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Abstract: In this paper, we study the numerical solution of a parabolic complementarity problem
which is a widely used model in many fields, such as option pricing, risk measures, etc. Using a power
penalty method we represent the complementarity problem as a nonlinear parabolic partial differential
equation (PDE). Then, we use the trapezoidal rule as the time discretization, for which we have to solve
a nonlinear equation at each time step. We solve such a nonlinear equation by the fixed-point iteration
and in this methodology solving a tridiagonal linear system is the major computation. We present an
efficient backward substitution algorithm to handle this linear system. Numerical results are given to
illustrate the advantage of the proposed algorithm (compared to the built-in command backslash in
Matlab) in terms of CPU time.
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1. Introduction

We are interested in the following parabolic complementarity problem
∂u
∂t −

∂
∂x

(
a(x)∂u

∂x

)
≤ g(x, t),

u(x, t) − u∗(x, t) ≤ 0,(
∂u
∂t −

∂
∂x

(
a(x)∂u

∂x

)
− g(x, t)

)
· (u(x, t) − u∗(x, t)) = 0,

(1.1)

where x ∈ Ω ⊂ R, t ∈ (0,T ) and a(x) > 0. The functions u∗ and g are known and the initial and
boundary conditions for the unknown solution u is

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0,T ), u(x, 0) = u0(x) for x ∈ Ω. (1.2)

This kind of dynamic problem arises in many real-world applications, such as engineering, stochas-
tic control, mechanics, economics, and risk measures (see, e.g., [1–8]). In general, it is impossible
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to obtain an analytical solution of (1.1) except for some special cases and hence we have to rely on
numerical methods in practice.

There are many numerical methods for the problem (1.1) and were studied by various authors. A
popular approach is to reformulate the problem as a parabolic PDE using the linear penalty term of
the form µ

[
p − u∗

]
+, where µ ≫ 1 is a constant, p denotes the solution to the penalized equation and

[a]+ := max{a, 0}. This method has been discussed in [2, 3, 9–12]. It has been proved in [2] that the
solution of the penalized equation converges to the original one at a rate of O

(
µ−

1
2

)
. In [10, 13, 14]

power penalty methods have been used for solving constrained optimization problems by using an
improved penalty term

µ
[
p(x, t) − u∗(x, t)

] 1
k
+ = 0, (1.3)

where k ≥ 1 is a constant. (This includes the linear penalty k = 1 mentioned above as the special
case.) The authors proved in [10] that p converges to the exact solution u in a proper Sobolev norm
at a rate of O

(
µ−

k
2

)
. However, the penalty term (1.3) has an unbounded derivative when p − u∗ → 0+,

and therefore it needs to be smoothed locally [10]. In [11], the authors generalized the penalty term in
(1.3) to the form of

µ
([

p(x, t) − u∗(x, t)
]
+ + ϵ

) 1
k = 0, (1.4)

where 1 ≫ ϵ > 0 is a smoothing parameter. The authors proved that the penalized solution converges

to that of the original one at a rate of O
([
µ−k + ϵ

(
1 + µϵ

1
k

)]1/2
)
.

The aim of this paper is to study the numerical solution of the following penalized equation
∂p
∂t −

∂
∂x

(
a(x)∂p

∂x

)
+ µ

([
p − u∗

]
+ + ϵ

) 1
k = g + µϵ

1
k , (x, t) ∈ Ω × (0,T ),

p(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ),
p(x, 0) = u0(x), x ∈ Ω.

(1.5)

In the following, we let f = g + µϵ
1
k . We will first discretize (1.5) in space by using the centered

finite difference method [15]. This leads to large-scale nonlinear ordinary differential equations, for
which we use the trapezoidal rule [16, 17] for time discretization. Such a time discretization avoids
solving nonlinear equations, but at each time step, we have to handle a large-scale tridiagonal linear
system, which is the major computation. By looking for the structure of the coefficient matrix we
propose a backward substitution algorithm for such a linear system. Numerically, we find that this
algorithm is more efficient than the widely used built-in command ‘backslash’ in Matlab in terms of
CPU time.

The rest of this paper is organized as follows. In Section 2 we recall some results concerning the
unique solvability of (1.5) and convergence of p to u. In Section 3 we present the space and time
discretization for (1.5). We present the backward substitution algorithm in Section 4 for solving the
large-scale tridiagonal linear system at each time step. Numerical results are given in Section 5 and we
conclude this paper in Section 6.

2. Some preliminary results

In this section, we recall some results for the penalized parabolic equation (1.5) at the continuous
level. To this end, we introduce some notations used in the following. With 1 ≤ s ≤ ∞, we let
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Ls(Ω) =
{
v :

(∫
Ω
|v(x)|s dx

) 1
k
< ∞

}
denote the space of all s-power integrable functions on Ω. The

inner product on L2(Ω) is denoted by (·, ·)Ω. We use ∥ · ∥Ls(Ω) to denote the norm on Ls(Ω) and Hs(Ω)
to denote the Sobolev space with norm ∥ · ∥k,Ω. Let Cs(Ω) (respectively, Cs(Ω̄) ) be the function set
of which a function and its derivatives of up to order s are continuous on Ω (respectively, Ω̄ ). Let
Hs

0(Ω) = {v ∈ Hs(Ω) : v(x) = 0, x ∈ ∂Ω}. For any Hilbert space H(Ω), we use Ls(0,T ;H(Ω)) to denote
the space

Ls(0,T ;H(Ω)) = {v(·, t) : v(·, t) ∈ H(Ω) a.e. in (0,T ); ∥v(·, t)∥H ∈ Ls(0,T )} ,

where 1 ≤ k ≤ ∞ and ∥ · ∥H denotes the natural norm on H(Ω). The norm in this space is denoted by
∥ · ∥Ls(0,T ;H), i.e.,

∥v∥Ls(0,T ;H(Ω)) =

(∫ T

0
∥v(·, t)∥sH dt

) 1
s

.

We use H−1(Ω) to denote the dual space of H1(Ω) and use ⟨·, ·⟩ to denote the duality pair between a
Hilbert space and its dual space.

By an integration by parts, it is clear that the variational problem corresponding to (1.5) is the
following problem: find p(t) ∈ H1

0(Ω) such that for all v ∈ H1
0(Ω) it holds(

−
∂p(t)
∂t
, v

)
+ (a(x)∂x p(t), ∂xv) + µ

(([
p(t) − u∗

]
+ + ϵ

) 1
k , v

)
= ( f , v) , (2.1)

with the initial condition p(x, 0) = u0(x) in Ω and f = g + µϵ
1
k .

Theorem 1. For a(x) > 0, problem (2.1) has a unique solution for fixed ϵ ≥ 0 and µ ≥ 1.

Proof. Clearly, problem (2.1) is equivalent to(
−
∂p(t)
∂t
, v

)
+ (a(x)∂x p(t), ∂xv) + µ (Φϵ (p(t)) , v) =

(
f − µ(ϕ(0) + ϵ)

1
k , v

)
,

where Φϵ(w) = (ϕ(w) + ϵ)
1
k − (ϕ(0) + ϵ)

1
k . Clearly,

Φϵ(0) = (ϕ(0) + ϵ)
1
k − (ϕ(0) + ϵ)

1
k = 0,

and Φϵ(w) is a monotonically increasing function of w because of the monotonicity of ([w − u∗]+ + ϵ)
1
k

in w. This implies
⟨Φϵ(v) − Φϵ(w), v − w⟩ ≥ 0, ∀v,w ∈ H1

0(Ω). (2.2a)

Since a(x) > 0, it holds

(a(x)∇v,∇v) ≥ a0(∇v,∇v) = a0∥∇v∥0 ≥ C∥v∥1, (2.2b)

where we have used the Poincare-Friedrich inequality, i.e., ∥∇v∥0 ≥ C∥v∥1(∀v ∈ H1
0(Ω)). By integration

by parts, we therefore have

⟨(−∂x(a(x)∂xv)) − (−∂x(a(x)∂xw)), v − w⟩

= ⟨a(x)(∂xv − ∂xw), ∂x(v − w)⟩ ≥ 0,
(2.2c)
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which holds for any v,w ∈ H1
0(Ω). From (2.2a) and (2.2b) we have

⟨µΦϵ(v) − ∂x(a(x)∂xv)) − (µΦϵ(w) − ∂x(a(x)∂xw))) , v − w⟩ ≥ 0. (2.2d)

Similarly, by using (2.2b) it holds

⟨µΦϵ(v) − ∂x(a(x)∂xv)), v⟩ ≥ C∥v∥21 + µ (Φϵ(v), v) ≥ C∥v∥21, (2.3)

because (Φϵ(v), v) = (Φϵ(v) − Φϵ(0), v − 0) ≥ 0.
From the definitions of Φϵ we have

(Φϵ(v),w) =
∫
Ω

([v − u∗]+ + ϵ)
1
k w dx −

∫
Ω

([−u∗]+ + ϵ)
1
k w dx

≤

(∫
Ω

([v − u∗]+ + ϵ)
2/k dx

)1/2

+C1(t)
 ∥w∥0

≤ C
(∫

Ω

([v − u∗]+ + ϵ)
2 dx

)1/2k

+C1(t)
 ∥w∥0

= C
(
∥[v − u∗]+ + ϵ∥

1
k
0 +C1(t)

)
∥w∥0

]
≤ (C2∥v∥0 +C1(t)) ∥w∥0,

where we have used ∥v∥
1
k
0 ≤ max {1, ∥v∥0} for k ≥ 1. Here, C1 ∈ L

2(0,T ) is a generic positive function
of t and C2 > 0 a generic constant independent of ϵ and k. This gives

⟨µΦϵ(v) − ∂x(a(x)∂xv)),w⟩ ≤ ∥w∥1 (C1(t) +C2∥v∥1) ,∀v,w ∈ H1
0(Ω).

Dividing both sides of this inequality by ∥w∥1 and taking the supremum with respect to w we obtain

∥µΦϵ(v) − ∂x(a(x)∂xv))∥H−1(Ω) ≤ C1(t) +C2∥v∥1. (2.4)

Now, by using (2.2d), (2.3) and (2.4) the unique existence of the solution of (2.1) is guaranteed by
the theory established in [4, 18].

We now present the convergence of the approximate solution p of the penalized problem (1.5) to
that of the original problem (1.1).

Theorem 2. Let a(x) > 0 and ∂u
∂t ∈ L

k+1(Ω). Then there exists a constant C > 0, independent of u, p
and µ such that

∥u − p∥L∞(0,T ;L2(Ω)) + ∥u − p∥L2(0,T ;H1
0(Ω)) ≤ C

[
1
µk + ϵ

(
µϵ

1
k + 1

)]1/2

, (2.5)

where µ, k and ϵ are the parameters used in (1.5).

Proof. In the asymptotic sense (i.e., ϵ → 0) it is clear that (1.5) is equivalent to

∂p
∂t
−
∂

∂x

(
a(x)
∂p
∂x

)
+ µ

([
p − u∗

]
+ + ϵ

) 1
k = g. (2.6)

(Here we have used f = g+ µϵ
1
k .) In [3,11,12] it was proved that the solution of (2.6) and the solution

of the original problem (1.1) satisfy (2.5). Since

µϵ
1
k ≤ ϵ

1
2
(
µϵ

1
k + 1

) 1
2
,

it is clear that the solution of (1.5) and the solution of the original problem (1.1) satisfy (2.5) as well.
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3. Space and time discretizations

We now present space and time discretizations for the penalized equation (1.5). To this end, we
partition the computation domain Ω × [0,T ] by mesh sizes h and τ and denote an arbitrary grid on this
domain by ( jh, nτ), where j = 0, 1, . . . , J and n = 0, 1, . . . ,N. We first discretize the spatial derivative
by the centered finite difference formula

∂

∂x

(
a(x)
∂p
∂x

) ∣∣∣∣
x=x j
=

a j+1 p j+1(t)−a j p j(t)
h −

a j p j(t)−a j−1 p j−1(t)
h

h
+ r j

=
a j+1 p j+1(t) − 2a j p j(t) + a j−1 p j−1(t)

h2 + r j,

where al = a(xl), pl(t) ≈ p(xl, t) (with l = j − 1, j, j + 1), r j = O(h2) is the truncation error and
j = 1, 2, . . . , J − 1. For j = 0 and j = J it holds p j(t) = 0 according to the boundary condition in (1.5).

Dropping this truncation error in the above formulas gives the approximations as

∂

∂x

(
a(x)
∂p
∂x

) ∣∣∣∣
x=x j
≈

a j+1 p j+1(t) − 2a j p j(t) + a j−1 p j−1(t)
h2 .

Substituting this into (1.5) gives the semi-discrete system as

p′(t) + Ap(t) + µ
([

p(t) − u∗(t)
]
+ + ϵ

) 1
k = f (t), t ∈ (0,T ), (3.1)

with initial value condition p(0) = u0, where

p(t) =


p1(t)
p2(t)
...

pJ−1(t)

 , u∗ =


u∗(x1, t)
u∗(x2, t)
...

u∗(xJ−1, t)

 , f (t) =


f (x1, t)
f (x2, t)
...

f (xJ−1, t)

 , ϵ =

ϵ

ϵ
...

ϵ

 . (3.2a)

The Matrix A is a tridiagonal matrix

A =
1
h2



2a1 −a2

−a1 2a2 −a3
. . .

. . .
. . .

−aJ−3 2aJ−2 −aJ−1

−aJ−2 2aJ−1


. (3.2b)

We now introduce time discretization for (3.1). To match the second-order accuracy of the space
discretization, we need a second-order time discretization. To this end, we rewrite (3.1) as an integral
equation in the interval [tn, tn+1]∫ tn+1

tn
p′(s)ds =

∫ tn+1

tn

(
f (s) − Ap(s) − µ

([
p(s) − u∗(s)

]
+ + ϵ

) 1
k

)
ds,

i.e.,

p(tn+1) − p(tn) =
∫ tn+1

tn

(
f (s) − Ap(s) − µ

([
p(s) − u∗(s)

]
+ + ϵ

) 1
k

)
ds. (3.3)
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Let f (t) − Ap(t) − µ
([

p(t) − u∗(t)
]
+ + ϵ

) 1
k = (q1(t), q2(t), . . . , qJ−1(t))⊤. Then,

∫ tn+1

tn

(
f (s) − Ap(s) − µ

([
p(s) − u∗(s)

]
+ + ϵ

) 1
k

)
ds =



∫ tn+1

tn
q1(s)ds∫ tn+1

tn
q2(s)ds
...∫ tn+1

tn
qJ−1(s)ds


.

Let q(t) be an arbitrary component of the vector function (q1(t), q2(t), . . . , qJ−1(t))⊤. The integral∫ tn+1

tn
q(s)ds is the area of the trapezoid with a curved edge as shown in Figure 1 on the left. In general,

it is impossible to get the precise value of such an area. To get an approximation of this area we can
consider a regular trapezoid with the curved edge being replaced by a straight edge; see Figure 1 on
the right. Then, we have∫ tn+1

tn
q(s)ds =

p(tn) + p(tn+1)
2

(tn+1 − tn) + ηn =
p(tn) + p(tn+1)

2
τ + ηn,

where ηn = O(τ2) denotes the approximation error [15, Chapter 2].

Figure 1. The trapezoidal rule lies in approximating the trapezoid with a curved edge by a
regular one. The area of the regular trapezoid is p(tn)+p(tn+1)

2 (tn+1 − tn) = p(tn)+p(tn+1)
2 τ.

Dropping the approximation error and letting pn ≈ p(tn), we therefore obtain an approximation of
the right hand-side of (3.3):∫ tn+1

tn

(
f (s) − Ap(s) − µ

([
p(s) − u∗(s)

]
+ + ϵ

) 1
k

)
ds

≈ τ f̃n −
τA
2

(pn + pn+1) −
τµ

2

(([
pn − u∗n

]
+ + ϵ

) 1
k
+

([
pn+1 − u∗n+1

]
+ + ϵ

) 1
k
)
,

where f̃n =
f (tn)+ f (tn+1)

2 . Substituting this into (3.3) gives the full discretization of the penalized equation
(1.5):

pn+1 − pn = τ f̃n −
τA
2

(pn + pn+1) −
τµ

2

(([
pn − u∗n

]
+ + ϵ

) 1
k
+

([
pn+1 − u∗n+1

]
+
+ ϵ

) 1
k
)
,

where n = 0, 1, . . . ,N − 1. This is a nonlinear system due to the term([
pn+1 − u∗n+1

]
+ + ϵ

) 1
k
.
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To handle such a nonlinear system we propose a fixed-point iteration as follows. We can use New-
ton’s method to handle such a nonlinear problem [19], but in this case, we have to compute the Jacobian
matrix of the whole nonlinear term. First, we rewrite this system as

pn+1 +
τA
2

pn+1 =
τµ

2

([
pn+1 − u∗n+1

]
+
+ ϵ

) 1
k
+ bn,

bn := τ f̃n + pn −
τA
2

pn −
τµ

2

([
pn − u∗n

]
+ + ϵ

) 1
k .

(3.4)

(The vector bn is a known term.) Then, we solve pn+1 via the following iterations

p[l+1]
n+1 +

τA
2

p[l+1]
n+1 =

τµ

2

([
p[l]

n+1 − u∗n+1

]
+
+ ϵ

) 1
k
+ bn, l = 0, 1, . . . , lmax − 1,

pn+1 = p[lmax]
n+1 ,

(3.5)

where l is the iteration index and lmax is specified by the prescribed tolerance.
The following is the convergence analysis for the above fixed-point iteration.

Theorem 3. Let a(x) > 0 for x ∈ Ω, ϵ > 0 and k > 1. Then the fixed-point iteration (3.5) converges to
the unique solution with a rate at least

ρ =
τµamaxh2

[2amaxh2 + (2 − 2 cos (hπ))τ]kϵ
k−1

k

, (3.6)

if ρ < 1, where amax = maxx∈Ω a(x).

Proof. From (3.5) we have

p[l+1]
n+1 =

τµ

2

(
Ix +
τA
2

)−1 ([
p[l]

n+1 − u∗n+1

]
+
+ ϵ

) 1
k
+ b̃n,

where b̃n = (Ix +
τA
2 )−1bn and Ix ∈ R

(J−1)×(J−1) is an identity matrix. Let

Y(x) =
([

x − u∗n+1
]
+ + ϵ

) 1
k
, F(x) =

τµ

2

(
Ix +
τA
2

)−1

Y(x) + b̃n. (3.7)

Then, it is sufficient to study the contraction property of the function F(x), i.e.,

∥F(x1) − F(x2)∥∞ ≤ ρ∥x1 − x2∥∞, (3.8)

where ρ is the quantity that we need to look insight into. The analysis of ρ is given as follows. It holds

F(x1) − F(x2) =
τµ

2

(
Ix +
τA
2

)−1

[Y(x1) − Y(x2)],

which implies

∥F(x1) − F(x2)∥∞ ≤
τµ

2

∥∥∥∥∥∥(Ix +
τA
2

)−1
∥∥∥∥∥∥
∞

∥Y(x1) − Y(x2)∥∞. (3.9)

From the structure of the matrix A (cf. (3.2b)) we have

Ix +
τA
2
= Ix +

τ

2
ΛDa,

Electronic Research Archive Volume 31, Issue 2, 1048–1064.
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where

Λ =
1
h2



2 −1
−1 2 −1

. . .
. . .
. . .

−1 2 −1
−1 2


,Da =



a1

a2
. . .

aJ−2

aJ−1


.

Let λ(·) denote an arbitrary eigenvalue of the involved matrix. It it clear

λ
(
Ix +
τA
2

)
= 1 +

τ

2
λ(ΛDa).

Since a(x) > 0 we know that Da is an invertible diagonal matrix with positive diagonal elements.
Hence, by a similarity transform it holds

λ(ΛDa) = λ(D
1
2
a (ΛDa)D−

1
2

a ) = λ(D
1
2
aΛD

1
2
a ), (3.10a)

where D±
1
2

a = diag(a±
1
2

1 , a
± 1

2
2 , . . . , a

± 1
2

J−1). The matrix D
1
2
aΛD

1
2
a is a symmetric positive definite matrix and

thus it holds (see, e.g., [20, Chapter 5])

min
z∈RJ−1

z⊤D
1
2
aΛD

1
2
a z

z⊤ z
≤ λ(D

1
2
aΛD

1
2
a ) ≤ max

z∈RJ−1

z⊤D
1
2
aΛD

1
2
a z

z⊤ z
. (3.10b)

By letting z̃ = D
1
2
a z we have

z⊤D
1
2
aΛD

1
2
a z

z⊤z
=

z̃⊤Λ z̃
z̃⊤D−1

a z̃
. (3.11)

Since Λ is a symmetric positive definite matrix, from [20, Chapter 5] we have

λmin(Λ) ≤ z̃⊤Λ z̃ ≤ λmax(Λ), ∀ z̃ ∈ RJ−1.

From [21, 22] we know that the eigenvalues of the tridiagonal matrix Λ are given by

λ j(Λ) =
2 − 2 cos

(
jπ
J

)
h2 , j = 1, 2, . . . , J − 1.

Since J = 1
h , it holds

λmin(Λ) =
2 − 2 cos (hπ)

h2 , λmax(Λ) =
2 + 2 cos (hπ)

h2 .

This gives
2 − 2 cos (hπ)

h2 ≤ z̃⊤Λ z̃ ≤
2 + 2 cos (hπ)

h2 , ∀ z̃ ∈ RJ−1. (3.12a)

Let amax = maxx∈Ω a(x) and amin = minx∈Ω a(x). Then, it holds

a−1
max z̃⊤ z̃ ≤ z̃⊤D−1

a z̃ ≤ a−1
min z̃⊤ z̃, ∀ z̃ ∈ RJ−1. (3.12b)
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Substituting (3.12a) and (3.12b) into (3.11) gives

2 − 2 cos (hπ)
h2amax

=
λmin(Λ)

amax
≤

z⊤D
1
2
aΛD

1
2
a z

z⊤ z
≤
λmax(Λ)

amin
=

2 + 2 cos (hπ)
h2amin

.

This together with (3.10a) and (3.10b) gives

λ
(
Ix +
τA
2

)
∈

[
1 +

(2 − 2 cos (hπ))τ
2amaxh2 , 1 +

(2 + 2 cos (hπ))τ
2aminh2

]
. (3.13)

This indicates that Ix +
τA
2 is an invertible matrix, since λmin

(
Ix +

τA
2

)
> 0.

We next estimate of the infinity-norm of the inverse matrix
(
Ix +

τA
2

)−1
. By the definition of the

infinity-norm of a square matrix, it holds∥∥∥∥∥∥(Ix +
τA
2

)−1
∥∥∥∥∥∥
∞

= max
z∈RJ−1,∥z∥∞=1

∥∥∥∥∥∥(Ix +
τA
2

)−1

z
∥∥∥∥∥∥
∞

.

Since λ
(
Ix +

τA
2

)
is invertible, the eigenvectors of this matrix consist of a complete basis of the space

RJ−1. Then, without loss of generality, we assume that z is an arbitrary normalized eigenvector (with
corresponding eigenvalue λ), i.e.,

(
Ix +

τA
2

)
z = λz. Hence,(

Ix +
τA
2

)−1

z = λ−1 z.

This implies (cf. (3.13)).∥∥∥∥∥∥(Ix +
τA
2

)−1

z
∥∥∥∥∥∥
∞

= |λ| ∈

[
2aminh2

2aminh2 + (2 + 2 cos (hπ))τ
,

2amaxh2

2amaxh2 + (2 − 2 cos (hπ))τ

]
.

In summary, we have∥∥∥∥∥∥(Ix +
τA
2

)−1
∥∥∥∥∥∥
∞

∈

[
2aminh2

2aminh2 + (2 + 2 cos (hπ))τ
,

2amaxh2

2amaxh2 + (2 − 2 cos (hπ))τ

]
. (3.14)

We next explore the relationship between ∥Y(x1) − Y(x2)∥∞ and ∥x1 − x2∥∞ with Y(x) being the
function defined by (3.7). Since

Y(x) =
(
([x1 − u∗1]+ + ϵ)

1
k , ([x2 − u∗2]+ + ϵ)

1
k , . . . , ([xJ−1 − u∗J−1]+ + ϵ)

1
k
)⊤
,

it is sufficient to study the contraction property of y(x) := ([x]+ + ϵ)
1
k with x ∈ R. We claim

|y(x1) − y(x2)| ≤
1

kϵ
k−1

k

|x1 − x2|. (3.15)

We consider three cases as shown in Figure 2. For the case x1 ≤ 0 and x2 ≤ 0, it is clear that (3.15)
holds. For x1 ≤ 0 and x2 > 0 (i.e., the middle case in Figure 2), it holds

|y(x1) − y(x2)| = y(x2) − y(0) = y′(ξ)x2 =
x2

k(ξ + ϵ)
k−1

k

≤
x2 − x1

kϵ
k−1

k

=
|x2 − x1|

kϵ
k−1

k

,
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where ξ ∈ (0, x2). It remains to consider x2 > x1 > 0 (cf. Figure 2 on the right). We have

|y(x1) − y(x2)| = y(x2) − y(x1) = y′(ξ)(x2 − x1) =
x2 − x1

k(ξ + ϵ)
k−1

k

≤
x2 − x1

kϵ
k−1

k

=
|x2 − x1|

kϵ
k−1

k

.

In summary, for all the three cases shown in Figure 2 the estimate (3.15) holds. Hence,

∥Y(x1) − Y(x2)∥∞ ≤
1

kϵ
k−1

k

∥x1 − x2∥∞. (3.16)

0 0 0

Figure 2. The three cases for analyzing the contraction property of ([x]+ + ϵ)
1
k .

Now, substituting (3.14) and (3.16) into (3.9) gives

∥F(x1) − F(x2)∥∞ ≤
τµamaxh2

[2amaxh2 + (2 − 2 cos (hπ))τ]kϵ
k−1

k

∥x1 − x2∥∞. (3.17)

This proves the desired result as stated by Theorem 3.

4. Backward substitution algorithm

In the implementation of (3.5) we have to solve a linear system(
I +
τA
2

)
p[l+1]

n+1 = b[l]
n , b[l]

n :=
τµ

2

([
p[l]

n+1 − u∗n+1

]
+
+ ϵ

) 1
k
+ bn, (4.1)

for each iteration index l ≥ 0. This would be the major computation for solving the penalized equation
(1.5) and in this section, we propose an algorithm to handle this problem. (There are also many other
efficient algorithms can be used to solve such a banded linear system, such as the hybrid algorithm
in [23].)

To clearly describe our idea, we let

p[l+1]
n+1 = (y1, y2, . . . , yJ−1)⊤, b[l]

n = (b1, b2, . . . , bJ−1)⊤, γ =
τ

2h2 ,

ã1 =
γa2

1 + 2γa1
, b̃1 =

b1

1 + 2γa1
,

ã j =
γa j+1

1 + 2γa j − γa j−1ã j−1
, b̃ j =

b j + γa j−1b̃ j−1

1 + 2γa j − γa j−1ã j−1
, j = 2, 3, . . . , J − 2.

(4.2)
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Then, it holds 
(1 + 2γa1)y1 − γa2y2 = b1,

−γa j−1 + (1 + 2γa j)y j − γa j+1y j+1 = b j, j = 2, 3, . . . , J − 2,
−γaJ−2yJ−2 + (1 + 2γaJ−1)yJ−1 = bJ−1.

(4.3)

From the first equation we have

y1 =
γa2

1 + 2γa1
y2 +

b1

1 + 2γa1
= ã1y2 + b̃1. (4.4a)

Substituting this into the middle equation in (4.3) with j = 2 gives

−γa1(ã1y2 + b̃1) + (1 + 2γa2)y2 − γa3y3 = b2,

i.e.,

y2 =
γa3

1 + 2γa2 − γa1ã1
y3 +

b2 + γa1b̃1

1 + 2γa2 − γa1ã1
= ã2y3 + b̃2.

In general we have

y j = −γa j−1y j−1 + (1 + 2γa j)y j − γa j+1y j+1

= −γa j−1(ã j−1y j + b̃ j−1) + (1 + 2γa j)y j − γa j+1y j+1,

i.e.,

y j =
γa j+1

1 + 2γa j − γa j−1ã j−1
y j+1 +

b j + γa j−1b̃ j−1

1 + 2γa j − γa j−1ã j−1
= ã jy j+1 + b̃ j, (4.4b)

where j = 2, 3, . . . , J − 2. In particular for j = J − 1 we have yJ−2 = ãJ−2yJ−1 + b̃J−2. This together with
the last equation in (4.3) givesyJ−2 = ãJ−2yJ−1 + b̃J−2,

−γaJ−2yJ−2 + (1 + 2γaJ−1)yJ−1 = bJ−1.

Substituting the first equation into the second one gives

yJ−1 =
bJ−1 + γaJ−2b̃J−2

1 + 2γaJ−1 − γaJ−2ãJ−2
. (4.4c)

With yJ−1, we can get yJ−2, yJ−3, . . . , y1 via a backward substitution according to (4.4a) and (4.4b).
In summary, we can solve the linear system (4.1) as follows.

Algorithm 1 Backward Substitution Algorithm.

Initialization: Define {ã j, b̃ j}
J−2
j=1 according to (4.2).

Step 1 Compute yJ−1 according to (4.4c).

Step 2 Compute {yJ−2, yJ−3, . . . , y2, y1} according to (4.4b) and (4.4a).

Step 3 Let p[l+1]
n+1 = (y1, y2, . . . , yJ−1)⊤.
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5. Numerical results

In this section, we present numerical results to study the proposed fixed-point iteration (3.5) and the
backward substitution algorithm in Section 4. We use the following data

Ω = (0, 1), t ∈ (0,T ) with T = 4, a(x) = min
{
0.8,max

{
0.2, sin

(
πx
2

)}}
,

u∗ = sin(
√

tx|0.5 − x|π), g = 2(1 − x) sin(2πt(T − t)x).
(5.1)

For the penalty parameters, we use ϵ = 1e − 4, k = 4 and several values of µ. All numerical results
are implemented by Matlab R2017a installed in a desk computer with Mac OS and 2.7 GHz Intel Core
i5. The tolerance for the fixed-point iteration (3.5) is set to tol = min{h2,τ2}

10 , which is sufficient to match
the discretization errors.

Let h = τ = 1
100 . Then, in Figure 3 we plot the profile of p(x, t) and u∗(x, t) for two values of µ:

µ = 3 (top row) and µ = 15 (bottom row). We see that the parameter µ has a remarkable influence on
the solution p. In particular, for small µ (e.g., µ = 3) it does not hold p ≤ u∗ for all (x, t) ∈ Ω× (0,T ) as
we can see in the top-right subfigure. For large µ, as we can see in the bottom-right subfigure, it holds
p ≤ u∗ uniformly.

0
0

1 1

2
0.5

0.5

3

4 0

1

0
0

1
1

2

0.5
3

0.5

4 0

1

0
0

1
1

0.5

2
0.53

1

4 0

0
0

1 1

0.5

2
0.5

3

4

1

0

Figure 3. With the data given by (5.1), the function u∗ and the computed solution p. Left: the
computed p; Right: putting the computed solution p and the constraint u∗ in a single panel.
Top: µ = 3 (and in this case it does not hold p ≤ u∗ for all (x, t) ∈ Ω× (0,T )); Bottom: µ = 15
and it holds p ≤ u∗ uniformly.

In Figure 4 we show the local details of the constraint u∗ and the computed solution p at two
different time points: t = 2 (left) and t = 4 (right). Here we consider three values of penalty parameter
µ: µ = 3, 7, 15. The results in Figure 4 clearly indicate that as µ grows the condition p ≤ u∗ holds
uniformly on the space and time domains. This observation confirms the conclusion in [3, 10–12].
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Figure 4. Local details of the constraint u∗ and the computed solution p at two different time
points: t = 2 (left) and t = 4 (right).

In Figure 5 we show the measured iteration number of the fixed-point iteration (3.5) for three values
of the penalty parameter µ. (Such an iteration number is the quantity Lmax such that the infinity norm
of the residual arrives at the prescribed tolerance tol=min{h2,τ2}

10 .) We see that as µ grows the required
iteration number of the fixed-point iteration (3.5) increases as well. This is an undesirable phenomenon
and needs further study.
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Figure 5. Iteration number of the fixed-point iteration (3.5) for three values of the penalty
parameter µ.

Let
Itmax

fp = max
n=1,2,...,N

Itn
fp,

where the subscript ‘fp’ denotes fixed-point iteration and Itn
fp is the iteration number for the n-th time

point. The quantity Itmax
fp is the maximal iteration number over all the N time points. In Figure 6 we

show Itmax
fp as we refine the discretization mesh sizes h (and τ) from 2−6 to 2−11. Clearly, the results in

Figure 6 indicates that the convergence rate of the fixed-point iteration algorithm is robust with respect
to the mesh sizes. Such robustness is a very important property when high accuracy (i.e., h and τ
should be small) is pursued.
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Figure 6. Maximal iteration number of the fixed-point iteration algorithm (3.5) when we
refine h(= τ) from 2−6 to 2−11. The iteration number is robust in terms of the mesh sizes.

We next study the backward substitution algorithm proposed in Section 4. We will compare it with
the built-in command backslash in Matlab. Let p be the solution obtained by using the backward
substitution algorithm proposed in Section 4 and pinv is the solution obtained by using the backslash
command in Matlab. These two linear solvers are used to handle the same linear system in (3.5)
for each fixed-point iteration. In Figure 7 we show the error between p and pinv on the space and
time domains. We see that both linear solvers leads to the same numerical solution if we neglect the
roundoff error due to floating point operations. This implies that the backward substitution algorithm
indeed produces a reliable numerical solution.

Figure 7. The error between p and pinv for different values of the penalty parameter µ.

Using the two linear solvers for implementing the fixed-point iteration (3.5), we show in Figure 8
the measured CPU time for solving the penalized equation (1.5). Clearly, the computation using the
backward substitution algorithm needs much less CPU time and this indicates a great advantage for
using it in practice.
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Figure 8. Measured CPU time for computing the solution of the penalized equation (1.5) by
using two linear solvers, the backslash command in Matlab and the backward substitution
algorithm proposed in Section 4. From left to right: µ = 3, 7, 15. Here, h = τ = 1

100 .

6. Conclusions

We have made a numerical study of the parabolic complementarity problems. We first represent the
problem via a penalty method following the idea in [2, 3, 9–12] and then we discretize the penalized
equation via a Crank-Nicolson method consisting of a centered finite difference formula for the space
derivative and a trapezoidal rule for time discretization. In each time step, we have to solve a nonlinear
system due to the penalty term and we proposed a fixed-point iteration to handle such a nonlinear
system. The major computation of the fixed-point iteration is to solve a tridiagonal linear problem,
for which we proposed a backward substitution algorithm, which is a direct linear solver (i.e., it is
not iterative). Extensive numerical results are given, which indicate how the discretization mesh sizes
and the penalty parameters affect the convergence rate of the fixed-point iteration. In terms of CPU
time, the numerical results also indicate an obvious advantage of the backward substitution algorithm
compared to the built-in command backslash in Matlab. This would be a very important advantage to
deal with large-scale nonlinear/linear systems, such as the one arising from discretizing the backward
stochastic differential equation (BSDE) [6, 8]. The research of BSDE in risk measure is a hot topic at
present, which provides a new direction for us to further study the relation between numerical method
for parabolic complementarity problem and risk measure. In the forthcoming study, we will further
discuss how to use numerical method proposed in this paper to handle risk measure.
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