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Abstract: This paper is concerned with the asymptotic behavior of the stochastic three dimensional
Brinkman-Forchheimer equations in some unbounded domains. We first define a continuous random
dynamical system for the equations. Then by J. Ball’s idea of energy equations, we obtain pullback
asymptotic compactness of solutions and prove that the existence of a unique random attractor for the
equations.
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1. Introduction

Fluid flowing in porous media is widely found in nature. It is a branch of various engineering
and disciplines, involving exploration and exploitation of various underground fluid resources such as
oil, natural gas and coalbed methane. The Brinkman-Forchheimer equation is a mathematical model
that describes the motion of fluids in saturated porous media, so it has been an active research fron-
tier in recent decades. The asymptotic behavior of the deterministic Brinkman-Forchheimer equa-
tions has been widely studied. For example, in the autonomous case, B. Wang and S. Lin [1] and
D. Ugurlu [2] proved the existence of global attractors for the 3D Brinkman-Forchheimer equation.
Moreover, X. G. Yang [3] studied the structure and stability of pullback attractors for three dimen-
sional Brinkman-Forchheimer equation with delay. The uniform attractors for the non-autonomous
Brinkman-Forchheimer equation with delay were obtained by Kang in [4]. In addition, the trajectory
attractor and the approximation for the convective Brinkman-Forchheimer equations were obtained by
C. Zhao et al. in [5, 6].

During the past two decades, the mathematical theories of random dynamical systems [7] have made
substantial progress in describing the asymptotic behavior of solutions for some dissipative dynamical
systems. For example, in [8—12], the authors have considered the asymptotic behavior of solutions for
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some dissipative random dynamical systems. In particular, the existence of attractors on unbounded
domains has been studied extensively by many authors, see, e.g., [9,10, 13—18]. Since Sobolev embed-
dings are no longer compact on unbounded domains, this is the main difficulty in proving the existence
of attractors of equations defined on unbounded domains.

In [14], we studied the asymptotic behavior of the stochastic non-autonomous Brinkman-
Forchheimer equations driven by linear multiplicative noise in unbounded domains. The existence
of random attractors was obtaibed by transforming the stochastic equation into a pathwise random
one. Comparing with [14], if we study the asymptotic behavior of stochastic Brinkman-Forchheimer
equations driven by additive noise, different transformations will usually be used. This transformation
will lead to more difficult calculations when we prove that the uniform estimates and the pullback
asymptotic compactness of the solutions.

In this paper, we consider the following stochastic Brinkman-Forchheimer equations with additive
noise:

;

u;, — vAu + au + Blulu + y|u|2u +Vp =g(x)+ hc;_v;, (t,x) € (0,T)x O,
V-u=0, (t,x) € (0,T)x O, (1.1)
u(x,1) =0, (t,x) € (0,T) x 00,

\M(X, 0) = MO(X), X € 0,

where u = (uy, uy, u3) is the unknown velocity vector. p = p(x,t) is the unknown pressure. v > 0 and
a > 0 denote the Brinkman kinematic viscosity and the Darcy coefficient respectively. 8 > 0andy > 0
are the Forchheimer coefficients. g(x) is a force field. h € (H*(0))* N(H}(0))® and w(r),t € Ris a
two-sided real-valued Wiener process on a probability space. The domian O C R? can be an arbitrary
open set (bounded or unbounded) with smooth boundary 90, and it satisfies the Poincaré inequality:
there exists a constant A4; > 0 such that

/ Vo[’ dx > A, / lplPdx, Y ¢ € Hy(O). (1.2)
o o

The purpose of this article is to study the asymptotic behavior of the 3D stochastic Brinkman-
Forchheimer equation (1.1) on unbounded domains. We first establish a continuous random dynamical
system for (1.1), see (3.46). To this end, we need to convert (1.1) into a deterministic equation (with
a random parameter) (3.6) and (3.7) and obtain the existence, regularity and stability of weak solution
to (3.6) and (3.7), see Theorems 3.1 and 3.2. The difficulty is the convergence of the nonlinear term,
and we will use a truncation argument analogously to [13, 19]. Next, we establish the existence of
a unique D-random attractor for (1.1), see Theorem 4.1. Since the Sobolev compact embeddings on
unbounded domains are not compact, we will use the idea of energy equations, which was introduced
by J. Ball [20]. Comparing with [10, 18], we replace the advection term (u - V)u by the damping term
au + Blulu + y|u*u, and deal with three dimensional case , which will be much harder to deal with.

This paper is organized as follows. Some basic concepts, a number of spaces and some inequalities
are given in Section 2. Then a continuous random dynamical system for (1.1) is established in Section
3. The existence of a pullback random attractor is proved for (1.1) in Section 4. Finally, we summarize
the main results and give some perspective on the next research.
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2. Preliminary
We recall some basic concepts (see [7-9, 11, 12]), and introduce some spaces and inequalities.

2.1. Some basic concepts

Let (X, || - ||x) be a separable Hilbert space with Borel o-algebra 8(X), and let (2, ¥, P) be a proba-
bility space.

Definition 2.1. (Q, 7, P, (6,),cr) is called a metric dynamical system if 0 : RxQ — Qis (B(R)XF, F)-
measurable, 6, is the identity on Q, 0,,, = 6,0 6, for all s,t € R and 6,(P) = P forall t € R.

Definition 2.2. A mapping ¢ : R* X Q X X — X is called a continuous random dynamical system on
X over (Q,F, P,(0)r), if ¢ is (B(RY) X F X B(X), B(X))-measurable and satisfies, for P-a.e. w € Q,
(1) @0, w,-) is the identity on X;
(1) ot + s,w,) = ¢(t, O, ¢(s, w,-)) forall t, s € R*;
(iii) ¢(t, w, ) : X — X is continuous for all t € R*.

Definition 2.3. A random bounded set {D(w)},cq of X is called tempered with respect to (6,),cr if for
P-a.e. w € Q,

lim e~ 'd(D(0_,w)) = 0 forall o > 0,
—00
where d(D) = supcpl|x||x-.

Definition 2.4. Let D be a collection of some families of nonempty subsets of X. Then {K(w)}yeq € D
is said to be a random absorbing set for ¢ in D if for every D = {D(w)}yeq € D and P-a.e. w € Q,
there exsits tp(w) > 0 such that

o(t,0_,w, D(0_,w)) C K(w) forall t > tp(w).

Definition 2.5. Let D be a collection of some families of nonempty subsets of X. Then ¢ is called
D-pullback asymptotically compact in X if for P-a.e. w € Q, {¢(t,,60_, w, x,)},—, has a convergent
subsequence in X for any sequence t, — +oo, and x, € D(0_, w) with any {D(w)},eq € D.

Definition 2.6. A random set { A(w)},cq of X is called a D-random attractor (or D-pullback attractor)
for ¢ if the following conditions are satisfied, for P-a.e. w € Q,

(1) A(w) is compact and the mapping w — d(x, A(w)) is measurable for every x € X;

(i1) {A(w)}weq is invariant, that is,

o(t, w, A(w)) = A(G,w) forallt > 0;
(1i1) {A(w)}weq attracts every set in D, i.e., for every D = {D(w)},ecq € D,
Aim d(¢(t, 0w, D(0-w)), Aw)) = 0,
Theorem 2.1. (see [9], Proposition 2.7) Assume that ¢ is a continuous RDS which has a random

absorbing set {K(w)}uea- If ¢ is D-pullback asymptotically compact, then ¢ has a unique D-random
attractor {A(w)}eq Which is given by

Aw) = N U 9@, -0, K(6_,w)).

™07
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2.2. Some generic functional spaces and inequalities

Denote L”(0) = (LP(0))* and use || - ||, to denote the norm in L”(O). Denote V := {ulu €
(C(0))?, divu = 0}). H is the closure of V in L*(0) topology, || - ||z and (-,-) denote the norm
and inner product in H respectively, where

3
(u,v) = [ ui(x)vi(x)dx foru,v € L*0).
i=1.Jo

V is the closure of V in (H}(O))® topology, || - |ly and ((-, -)) denote the norm and inner product in V

respectively, where
3
() =S [ Z%gx  foru,ve (HVO)).
0

L 0x; Ox;
i,j=1

By (1.2), V — H = H — V’, H and V' are dual spaces of H and V respectively, where the
injection is dense and continuous. || - ||, and (-, -) denote the norm in V' and the dual product between
V and V'’ respectively.

Denote by P the Helmholtz-Leray orthogonal projection in L?(O) onto the space H. Set A : D(A) C
L*(0) — L*(0), where D(A) = (H*(0))* NV and Au = —PAu.

In addition, the Ladyzhenskaya’s inequality is as follows:

1 1
llulls < cllullgllully, YuelV,
1 3
llulla < cllullgllully, YueV.
3. Random dynamical systems for (1.1)

In this section, we establish a continuous random dynamical system for the 3D stochastic BF equa-
tions.

Applying the Helmholtz-Leray projection P onto the first equation in (1.1), we obtain the following
abstract formulation of the 3D stochastic BF equations:

du + (VAu + au + Blulu + ylulzu)dt = g(x)dt + hdw, 3.1

with initial datum u(0) = uy.
In the following, we consider the probability space (2, ¥, P) where

Q={weCR,R): w() =0}

¥ 1is the Borel o-algebra induced by the compact-open topology of €, and P is the corresponding
Wiener measure on (€, ). Then we will identify w with

w(t) = w(t), forreR.

Define the time shift by
bw()=w(+1)—w®), wetekR.

Then (Q, ¥, P, (6,),cr) is a metric dynamical system.
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Consider the one dimensional Ornstein-Uhlenbeck equation
dy + pydt = dw, (3.2)

where u > 0. One may easily check that a solution to (3.2) is given by

0
(1) = y(Ow) = —pu / e 0,w(t)dr, teR.

—00

Note that y(6,w) is P-a.e. continuous and the random variable |y(w)| is tempered (see [7, 8, 12]).
Therefore, it follows from Proposition 4.3.3 in [7] that there exists a tempered function R(w) > 0 such
that

()l + ()" < R(w), (3.3)

where p > 2 and R(w) satisfies, for P-a.e. w € Q,
R(Ow) < e VR(w), 1 R, (3.4)
Then it follows from (3.3) and (3.4) that, for P-a.e. w € Q,
V@) + G < e T "R(w), 1€ R. (3.5)
Putting z(6,w) = hy(6,w), by (3.2) we have

dz + pzdt = hdw.

In addition, by & € (H*(0))’((H}(O))* and Ladyzhenskaya’s inequalities, we get z(6,w) €
L*(0,T; V)N L0, T;L*0)) N L*0, T; L*(0)) and Az(6,w) € L=(0, T; H).
Now, let us study (3.1) by means of the classical change of variable v(¢, w) = u(t, w) — z(6,w), then
v(t, w) satifies
{ Vi+VAV+VAZ+a(v+2) +Bv+Zl(v+2) +ylv + P +2) = g(x) + uz, (3.6)
vo(w) = () - 2(w). (3.7)

In what follows, we give the definition of weak solutions of problems (3.6) and (3.7).

Definition 3.1. Let T > 0, assume that vo € H and g € V'. We shall say that v(x,t) € L*(0,T; H) N
L*(0,T;V)n L0, T;L30)) N L*0, T; L*(0)) is a weak solution to (3.6) and (3.7), if it satisfies, for
P-a.e. weQ,

0
(a_:’ E) + (1, ) + (2, O) + (v + 2,8 + B(v + 2l(v + 2), &) + y(v + 2*(v + 2), &)
=(g(x),&) + (uz, ),

V(x, O) = Vo,

(3.8)

where (3.8) holds for all ¢ € V in the sense of D'(0,T).

Since (3.6) and (3.7) is a deterministic equation with a random parameter, we will use the standard
Faedo-Galerkin methods in [21] to show the existence of weak solutions to (3.6) and (3.7) in following.
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Theorem 3.1. For any T > O and vo € H, g € V', for P-ae. w € Q, then problems (3.6) and
(3.7) possesses a weak solution v(x,t) € L*(0,T; H) N L*(0,T; V)N L0, T;L*(0)) N L*(0, T; L*(0)).
Moreover, v € C([0,T1]; H).

Proof. Step 1: Constructing the approximated solution of (3.6) and (3.7).

Since V is a subspace of (Hé (0))*, then it is separable. Recalling that “V is dense in V and H, so
there exists a sequence of linearly independent elements {v;};»; C V are dense in V and H. Applying
the Gram-Schmidt orthonormalization process, one can obtain an orthonormal basis {w;};2; € V of H
such that the linear combinations of these elements are dense in V.

Let V,,= span{wy, - -- ,w,,} and the projector P, : H — V,, be given by

P,v= Z(v, wjw; for ve L*(0). (3.9)

j=1

We construct the approximated solution v,,(f) = Y h;,,(t)w; satisfying the following Cauchy prob-
j=1
lem
( Ov,,
(> W) + (W W) +V(2(Ow), w)) + v + 2(O1w), w;)
+ BV + 26,0)(Vin + 2(6,0)), ) + YV + 2O,0) (Vi + 2(6,0)), W) (3.10)
= (80, w)) + (uz(Gw), w), V120, 1 < j<m,

\Vm(xa 0) = PmVO-

The problem (3.10) is a well-known ordinary functional differential equations with respect to the
unknown variables {/ J-,m(t)}’}il, which has a unique local solution (in an interval [0, "] with O< t* < T)).
In fact, the global solution (#* = T') can be deduced by the a priori estimates below.
Step 2: Establishing a priori estimates for {v,,}.
Multiplying the first equation in (3.10) by 4,,,(¢) and summing in j, we obtain that for a.e. € [0, T'],
d
Ellvmllé + 2V[Vully, + 20V + 2(Ow), vy + 2(Bw))
+ 2B(lvin + 2(0,W)| (Vi + 2(0,w)), Vi + 2(O,w))
+ 2 (Vi + 2O,) (v + 2O,0)), vy + 2(O,0))

= 2(g + #Z(Q,(.U), Vm) + 2a(vm + Z(Q,(U), Z(Gtw)) + zﬂ(lvm + Z(Q;(U)l(vm + Z(Q,(,L))), Z(HI(-U))
+ 2|V + 20,W) (Vi + 2(6,w)), 2(6,w)) = 2V((Z(O,w), Vi)

1 % M v ! 1
< 20 81E + 31l + 2GR + vl + 20 Gl + 200N + SI@ID) 5

| 16 1 27
+ 281V + 263 + Ellz(t‘)zw)lli) +2yGlivm + 2wy + 3—2IIZ(9;w)||3)

1
+ 2/(IV2Ow) + 19val)
2 v 2u? 4
< _”glli + _”Vm”%/ + (L + a)”z(@ta))”g + —||Vm||%/ + a|lv,, + Z(QIUJ)H% +ﬁ|lvm + Z(eta))”;
v 2 /7.11/ 2
328

+_
27

27 y
(B3 + VIV + z(B)Il; + 1—6yllz(9tw)lli + 2V|Vz(Bw)ll5 + Ellvmllzv.
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the above inequality is obtained by using the Young’s inequality and Poincaré inequality.
Integrating (3.11) over [0, 7] with the time variable, we find

t
Vnll3; + / Vullsds + a/ Vi + 2(8,0)|5d s +,3/ IV + 2(8,0)|13ds
0

+y / 1V + 2(850)|[2ds

(3.12)
< v (O)|[3; + / IIgllzdS+( ~ a)/ lz(8,0)l15ds + —/ llz(6,w)|13ds
— / |l2(6,w)|[3ds + 2v / IVz(6,w)|[3ds.
6 0 0
Since z(6,w) € L*(0,T; V) N L*(0, T; L*(0)) N L*(0, T; L*(O)), we have
{v,n} is bounded in L*(0, T; H) N L*(0, T; V),
(3.13)

{Vm + 2(6,w)} is bounded in L*(0, T; H) N L*(0, T; L*(0)) N L*(0, T; L*(O)).

Moreover, [, vul’dx = [,V + 2(6:0) = 20w)Pdx < [,(Ivi + 20,0)] + [2(6w))’dx < 4y, +
Z(Bw)|13 + 4]lz(6,w)I3, then we get

t t t
/ Vallids < 4 / Vi + 2(8,w)|[3ds + 4 / lz(8,w)|l3ds < +o0. (3.14)
0 0 0

Thus, v,, € L*(0, T; L*(0)). Similarly, v,, € L*(0, T; L*(O)).
In conclusion,

{v,n} is bounded in L¥(0, T; H) N L*(0,T; V) n L*(0, T; L*(0)) N L*(0, T; L*(O)). (3.15)

Since the domain O maybe unbounded and the boundary dO has no any regularity assumption, the
compact injection V — H may not hold. So the way of proving a compactness property on bounded
domain is no longer valid here. Next, we will use Corollary 2.34 in [19] to obtain the local compactness
result. Based on the estimates (3.15), we just need to prove that the following condition holds, i.e.,

T-a
/ [Vt + a) — vm(t)llfth — 0 as a — 0, uniformly for {v,,}. (3.16)
0
From (3.10), forany 0 < ¢t < t+a < T, one has

Vit + a) — (1), wj) + V/ (Vvn(s), Vw)ds + v/ (Vz(0,w), Vw;)ds
+a / (Vm(s) + 2(0;w), w)ds + B / (Vim(s) + 2(0;0)|(Vin(s) + 2(0sw)), w)d's
! a ! (3.17)
+y / (Vin(5) + 2(O;)(Vn(5) + 2(8sw)), w))d's

= / <g(x), wj> ds + / (uz(B,w), wj)ds.
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Multiplying A;,,(t + a) — h,,,(1) and summing in j, one has
Vi + @) = v @)l
= -y /tm(va(s), Vv, (t + a) — Vv, (1))ds
-y /; Ha(Vz(st), Vv, (t +a) — Vv, (1)ds
-a /tm(vm(s) + 2(0,w), Vi (t + a) — v, (1))ds
-B / M(Ivm(S) + 2(0;0)|(vin($) + 2(050)), vin(t + @) = viu(D))d's
-y /t M(Ivm(S) + 2(0,0) V() + 2(650)), Vi (t + @) = vyu())ds
+ /[Ha (8(X), viu(t + a) — vy, (1)) ds + /ttm(/lz(é?sw), Vit + a) — v, (2))ds
<Vt + a) = vl /tm Vi(Sllvds + Vlvi(t + @) = viu(Dlly /tm lz(Osw)llvds G19
+ a|lvi(t + @) = v @l [ - Vin(s) + 2(0,w)llud's
+ Bllvin(t + @) = v (Dll3 /[ - [Vin(s) + 2(Bsw)II3d s
+ YVt + @) = vin (D4 /tm V() + 2(0sw)llyds + [lVm(t + @) = viu(@llv /IM llgll.ds
+ plllvi(t + @) = v (Dl /t h 1z(Osw)llrds
< it + @) = viu@lly /tm Gu($)ds + Bllviu(t + a) = viu(Dll3 /[Ha 1Vin(s) + 2(B,w)l3ds

t+a
+ YWVt + a) = vy (D)l / V(s) + 2(8s0)|3ds,
t

where G(s) = VIlvu(9)lly + VIz@s)llv + <= lvi(s) + 20l + Jllz@w)llm + 18-

Hence,

T-a T—-a t+a
/ ”vm(t + a) - Vm(t)”%{dt < / ”Vm(t + Cl) - Vm(t)llvdt/ Gm(S)dS
0 0 t
T—-a t+a
+/3/ lvin(t + a) = vm(t)llsdt/ V() + z(0,w)l3ds  (3.19)
0 t
T-a t+a
+ ’}’/ V(2 + a) — vm(t)||4dt/ IVin(s) + 2(Bsw)I[3dls.
0 t
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Thanks to the Fubini theorem, one has

—a

T-a T s
/ V(£ + @) = v (DIl < / Gm(S)dS/ V(2 + @) = vin(Dllvdt
0 0 s
T s
+,3/ Vi (s) +Z(9sw)||§dS/ Vin(t + @) = vin(Dll3d1 (3.20)
0 s—a

T s
+y / V(s) + z(8s0)|3ds / Vit + a) — v,u()lladt,
0 s

—a
where

0, if s <0,
s=<5, fO0<s<T—-a, (3.21)
T—-a,if s>T—a.

Then using the Young’s inequality and the fact that 0 <5 — s —a < a, we derive that
T-a
/ Vit + @) = VDIt
0

T T
L 2 2
< 2a2|vmll20,1:v) / Gu(8)ds + 2Ba3 |[Vull 130,730 / vin(s) + z(Bsw)ll3ds
0 0

T
3 322
+ 2ya Wl rascon / on(s) + 20l 3ds (3:22)
0

T
1 2 1 3
< 2 vl / Gu(s)ds + 2B vl 0100 T 19 (5) + 2O o
0

3 1 4
+ 2ya*||vall st 0n T * IVin(s) + Z(esw)”L“(o,T;L“(O))'

By simple computation shows that

T T
/O Gou(s)ds = /O V() + VIz@sw)ly + %_lnvmu)u(esw)nﬂ + %||z(9sw>||ﬂ

f a (3.23)
< T2 vlvillzo.7:vy + Vllz@:w)l 20.7:v) + \/—/l—”Vm + 20, 120.7:1)
1

+ lIgll1d's

+ @)z 0ram] + gl
1

Vi

Combining (3.13), (3.15), (3.22) and (3.23), one achieves (3.16).

Step 3: Passing to limit for deriving the global solution of (3.6) and (3.7) by a truncation argument.

Combining the preceding uniform estimates (3.13) and (3.15), we can deduce that there exists a
subsequence v,, (without relabeling) such that, when m — oo,

vy, — v weakly * in L(0,T; H); (3.24)

v — v weakly in L*(0, T; V); (3.25)
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Vi + 2 — v+ z weakly in L*(0, T; H); (3.26)
[V + 2]V + 2) — x weakly in L2(0, T; L2(0)); (3.27)
Vm + 22V + 2) = ¢ weakly in L3(0, T; L3(0)), (3.28)

withv e L*(0,T; H)N L*0,T;V)and v + z € L*(0, T; H).
Next, we split into four steps to obtain the weak solution.
(I): Using a truncation argument analogously to [13,19,22], we prove that

{vin} 1s relatively compact in L*(0, T; L*(K)) for any bounded open subsets K C O. (3.29)

For any bounded subset K C O, there exists a bounded open ball By such that K C Bg. Denote
K =0n B>r and then the compact injection (HO(V())3 - L2(7( ) holds. Define a blob function
p € C*(R") with

) = 1, if0<v<l, (3.30)
PY=%0, ifve3. '

Define V& (x) = v, (x)p(&: L) then by (3.15) and (3.16), one has

{vR} is bounded in L™(0, T; LX(K)) N L*(0, T; (HX(K))®), (3.31)

T-a
. R R 2
}ll—{% 51”11p/0 [v,,,(t +a) — Vm(l)”Lz(,f()dl —0asa— 0. (3.32)
From Corollary 2.34 in [19], one obtains that

{vf;} is relatively compact in L*(0, T; LA(%)). (3.33)

Notice that v& (x) = v,,(x) for x € K, one achieves (3.29) immediately.

(II): Passing to the limit of (3.10).

By Lemma 1.3 in [23] and (3.29), we can extract a subsequence of {v,,} such that the limit of (3.27)
and (3.28) satisfy

=|v+z(v+2), £ =|v+z°(v+z), on any bounded subsets K c O. (3.34)

Let y € C'([0, T]) with (T) = 0. From (3.10), one has

T T T T

- / WV, w)/dt + v/ (W, Wit + v/ ((z, wj)pdt + a/ (Vi + Z, wihpdt
0 0 0 0
T T

+p / (Vi + 2l (v + 2), wpdt +y / (Vi + 2P + 2), wpdt (3.35)

0 0

T T

= (Vu(0), w)(0) + /0 (g.w;) ydt + /O (uz, w,)dt.
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Collecting (3.24)—(3.28) and (3.34) together, and then taking the limit m — oo, we have
T T T T
- / (v, W/ dt + v/ (v, W)t + v/ ((z, w))yrdt + a/ (v + z, wdt
0 . 0 . 0 0
+ﬁ/ (Iv+2(v + 2), w)dt + y/ (v + z*(v + 2), wpdt (3.36)
0 0

T T
= (vo, W (0) + /O (g, w)ydt + / (uz, wydt,
0

[

%21 1s dense in V, then v satisfies the first equation of (3.8) by taking

for any w € {wj};‘;l. Since {w;}
Y € Cy(0,7)1in (3.36).
(IIT): Proving that v € C([0, T']; H).
For all £ € V, we have

0
(a—:, &) = —v(1,8) —v(z,8) —a(v +2,&) = BIv + AW + 2),&) — y(Iv + 2’ (v + 2), &)
+48, &) + (uz, &) (3.37)

2 3
< vivlivliglly + vizllvliglly + allv + zll[iéllz + BlIv + zIB1€lls + yllv + 2l
+ llgll[€llv + pllzll2[€]]2-

Then we have 2 € L2(0,T;V’) + L3(0,T;L3(0)) + L3(0,T;L3(0)). Combining the fact that

ot

v € L*0,T;V)n L*0,T;L*(0)) n L*0,T;L*)), it follows from the similar calculation process
of Theorem 3.6 in [24] that v satisfies energy equality and hence v € C([0,T]; H).

(IV): Checking the initial data v(0) = vy.

For any € C*([0, T']) with Y(T) = 0 and w € V, since v satisfies the first equation of (3.8), then

T & T T T
/ (o> widt + v / (v, w)ydt + v / ((z, W)dt + a / (v +z,wdt
0 at 0 0 0
T T
+ﬁ/ (v + zl(v + 2), wdt + )// (Iv+ z|2(v + 2), w)dt (3.38)
0 0

T T
= / (g, w)ydt + / (uz, wpdt.
0 0

After integrating by parts, one has
T T T T
- / (v, w/dt + v/ ((v, w)yrdt + v/ ((z, w)dt + a/ (v + z, widt
0 0 0 0
T T
+ﬁ/ (Iv+2l(v + 2), w)dt + y/ (v + z|2(v + 7), whdt (3.39)
0 0

T T
= (v(0), wyr(0) + / (g, w)ydt + / (uz, wpdt.
0 0

Comparing (3.36) and (3.39), we obtain that
v(0), w(0) = (vo, w(0), VYweV, yeC?I0,T]) with y(T) =0, (3.40)

which means that v(0) = vy.
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Furthermore, we also obtain the following theorem about the stability of (3.6) and (3.7).

Theorem 3.2. For any T > 0 and given functions (vo;,g;) € H X V' for i = 1,2, then problems
(3.6) and (3.7) possesses two weak solutions {v;}iz12 € L*(0,T; H) N L*0,T;V)n L*0,T;L*0)) n
LY0, T; L*(O)) with respect to {(vo;, 81)}i=12, and the following stability estimate holds:

1 t
max |[vi(r) = va(r)ll3; < vor — voallf; + —/ lig1 — gall2ds. (3.41)
re[0.1] v /o
Proof. Setting w = v; — v,, we have

Ed_t”W”i{ +v(Aw, w) + a(w,w) + B(|lvi + 2|(vi +2) — |[v2 + 2|(v2 + 2), W)
+y(lvi + zlz(vl +2)— vy + z|2(v2 +2),w) (3.42)
1 2,V 2
llg1 — gl lIwlly 2Vllgl gll; 2IIWIIV

By Lemma 4.4 in [25], we derive that

d 1
Emmz+mwﬁs;ml—&m. (3.43)

Integrating the above inequality from O to ¢, we get

t 1 t
Iw(®)Il3, + V/ Iwllvds < [[w(O)|lz; + ;/ g1 — gallds.
0 0 (3.44)

1 t
2 2
= |lvor — voallyy + ;/ llg1 — gollids.
0

Thus,
1 t
max [[vi(r) = va(r)ll3; < IIvor — voallf + —/ g1 — gall2ds. (3.45)
rel0.1] v Jo

Since u(t, w,uy) = v(t,w,vy) + z(6,w), one can easily obtain that u(z, w) is a unique solution to
problem (3.1). We now define a mapping ¢ : R* X QX H — H by

o(t, w, upg) = u(t, w, ug) = v(t, w, vy) + 2(6,w), (3.46)

where vy = uy—z(w). Then ¢ satisfies conditions (i)—(iii) in Definition 2.2. Therefore, ¢ is a continuous
random dynamical system associated with problem (3.1).

4. Existence of a unique D-random attractor

Let D be the collection of all tempered families of subsets {D(w)},cq of H, i.e., for every w € Q
Ay
lim ¢+ ID@O-w)llu = 0, @.1)
where A, is Poincaré constant in (1.2) and ||D(0_,w)|lg = suprep@_ vl Xllz-
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Lemma 4.1. Assume that D = {D(w)}uecq € D. Then for every w € Q, there exist T = T(D,w) > 0
and a tempered function r : Q — R* such that

Iv(, 6w, vo(0-w))lln < r(w),

forallt > T and vy(0_,w) € D(6_,w).
Proof. From (3.6), for all ¢ € V, we have

(Vt’ 90)

+ (v, 9)) + V(Az(Biw), @) + (v + 2(6,w), @) + B(v + 2(6,w)|(v + 2(6,w)), @)

+y(Iv + Z Q)P + 2(6w)), @) = (8(x), ) + (Uz(B,w), ¢).

Choosing ¢ = v, we have

a VI + VIV, + v(Az(0,0), v) + a(v + 2(6,w), v) + BV + 2(Bw)|(v + 2(6,w)), V)

2dt (4.2)
+y(Iv + 2PV + 2(6w)), V) = (g(x), v} + (Uz(B,w), V).
Using the Young’s inequality, we get
2 2 1 2 4 2
EIIVIIH < =2vvlly + ZV(/l_HAZ(Qtw)”H + ZIIVIIH) = 2a(v + Z(Gw), v + z(6,w))
1
+ 2a(v + Z(G,w), Z(O,w)) — 2B(|v + 2(B,w)|(v + z2(B,w)), v + z2(6,w))
+2B(Iv + 2B,w)|(v + 2(B,w)), Z(B,w)) — 2¥(Iv + ZBW) (v + 2(B,w)), v + Z(Hw))
2 v
+2y(Iv + Z(0,)P (v + 2(B,0)), 2(Bw)) + ;Ilg(X)Ili + EIIVII%/
u ALy
+ 2y(m||z(etw>u%, + Envn%a
3y 2v
< —?IIVII2V + AVl + /I—IIAZ(sz)H%; - 2allv + z(Bw)lIF;
1
1 1
+ ZQ(EIIV + Z(Ow)II5; + §||Z(9tw)||1211) - 28lv + z(Bw)I3
1 16
+2BGlv+ 2O + ﬁllz(@w)lli) = 2ylv + z(Gw)ll4
1 27 2 2
+ 27(§||v + z(Qw)ll3 + E”Z(etw)”j) + ;Ilg(X)Ili + %IIZ(@w)IIfq
3y
< —?IIVIIZV + AVl — allv + z@w)llf; — Bllv + z2(B.w)I3 = YIv + z(Bw)Il;
+ c(lAzGw)IIF; + @), + 12w + l2Gw)ll + lgOI2)
3y
< —?IIVII2V + LIz = ey + 20wl — Blv + 23 — YlIv + 26wl
+c(1 + [y@Gw))
where the last inequality is obtained by [lz(6,w)||? = R(X)|Zly(Gw)P < cly(@w)lP.
By Poincaré inequality, we get
d v
— Wil + < IVIE + allv + 27 + Blv + 2 @w)I3 + YIv + 2 @)l

v
< = IVl + et + @),
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Multiplying both sides of (4.3) by ¢ ¥t and integrating over (0, s), we obtain

(s, w, vo(@DIR < e vl + ¢ / eI + yBrw))dr.
0

Replacing s and w by 7 and 6_,w, then we obtain

t
(t, 0w, vo(O_ DI < e F o)l + ¢ / e TN+ (O ) Hdr

0
0

~Ay 2 4re 4
=e T vo(O-w)lly +c [ e (1 + [y(B-w)|")dr.

-t

Since vy(0_,w) € D(6_,w) and {D(w)}eq € D, we get
: -4y 2
lim e+ |[vo(0-w)llf; = 0.
t—+0c0
Since [y(6,w)| is tempered, then by (3.5), we have

. . 4
lim e (1 + [y(6;w)|") = 0.

It implies that
0 v
ro(w) = c/ e%T(l + y(6,w)Hdt < +o0.
Taking into account (4.5)—(4.7), then there exists T (D, w) > 0 such that, forr > T

V(2 0w, vo(8-w))ly; < 2ro(w),

and 0
ro(0-w) = ¢ / eyT(l + [y(Or—w)MdT
—t
p / e TN 4 y(@0)Mdr
ye [0 a, 4
<ce™* e "(1+ p(Ow))dr
< ce%v’rl (w),
where

0 A1y
r(w) = / e%T(l + [y(B:w)[Mdt < +0co.

Then, we have

e \/2r0(0_,w) < e \/2cri(w) = 0 ast — +oo.

4.4)

4.5)

(4.6)

4.7)

4.8)

4.9)

(4.10)

(4.11)

Thus, we can choose r(w) = V2ry(w) and r(w) is tempered from (4.11). This completes the proof.

Proposition 4.1. Assume that D = {D(w)},ecq € D. Then the random dynamical system ¢ associated

with problem (3.1) has a random absorbing set K € D.
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Proof. By (3.46), we get
o(t, 0_,w, up(0_,w)) = v(t, 0_,w, vo(6_,w)) + zZ(W). 4.12)
and vo(w) = up(w) — z(w), then

Ivo(w)lle = lluo(w) — z(w)llx
< luo()lla + llz()llm
< 1Dl + llz(@)ll-

Since D € D and |z(w)| is tempered, we can easily get vo(w) € D*(w) for some D* € D. Then by
Lemma 4.1, there exists 7 = T(D", w) > 0 such that

Iv(#, 01w, vo(0_, )|l < r(w), (4.13)
for all + >T and vy(0_,w) € D*(0_,w). Combining (4.12) and (4.13), we obtain

(2, 61w, uo(6—, )l < [IV(2, 0—w, vo(O_ )l + llz(W)lla 4.14)
< r(w) + llz()llg, '
for all  >T and u(6_,w) € D(0_,w). It implies that there exists a random absorbing set of ¢ in D.
In order to show that ¢ is D-pullback asymptotically compact in H, we need the following lemma.

Lemma 4.2. For any sequence {x,} C H such that x,, — xq in H, then for P-a.e. w € Q,

v(t,w, x,) = v(t,w,x9) inH, Yt>0, 4.15)
Ve, w, X)) = v, w,x9) in LX0,T;V), YT >0, (4.16)
v(e, w, X,) + 2(0.w) — v(-, w, xp) + 2(6.w)

) 4.17)

in L*(0, T; H)n L*(0, T; L*(0)) N L*(0, T; L*O)), Y T > 0,
v(-, w, x,) + 2(0.W)|(V(-, w, x,) + z(B.w)) — |v(-, w, x9) + 2(0.W)|(V(-, w, Xg) + 2(6.wW)) “4.18)

in L2(0,T;L2(0)), ¥ T > 0, '
and

IV, , x,) + 2OV, w, X,) + 20.0)) = (-, w, Xo) + ZO.W)P(V(:, W, Xo) + 2(.w)) @.19)

in L3(0,T;L3(0)), ¥ T > 0.

Proof. Denote by v,(f) = v(t,w, x,) and v() = v(t, w, xy) the corresponding solutions to problem
(3.6) and (3.7). Observe that by Theorem 3.1, one has uniform bounds of v, ans v in L*(0,7; H) N
L*(0,T;V) n L3(0,T;L30)) n L*0, T;L*O)) , then v, + z and v + z are uniformly bounded in
L*(0,T; H) n L}0,T;L*(0)) n L*0, T;L*)) , and v, belongs to C([0, T]; H). Then there exists a
subsequence {n} (without relabeling) such that, when n — oo,
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v,(t) = v in H,
vo() = v in L*0,T;V),
va(t) + 2(6,w) = v + z(6,w)  in L*(0,T; H) N L*(0, T; L*(0)) N L*(0, T; L*(0)),
va() + 2G| (va(0) + 2(Gw)) — x  in L2(0, T3 L3 (0)),

and
Va(?) + 26,0)PWa(D) + 2(Bw)) — ¢ in L3(0, T; L3 (0)).

Using a truncation argument analogously to step 3 (I) in Theorem 3.1, we obtain that
va(2) is relatively compact in L(0, T’; L*(K)) for any bounded open subsets K c O.

Proceeding similarly to Theorem 3.1, we can prove that y = |v(t) + z(6,0w)|(v(¢) + z(6;w)) and { =
[v(t) + z(6,w)|>(v(¢) + z(6,w)). Hence, (4.18) and (4.19) hold.

Lemma 4.3. Assume that D = {D(w)}yeq € D. Then for P-a.e. w € €, any sequence t, — +oo and
X, € D(0_,,w), the sequence {v(t,,0_, w, x,)},~, is precompact in H.

Proof. By Lemma 4.1, one knows that {v(¢,,0_, w, x,)},~, is bounded in H, thus we can get a subse-
quence of {n} (without relabeling) and a wy, € H such that

v(t,, 0, w, x,) = wy in H. (4.20)
By the lower semi-continuity of the norm, we have
Hminf{jv(z,, 6, @, x)ller 2 lIwollzr- (4.21)
In order to prove that (4.20) is actually strong convergence, we need to show that

lim sup [[v(2,, 60—, w, x|l < lIwollx- (4.22)

n—oo

Replacing s and w by t, — m and 6_, w in (4.4) for any fixed m > 0, we get
V(0 = m, 6,0, )l

v tn_m Alv
< e M| 112+ e F T 4 (@, w)[M)dt
H y '
0

4 4 -m v 4.23
= ot {e‘ﬁfn||xn||z + / e¥T(1 4+ |y<efw>|4)dr} *29
—ty
A1v Ay 2 0 v 4
<e M M xly +/ e (1 + yO.w)Hdr|.
Since t, — +o0 and x,, € D(6_, w), there exists N,, > 0 such that for all n > N,,,,
Iv(t, = m, 0, w, x| < 2e 5 " ro(w). (4.24)
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Then {v(t,—m, 6_, w, x,)},~, 1s bounded in H. That means there exists a subsequence of {n} (without
relabeling) such that

w(t, —m,0_, w, x,) = wy,, forallm>0. 4.25)
By (4.25) and Lemma 4.2, we obtain

V(ty, 0-;,w, Xx,) = v(m, 0_,w, v(t, —m, 0_, w, x,,)) — v(m, 6_,w, wy,). (4.26)

From (4.20) and (4.26), we obtain

v(im, 6_,w,w,) =wy, forall m>0. 4.27)

Choosing & = e Ty in (3.8), we get

d v v v v
7 (e“S—t)IIVH%) +2ve T SOV, + 2ve T (@(0,w), V) + 2ae T O + 2(B,), v)

+ 286 Sy + 2(0,w)|(v + 2(6,0)), v) + 2ye T (v + 2Ow)PW + 2(6,0)), V) (4.28)

/l Y v Ay
B

Moreover, we integrate (4.28) on [0, ¢] and deduce that

/111/

7 vGs, 0, vo(w)II3, | ds

t
Iv(t, w, vo(w))Ilz; + 2 /0 Pt [VIIV(S, w, vo(w)Ily -
v t A v
= ¢ o)} -2 / e SDy((2(0,w), V(s, w, vo(w))))ds
0
t v
-2 / e Tl {allv(s, w, vo(w)) + 2(Bw)II5 + BlIv(s, w, vo(w)) + 2(B,W)II3
0
+ Ylv(s, w, vo(w)) + Z(esw)”j:| ds (4.29)
1t
+2 / e {a(v(s, w, vo(w)) + 2(B,w), 2(0,w))
0

+ B(Iv(s, w, vo(w)) + 2(8;w)|(V(s, w, vo(w)) + 2(6;w)), 2(0;w))

+y(v(s, w, vo(w)) + 2(B,w)F (V(s, W, vo(w)) + 2(B,0)), 2(0sw)) | d's
t
+2 / e%“‘”(g + pz(B,w), v(s, w, vo(w)))ds.
0
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After replacing w by 6_,w, we can easily obtain

V(2 010, vo(B_ )7

t
Voo A
+2 / e F D {vnv(s, 0w, vo(O_ )3 - %nv(s, 0w, vo(O_w))I% | ds
0
A t A
= e T (w3 - 2 / e O Y(2(Byyw), V(s, O, vo(H_w))))d's
0

t
v
-2 / e {GIIV(& 01w, vo(6-1w)) + 285 )3 + BlIV(s, 0w, vo(6-,w)) + 2(65- )3
0

+ VIV, -, vo(0—w)) + 2B, w)ll; | ds (4.30)

t
+2 / e F6D {a(V(s, 0_,w, vo(0-,w)) + 2(05-w), 2(05-,w))
0
+ B(v(s, 0w, vo(0_,w)) + 2(0,—,w)|(V(s, 6w, vo(0_,w)) + 2(b;—,w)), 2(Bs—w))

+ y(V(s, 0w, vo(0_w)) + 2(05_ W) (V(s, 0-,w, vo(0_w)) + 2(0;_,w)), z(Gs_tw))] ds

t
" 2/ e%s_[)(g + uz(ls-w), v(s, 0_,w, vo(0_,w)))ds.
0

Applying (4.30) for t = m, vo(6_,w) = v, := V(t, — m,0_, w, x,) and (4.24), we have

m
/l]V

4

2 A 2 2
lv(m, 6_,w, vyl + 2/ ez [VllV(s, O, Vlly — ——1Iv(s, 6_,w, Vn,m)||H:| ds

0
m

= Tl =2 [ e T OO d

= nmll b)), VS, O_nw, Vi m)))ds
0

m
-2 / o Hswm {anv(s, 010, V) + 20y I+ BIVCS, 0, V) + 20 )
0

+ YIS, O_pw, Vi) + Z(Hs_mw)lli] ds

m
+2 / eF o [a(v(s, O-1n, V) + 2Os-m), 2(Oy—nw))
0
+ BAV(S, 0, Vi) + ZOsm@)(V(8, 0, Vi) + 2(Os-)), 2(Bs-m))

+ Y(V(S, O, Vi) + 205 ) (V(8, 0_p, Vi) + 205 ), 2(Os_mw)) | dss
m 1
+2 / e (g + Uz(By ), V(S, O—p, V))ds
0
A m 1
< 2e T M ro(w) = 2 / €T O y((2(Oy— ), VS, O—pp@, Vo)))ds
0
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m
-2 / e mm [QIIV(s, 0@, V) + 2053 + BlIV(S, 0_ @, Vi) + 20— m)I3
0

+ YIV(S, O, Vi) + 205 mw)lly | ds

m
+2 / e =m [a(V(s, 0, V) + 205 @), 2(Oy_ )
0

(4.31)
+ BUV(S, 0w, Vi) + 2(O5-m)(V(S, O-n @, Vi) + 2(05-nw)), 2(O5-mw))
+ YV, 0-n, Vi) + 2Os-m @) (V(S, 0-n, Vi) + 20— ), 2(O5-mw)) | ds
m 1
+ 2/ e%(s_m)(g + (O @), V(S, 0@, Vi m))dSs.
0
From (4.25), we have v, ,, = w,, in H. Then, by Lemma 4.2 we get
V(', G—mwa vn,m) - V(', H—m(‘-), Wm) in LZ(Oa m; V) (432)

m
. v
Since 4,y — 4 > 0, we get that / e T SMOAVS, O, Vi) = 210(S, -, V)2 s defines
0

anorm in L*(0, m; V), thus

m
linm_glf/ e%(s_m)(vllv(s, 6_,w, vn,m)ll%, - %/Ilv(s, 6_,w, vn,m)llé)ds
Jo ) (4.33)
> / e 0, O, Wil - %llv(s, 0o, wal%)ds.
0
Similarly, since eF6my2@, . w) € L2(0,m; V), we have
m
lim sup / ¢ E (O ), VS, O, Vi)
e JO (4.34)

m
- / e%v“"”)v((z(é’s_mw), V(S, O_pw, Wy)))ds.
0

m
. v 1 .
Moreover, from (4.17), since ( / e =M1V (s, O, Vo) + 2(Os_mw)||L,ds)» defines an equivalent

norm in L?(0, m; L”(0)), we have

n—oo

m
lim inf / e Fom {QIIV(S, 0, Vim) + 205 m@)[l3 + BIV(S, 0@, V) + 205 )13
0

+ YIv(s, O_pw, Vi) + z(Hs_mw)llﬂ ds

m. (4.35)

> / e T lm [CVIIV(s, -0, W) + 205 m)II3 + BIV(S, O, W) + 2(0_n)II3
0

+ YIv(s, O_pw, wy,) + z(9s_mw)lli} ds.
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Since z(6,_nw) € L*(0, m; H) N L3(0, m; L3(0)) N L*(0, m; L*(0)), (4.18) and (4.19), we have

n—oo

m
lim sup / g F {a(V(s, O_ W, Vi) + 2(05-nw), 205 w))
0
+ B(V(S, O_nw, Vi) + 2(05—m)|(V(S, O_nw, Vi) + 2(05-nw)), 2(Os—mw))

+ Y(V(S, O, Vi) + 2O5— @) (V(S, 0-p, Vi) + 2(05- ), z(9s-mw))} ds
(4.36)

m
- / T s-m {a(v(s, 0o, W) + 2Oy ), 2(Os))
0
+ B(v(s, 0_pnw, W) + 2(05—n)I(V(s, 0_nw, Wy) + 2(05-nw)), 2(Os—nw))

+ Y(V(S, O, W) + 20— @) P (V(S, O, W) + 2(0_ ), z(Hs_mw))] ds.
Since e%(s‘m)(g + uz(0,_nw) € L*(0,m; V'), we have

m
lim sup / e (g + 2y ), V(5. 00, Vim))ds
n—oo 0

m (4.37)
i / e F (g + 2By ), V(5. 00, Wi ))ds.
0

Letting n — oo in (4.31) and applying (4.33)—(4.37), we have

. 2
lim sup [|[v(m, 6_,w, Vi m)ll5

m
, A
+2 / ¢ ¥ emm [VIIV(s, 0_nw, wlly — %IIV(& 0_nw, wm)lli} ds
0
1 m A
<2¢"F Mry(w) -2 / €7 CTy((2(Oy ), V(S, O, Wir)))d's
0

m
-2 / e Flm {HIIV(& -, W) + 2O )3 + BIV(S, 6_0, Wy) + 265 )II3
0

+ yIIv(s, 0w, wy,) + z(@xmw)llﬂ ds (4.38)

m
+2 / eFlm [a(V(s, O_nw, W) + Z(05_ ), 2(O5_ )
0
+ BV, 0w, W) + 2(O5-m)I(V(S, O, Win) + 2(05-n)), 2(O5-mw))

+ Y (V(S, -, W) + 2(Os— @) (V(S, 00, W) + 2(0;_ ), 25— mw)) | ds
m A
+2 / e T (g + uz(O ), V(S, 0w, wy))ds.
0
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Applying (4.30) for t = m and v¢(6_,w) = w,,, we have

/l]V

5 s, 6w, wiI | ds

m A
v(m, 6_,w, wally; + 2 / e s (o {VIIV(s, 0w, wll& —
0
m
_ —mm 2 m(s—m)
=e T "wylly -2 e’ V((2(Os—pw), v(s, O_nw, wy,)))ds
0

m
-2 / e Fomm [aIIV(s, 0w, W) + 205 m)l5 + BIV(S, 0w, W) + 205 nw)Il3
0

+ Ylv(s, 0w, wp) + Z(es—mw)”i:| ds

(4.39)
m A
+2 / P {a(V(s, O_nw, W) + 2(05_nw), 2(05-mw))
0
+ B(v(s, 0_pw, W) + 2(05— ) |(V(S, O_nw, W) + 2(05_nw)), 2(05-nw))
+ Y(V(S, 0-pn@, W) + 25— )P V(S O, W) + 2(05- ), 2(05-n)) | d's
m A
+ 2/ 6%“_’”)(8 + ,LlZ(Qs_m(U), V(S, 0_nw, Wm))ds'
0
Combining (4.38) and (4.39), we have
lim sup [[v(m, 0_,w, vy m)llz; = [V, 6_p, wa)ll7;
< 2¢ o) - e F Il (4.40)
< 28_%’”7”0((1)).
Letting m — oo in (4.40), and noticing that v(t,,6_, w,x,) = v(m,0_,w,v,,) and wy =
v(m, 0_,,w,w,,), we have
lim sup [|[v(z,, 0, @, Xl < lIwol 7, (4.41)

n—oo

which implies (4.22).

Lemma 4.4. Assume that D = {D(w)},cq € D. Then the random dynamical system ¢ is D-pullback
asymptotically compact in H.

Proof. For P-a.e. w € Q, t, = oo and x, € D(0_, w), we will show that {¢(t,, 0_, w, x,)}~, 1S precom-
pact. It follows from (3.46) that

d(ty, 0-;,w, Xx,) = V(ty, 0_, 0, X, — 2(0_,,w)) + Z(wW). (4.42)

and
llx, — 2(0_, W)llg < ||xullg + 120, )|

(4.43)
< |IB(O-, )|z + lz(0-;, )|l

Electronic Research Archive Volume 31, Issue 2, 904-927.



925

Since D € D and |z(w)| is tempered, there exists a D* € D such that x,, — z(6_,,w) € D*(6_,,w). Then
by Lemma 4.3, it is easily to get that {v(,, 0_,,w, y,)},~, has a subsequence {n’} C {n}, which satisfying

lim [v(t,, 60—, @, yw) = V(tw, 01, @, y)llz = 0. (4.44)

m’ ,n’ —oo

Combining (4.42) and (4.44), we have

lim ||¢(tm’ ’ e—tmz w, xm/) - ¢(tn’ ’ 9—1,‘"/ w, xn/)”H

m’,n’ —oo

= m,li,rgw V(s 0, @, Yir) = V(tw, 01, @, Yo )l (4.45)
=0.

It means that ¢ is D-pullback asymptotically compact in H.

Theorem 4.1. The random dynamical system ¢ corresponding to problem (3.1) has a unique D-
random attractor A = {A(w)}yeq in H.

Proof. By Proposition 4.1, we can get ¢ has a family of random absorbing set {K(w)},cq in D. More-
over, ¢ is D-pullback asymptotically compact in H by Lemma 4.4. Hence, by Theorem 2.1, it is easily
to get that the existence of a unique 9D-random attractor for ¢.

5. Conclusions

In the previous sections, we mainly studied the long time behavior of the stochastic Brinkman-
Forchheimer equations driven by additive noise on unbounded domains, and have obtained the exis-
tence of a unique pullback random attractor. This provides a new result for the study of Brinkman-
Forchheimer equations, which has important significance for the study of porous media fluids in the
future.

From a practical point of view, it is also common for a fluid to be affected by a nonlinear random
disturbance. Therefore, it is of great significance to study the long time behavior of the stochastic
differential equations driven by nonlinear color noise. To obtain more research results for the study
of Brinkman-Forchheimer equations, in the next research, we may consider that the dynamics for
the stochastic Brinkman-Forchheimer equations driven by nonlinear color noise on the unbounded
domains.
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