected while all the source samples are intended to experiments. The results are
reported in Tables 2 and 3 where ’w/o’ means without. Here, the best results are boldfaced, while those
underlined have statistical significance after statistical t-test under p-level: 0.05.

Table 3. RI comparison on Office and Caltech datasets. DS and DT respectively denote the
source domain and target domains.

DS DT
clustering method 1S1T domain adaptation 1SmT domain adaptation

SLMC LSS STC TFSC TSC
PA-

1S1T
UDA-
SKTR

DANN DTA PA-1SmT
MT-

MTDA

UDA-
SKTR

w/o
(3.1)

UDA-
SKTR

w/o
(3.2)

UDA-
SKTR

w/o (Q)

UDA-
SKTR

A
W 0.7146 0.7427 0.7542 0.7223 0.7535 0.7556 0.7749 0.7723 0.7812 0.7786 0.8321 0.7497 0.7932 0.7567 0.8334
D 0.7213 0.7295 0.7486 0.7268 0.7385 0.7464 0.7891 0.7659 0.7831 0.7499 0.8359 0.7255 0.7534 0.7476 0.8364

C
W 0.7146 0.7280 0.7263 0.7128 0.7266 0.7268 0.7843 0.7689 0.7799 0.7695 0.8311 0.7573 0.7864 0.7274 0.8251
D 0.7213 0.7249 0.7215 0.7242 0.7221 0.7368 0.7762 0.7524 0.7791 0.7539 0.8358 0.7926 0.7863 0.7383 0.8275

A
W 0.7146 0.7342 0.7542 0.7223 0.7535 0.7556 0.7869 0.7579 0.7784 0.7816 0.8023 0.7237 0.7907 0.7573 0.8415
D 0.7213 0.7362 0.7486 0.7268 0.7385 0.7464 0.7915 0.7683 0.7839 0.7557 0.8374 0.7911 0.8020 0.7482 0.8362
C 0.7002 0.7221 0.7609 0.7345 0.7443 0.7396 0.7747 0.7732 0.7812 0.7404 0.8109 0.7185 0.7708 0.7402 0.8241

C
W 0.7146 0.7379 0.7263 0.7128 0.7266 0.7268 0.7823 0.7720 0.7815 0.7622 0.8189 0.7749 0.7142 0.7279 0.8280
D 0.7213 0.7338 0.7215 0.7242 0.7221 0.7368 0.7984 0.7914 0.7977 0.7806 0.8297 0.7483 0.7910 0.7381 0.8349
A 0.7110 0.7311 0.7501 0.7161 0.7538 0.7490 0.7940 0.7899 0.7923 0.7608 0.8105 0.7596 0.7629 0.7502 0.8002

From the results in Tables 2 and 3 we can observe the following findings. Firstly, compared with
those 1S1T methods, the 1SmT methods achieved much higher NMI and RI results. It shows that
performing joint learning among the target domains benefit its UDA performance than single target
domain learning. Secondly, in nearly all cases, the proposed UDA-SKTR method generated the best
results with statistical significance than the PA-1SmT approach, in terms of both NMI and RI. It
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demonstrates the solidness and superiority of the proposed method in modeling both
source-knowledge and target-relatedness.
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Figure 4. Sensitivity analysis on hyper-parameters in terms of NMI on benchmark dataset.

Besides, we also evaluated the sensitivity of the hyper-parameters involved in our method. The
results are shown in Figures 4 and 5. We can observe the following findings. Firstly, in terms of both
NMI and RI, with increased λ1, the estimation results gets worse when λ1 > 1e-2. It reason is that
excessive weight on the unsupervised clustering on the target domains overwhelms the other terms for
knowledge transfer. Secondly, the performance consistently increases with growing values of λ2 and
λ3. It validates the effectiveness and rationality of the proposed model in exploiting knowledge from
both the source domain and the target-relatedness. Thirdly, the performance is not sensitive to the value
of λ4, which therefore can be set to a constant, e.g., 1 in the comparison experiments. Fourthly, as for
the dimension r of the target-shared dictionary D, the estimation results become better with increased
r but keep level when r > 10. In view of this observation, in practice we can set r to the value that
meets the performance reduction point.
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Figure 5. Sensitivity analysis on hyper-parameters in terms of RI on benchmark dataset.

4.3.2. On PIE datasets

For evaluating the accuracy on the scene where the classes in source domain is not equal with target
domains, we perform additional experiments on PIE datasets. In this experiment, all the target domains
will be selected the first four classes and the source domain will be selected all. The results is shown
in Tables 4 and 5.
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Table 4. NMI comparison on PIE datasets. DS and DT respectively denote the source domain
and target domains.

DS DT
clustering method 1S1T domain adaptation 1SmT domain adaptation

SLMC LSS STC TFSC TSC
PA-

1S1T
UDA-
SKTR

DANN DTA PA-1SmT
MT-

MTDA

UDA-
SKTR

w/o (3.1)

UDA-
SKTR

w/o (3.2)

UDA-
SKTR

w/o (Q)
UDA-SKTR

PIE05

PIE07 0.1958 0.3016 0.4171 0.4215 0.4227 0.4115 0.4196 0.4084 0.4213 0.4254 0.4539 0.4279 0.4385 0.4136 0.4470
PIE09 0.1822 0.2851 0.4038 0.4279 0.3983 0.4356 0.4572 0.4495 0.4465 0.4588 0.4513 0.4196 0.4693 0.4362 0.4782

PIE07 0.1958 0.3016 0.4171 0.4215 0.4227 0.4115 0.4196 0.4090 0.4091 0.4249 0.4372 0.4362 0.4326 0.4135 0.4493
PIE29 0.2374 0.3306 0.4137 0.4118 0.4149 0.5066 0.5155 0.5102 0.5164 0.5264 0.5689 0.4715 0.5175 0.5084 0.5479

PIE09 0.1822 0.2851 0.4038 0.4279 0.3983 0.4356 0.4572 0.4438 0.4439 0.4850 0.4511 0.4169 0.4360 0.4513 0.4528
PIE29 0.2374 0.3306 0.4137 0.4118 0.4149 0.5066 0.5155 0.5112 0.5213 0.5391 0.5421 0.5307 0.5249 0.5077 0.5546

PIE27

PIE07 0.1958 0.3016 0.4153 0.4061 0.4215 0.4280 0.4317 0.4256 0.4299 0.4417 0.4717 0.4162 0.4385 0.4292 0.4623
PIE09 0.1822 0.2851 0.4041 0.4104 0.4116 0.4033 0.4134 0.4022 0.4231 0.4169 0.4199 0.3971 0.4195 0.4052 0.4287

PIE07 0.1958 0.3016 0.4153 0.4061 0.4215 0.4280 0.4317 0.4232 0.4247 0.4286 0.4652 0.4167 0.4413 0.4294 0.4624
PIE29 0.2374 0.3306 0.4061 0.4207 0.4010 0.4385 0.4490 0.4389 0.4417 0.4996 0.5242 0.4368 0.4909 0.4397 0.5138

PIE09 0.1822 0.2851 0.4041 0.4104 0.4116 0.4033 0.4134 0.4014 0.4236 0.4255 0.4239 0.4084 0.4127 0.4275 0.4342
PIE29 0.2374 0.3306 0.4061 0.4207 0.4010 0.4385 0.4490 0.4479 0.4399 0.4983 0.5013 0.4712 0.4619 0.4397 0.5050

From Tables 4 and 5 we can find that with the incomplete class involved, our method achieved
the best results compared the other method in both NMI and RI. Moreover, when PIE29 is added to
the target domains, the results improved a lot, nearly 8% to 10%. The results when PIE07 is thought
as target domain don’t get notable improvement, which may be because the features are relatively
independent. In addition, the sensitivity of parameters are tested in the below. From Figures 6 and 7
we can observe that λ1 has the strong sensitivity about the model, while other parameters has weak
sensitivity. Not only that, the parameter r show a disorderly sensitivity which shows that dictionary
parameters have great influence on the model and need to be adjusted carefully.

Table 5. RI comparison on PIE datasets. DS and DT respectively denote the source domain
and target domains.

DS DT
clustering method 1S1T domain adaptation 1SmT domain adaptation

SLMC LSS STC TFSC TSC
PA-

1S1T
UDA-
SKTR

DANN DTA PA-1SmT
MT-

MTDA

UDA-
SKTR

w/o (3.1)

UDA-
SKTR

w/o (3.2)

UDA-
SKTR

w/o (Q)
UDA-SKTR

PIE05

PIE07 0.7982 0.7409 0.8429 0.8372 0.8443 0.8479 0.8571 0.8345 0.8494 0.8505 0.8643 0.8461 0.8602 0.8487 0.8859
PIE09 0.7735 0.7834 0.8339 0.8441 0.8361 0.8513 0.8602 0.8599 0.8719 0.8517 0.8639 0.8363 0.8639 0.8531 0.8730

PIE07 0.7982 0.8067 0.8429 0.8372 0.8443 0.8479 0.8579 0.8562 0.8543 0.8494 0.8815 0.8145 0.8461 0.8491 0.8501
PIE29 0.8176 0.8365 0.8457 0.8580 0.8436 0.8761 0.8797 0.8657 0.8692 0.8859 0.8793 0.8652 0.8876 0.8775 0.8924

PIE09 0.7735 0.7975 0.8339 0.8441 0.8361 0.8513 0.8562 0.8436 0.8519 0.8699 0.8812 0.8410 0.8789 0.8574 0.8847
PIE29 0.8176 0.7674 0.8457 0.8580 0.8436 0.8761 0.8872 0.8759 0.8789 0.8804 0.8859 0.8264 0.8806 0.8781 0.8972

PIE27

PIE07 0.7982 0.7937 0.8429 0.8222 0.8397 0.8467 0.8488 0.8378 0.8531 0.8529 0.8713 0.8432 0.8619 0.8478 0.8795
PIE09 0.7735 0.7926 0.8339 0.8422 0.8234 0.8377 0.8644 0.8572 0.8543 0.8504 0.8713 0.8175 0.8650 0.8385 0.8788

PIE07 0.7982 0.8074 0.8429 0.8222 0.8397 0.8467 0.8488 0.8356 0.8367 0.8471 0.8892 0.8377 0.8765 0.8482 0.8935
PIE29 0.8176 0.7963 0.8457 0.8538 0.8442 0.8498 0.8625 0.8589 0.8546 0.8839 0.8914 0.8606 0.8862 0.8536 0.8927

PIE09 0.7735 0.7816 0.8339 0.8422 0.8234 0.8377 0.8644 0.8345 0.8799 0.8683 0.8954 0.8317 0.8816 0.8484 0.8917
PIE29 0.8176 0.7947 0.8457 0.8538 0.8442 0.8498 0.8625 0.8543 0.8649 0.8804 0.8913 0.8572 0.8724 0.8543 0.8976
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4.3.3. On real human face datasets

We also performed UDA evaluation on the real face datasets, i.e., AgeDB, Morph2 and CACD. For
convenience of evaluation, we chose the shared common age range of 16 to 62 years from the three
face datasets. Specifically, we set each neighboring five ages as one group, for example, 16–20 years
as the first group, 21–25 years as the second group, and so on.
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Figure 6. Sensitivity analysis on hyper-parameters in terms of NMI on pie dataset.

Table 6. MAE results comparison on cross-database facial age group estimation.

DS DT
clustering method 1S1T domain adaptation 1SmT domain adaptation

SLMC LSS STC TFSC TSC
PA-

1S1T
UDA-
SKTR

DANN DTA PA-1SmT
MT-

MTDA

UDA-
SKTR

w/o (3.1)

UDA-
SKTR

w/o (3.2)

UDA-
SKTR

w/o (Q)
UDA-SKTR

Morph2
Agedb 3.0965 2.8403 2.9747 2.9041 3.0437 2.7075 2.6654 2.6912 2.6512 2.6863 2.6239 2.8352 2.6402 2.7345 2.5875
CACD 3.1540 2.9726 2.9843 2.8538 3.0265 2.7548 2.7511 2.7512 2.7384 2.7093 2.6418 2.8910 2.7688 2.8014 2.7045

AgeDB
Morph2 3.0881 2.9528 2.9043 2.8873 3.0067 2.8105 2.8032 2.8412 2.8236 2.7623 2.7935 2.8362 2.7921 2.8211 2.7334
CACD 3.1540 2.9726 2.9253 2.9284 3.0169 2.7794 2.6756 2.6968 2.6852 2.5545 2.3814 2.6527 2.5078 2.6312 2.4976

CACD
Morph2 3.0881 2.9528 2.8967 2.9680 2.9980 2.6682 2.6170 2.6312 2.6215 2.6153 2.4937 2.7154 2.6036 2.6564 2.5921
Agedb 3.0965 2.8403 2.9571 2.9853 2.9820 2.6654 2.5771 2.5928 2.5977 2.5742 2.5411 2.7421 2.5573 2.6758 2.4966

In order to embody the ordering of age, WS would be learned by ridge regression from labeled
source data and CA coding was also used on labelling. The results are shown in Table 6 and Figure
9(a). We can observe the following findings. Firstly, the MAE results of both PA-1SmT and the
proposed UDA-SKTR with 1SmT setting are correspondingly better than that in 1S1T setting. It
shows that exploiting the target-relatedness can brings estimation accuracy improvement to age
estimation. Secondly, the proposed method UDA-SKTR consistently achieves the best results with
statistical significance among all the methods. These results once again verifies the superiority of the
proposed methodology on handling UDA tasks.
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Figure 7. Sensitivity analysis on hyper-parameters in terms of RI on PIE dataset.

We also evaluated the sensitivity of the model hyper-parameters on the cross-database UDA with

Electronic Research Archive Volume 31, Issue 2, 1170–1194.



1189

results shown in Figure 8. Similar findings can be observed as in Figures 4 and 5. It once again verifies
the effectiveness and solidness of the proposed methodology in transferring knowledge from both the
source and target domains simultaneously.
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Figure 8. Sensitivity analysis on hyper-parameters in terms of MAE on real human face
dataset.
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Figure 9. The CS comparison and the convergence efficiency of our method.
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(a) t-SNE evaluated on PA-1SmT.
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(b) t-SNE evaluated on UDA-SKTR.

Figure 10. t-SNE visualization on the Office and Caltech datasets.
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To empirically evaluate the convergence efficiency of the proposed Algorithm 1, without loss of
generality, we conducted evaluations on CACD→{AgeDB, Morph2}. The convergence result is shown
in Figure 9(b). We can see that the algorithm converges within ten iterations, which validates its high
convergence efficiency.

4.3.4. t-SNE visualization

To intuitively visualize our method, we provide a visualization of the A→W,D task on the Office and
Caltech datasets. Specifically, we perform t-SNE comparisons with the typical PA-1SmT and UDA-
SKTR as shown in Figure 10. We can observe that the source and target samples adapted by PA-1SmT,
is not aligned well. In contrast, samples adapted by our method are aligned preferably, which supports
the superiority of our UDA-SKTR method to PA-1SmT.

5. Conclusions

In this paper, we proposed a kind of 1SmT UDA model through transferring both the
source-knowledge and target-relatedness, i.e., UDA-SKTR. In this way, not only the supervision
knowledge from the source domain but also the potential relatedness among the target domains are
simultaneously modeled for exploitation in 1SmT UDA. In addition, we constructed an alternating
optimization algorithm to solve the variables of the proposed model with a convergence guarantee.
Finally, through extensive experiments on both benchmark and real datasets, we validated the
effectiveness and superiority of the proposed method. In the future, we will consider extending the
model to more challenging multi-source multi-target (mSmT) scenarios and extend it to practical
application, such as disease detection [47] in medical field and fault detection [48] in industry.
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