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Abstract: Invertible neural network (INN) is a promising tool for inverse design optimization. While 

generating forward predictions from given inputs to the system response, INN enables the inverse 

process without much extra cost. The inverse process of INN predicts the possible input parameters 

for the specified system response qualitatively. For the purpose of design space exploration and 

reasoning for critical engineering systems, accurate predictions from the inverse process are required. 

Moreover, INN predictions lack effective uncertainty quantification for regression tasks, which 

increases the challenges of decision making. This paper proposes the probabilistic invertible neural 

network (P-INN): the epistemic uncertainty and aleatoric uncertainty are integrated with INN. A new 

loss function is formulated to guide the training process with enhancement in the inverse process 

accuracy. Numerical evaluations have shown that the proposed P-INN has noticeable improvement on 

the inverse process accuracy and the prediction uncertainty is reliable. 

Keywords: inverse design; invertible neural network; probabilistic machine learning; uncertainty 

quantification; turbine blade design 

 

1. Introduction  

A variety of predictive algorithms have been developed to explain the forward mapping of input 

parameters x to measurable output parameters y. For some engineering applications, the inverse 

mapping from y to x is of paramount importance. Especially in the field of product design, inverse 
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prediction based on specified output performance is required to obtain feasible design parameters. The 

design of industrial equipment represents a tricky and challenging task that encompasses multi-

disciplinary knowledge. To optimize multiple performance objectives simultaneously, engineers need 

to perform hundreds of design iterations.  

As a widely used power device in industry, the gas turbine incorporates principles from the 

disciplines of mechanics, materials, thermodynamics and aerodynamics which leads to a bulky and 

slow design process. This demands designers to comprehensively consider the performance of 

modules (e.g., combustors) as well as components (e.g., blades) to ensure overall stability and 

efficiency. Due to the fact that inverse design outputs the distribution of design parameters from the 

desired response, the interpretability and efficiency of the design space exploration could be 

improved comparing with that from only the forward design process. A range of inverse design 

methods have been developed which fall into two categories roughly: optimization-based methods 

and inverse process-based methods [1]. 

Optimization-based methods refer to the process searching for the solution that makes the target 

performance optimal in the design parameter space under the constraints. It is essentially a forward 

process, where the system response/performance obtained by simulations or experiments is used to 

adjust the design parameters reversely. Classical meta-heuristic algorithms including genetic algorithm 

and particle swarm algorithm are widely used in model update design of steam turbines and other 

equipment [2,3]. In special design cases, some deterministic algorithms [4,5] have been proven to 

achieve optimal solutions equivalent with heuristics in a much shorter time. These methods involve 

multiple iterations of the forward simulation process which might be computationally expensive. 

Although the simulation process can be replaced by a surrogate model to reduce computation time [6], 

these methods might fall into local optimum dilemmas readily. The most critical point is that there is 

a many-to-one mapping relationship between design parameters and performance parameters. 

Methods based on optimization cannot capture these possible design candidates, which is urgently 

required by engineers. Bayesian inference methods present the posterior distribution of parameters, 

thus achieving the goal of describing non-unique design parameters. 

Bayesian inference methods mainly include the Markov chain Monte Carlo (McMC) sampling 

approach [7,8] and variational inference (VI) [9]. McMC obtains multiple sets of possible design 

parameters by sampling the posterior distribution function, while the mean and variance of these 

data are derived to describe the parameters’ Probability Density Function (PDF). McMC is widely 

used [10–12] to approximate the empirical PDF for the parameters of interest. VI searches for simple 

distributions that approximate the target distribution (usually multi-modal) in a predefined family of 

distributions by optimizing the KL divergence. Attributed to the fact that VI is using optimization 

rather than random sampling, it improves the efficiency of solving the parameter distribution to some 

extent. In [13,14], VI significantly helps the design of circuits or communication systems. Still, their 

computational efficiency is not high enough. 

Neural network-based methods facilitate real-time prediction of the inverse design. Neural 

networks (NNs) are flexible nonlinear mappings trained to efficiently predict outcomes regardless of 

the actual physical processes. Taking advantage of the rapidity of NNs, they are extensively used in 

inverse scattering problems [15]. The most typical ones are: [16] using fully connected neural networks 

(FCNN) to recover the shape parameters of unknown scatterers; [17] generating the obstacle appearances 

in reverse on the basis of two-layer long short-term memory (LSTM) neural networks; [18] proposing a 

parameter inversion model by a neural network (PIMNN), which captures the trajectory of moving 
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point source to complete the subsequent predictions. Moreover, NNs also serve as surrogate models to 

achieve inverse design optimization [19–21]. However, these methods fail to provide an uncertain 

estimate, which means that NNs only seek one result for each input. In [22–24], multiple groups of 

NNs are trained simultaneously using Bayesian neural networks or dropout to estimate the uncertainty 

of input parameters, but they cannot acquire complex parametric distributions. Recently, various 

conditional generative models based on generative adversarial networks (GAN) have been widely used 

in inverse design [25–28]. These emerging models have achieved many promising effects, while the 

training process suffers from instable convergence. 

To fully obtain the PDF of input parameters, the invertible neural network (INN) model is 

proposed [29]. INN is a bidirectional mapping network based on affine coupling blocks [30,31], 

considered as an excellent approach for solving inverse problems. The forward process of an INN 

predicts the output from the input while the inverse process derives the distribution of the input 

parameters. The key information of its inverse process is captured by the latent variables. INN shines 

not only in the field of computer vision [32,33], but also has distinctive achievements in the field of 

inverse design [1,34–37].  

The forward process of the standard INN only gives the prediction result without presenting 

uncertainty. Moreover, its inverse process is usually acquired in a qualitative manner and not accurate 

enough for design purposes. To address this issue, we propose the P-INN with integrated epistemic 

uncertainty and aleatoric uncertainty. In this way, the outcome of the forward process carries 

uncertainty, while the posterior distribution of the inverse process incorporates epistemic uncertainty. 

We also design a bidirectional loss during training to improve the inverse prediction accuracy.  

In the following sections, Section 2 describes the proposed method, including the architecture of 

P-INN and the realization of bidirectional prediction. Section 3 evaluates P-INN with two 

mathematical functions with varying dimensionality regarding prediction accuracy and reliability of 

prediction uncertainty. The case of inverse design of turbine blades in engineering is presented in 

Section 4. Section 5 concludes the work with major findings. 

2. The proposed probabilistic Invertible neural network 

The proposed P-INN is shown in Figure 1. The main part of the framework is the INN, which 

consists of a series of affine coupling blocks. Model uncertainty includes epistemic uncertainty (EU) 

and aleatoric uncertainty (AU). Here, EU is obtained by the Monte Carlo dropout method [38] while 

AU is acquired by the additional noise channel, denoted as �. In order to make the framework more 

general, it is necessary to add data preprocessing and postprocessing.  
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Figure 1. The framework of P-INN. INN architecture incorporates EU in this work. The 

latent variable � captures the missing information of the forward process, while noise 

channel � derives the AU of our model. Obtain � and uncertainty from � in forward 

process. The posterior distribution of �  from a specific �  is acquired by sampling � 

and fixing � using the inverse process. The data pre-processing and post-processing parts 

make P-INN more versatile. 

2.1. Architecture of INN 

The INN architecture is shown in Figure 2, whose basic unit consists of an invertible block with two 

complementary affine coupling layers. In this work, we adopt a Real NVP architecture [31], which is superior 

for learning the distribution of data with stable convergence. 

 

Figure 2. INN Architecture. INN is formulated by concatenating invertible blocks and 

permutation blocks. �� and �� are trainable affine functions to transform the input vectors. 

They have no requirements to be invertible as the invertible blocks are affine coupling 

layers, where NN is preferred. 
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Denote the input vector of each invertible block as u, and divide u into two parts as u1 and u2. �� 

and �� are trainable affine functions, where � ∈ {1,2}. The input vector group (u1, u2) is converted by 

them to obtain the corresponding output vector group (v1, v2). In this work, �� and �� are assigned as 

fully connected neural networks with ReLU for the activation function, while these shallow neural 

networks will be considered as subnetworks of INN. v1 and v2 form the output vector v. The forward 

process of an invertible block is described as follows: 

�� = ��☉ exp�s�(��)� + t�(��) 

�� = ��☉ exp�s�(��)� + t�(��)                          (1) 

where ☉ represents the element product of the matrix. Likewise, the reverse process expressions are 

listed below: 

�� = &��� − t�(��)�☉ exp�−s�(��)� 

�� = &��� − t�(��)�☉ exp�−s�(��)�                       (2) 

It is worth noting that the “+” and “☉” operations in Eq (1) already provide the reversible effect 

of INN, thus the �� and �� functions allow arbitrary mappings without requiring them to be invertible. 

An adequate volume of invertible blocks is connected in series to deepen the network; a certain level 

of zero vectors is replenished at the input and output to enhance the predictive capability of the network. 

Because each invertible block requires the same dimensionality of inputs and outputs, the input and 

output dimensions of INN also need to be consistent as shown in Figure 1 and Eq (3): 

dim(inputs) = dim(�) 

dim(outputs) = dim(�) + dim(�) + dim(�)                    (3) 

dim(inputs) = dim(outputs) 

where x is the input parameter, y is the output parameter, σ denotes the AU corresponding to y, and z 

denotes the latent variable. To enhance the interaction between the dimensions of parameters, each 

invertible block is followed by a permutation block in this work, which is used to randomly shuffle the 

dimensions of the parameters. 

2.2. Probabilistic invertible neural network (P-INN) 

The standard INN can generate an exhaustive posterior distribution of input parameters based on 

specific output parameters, which is extensively used for solving inverse problems [29]. However, 

INN has several problems: it may not converge for some regression tasks; results obtained by the 

forward process lack uncertainty; the distribution achieved by the inverse process is not accurate 

sufficiently. To address these issues, we propose the probabilistic invertible neural network (P-INN) 

framework shown in Figure 1, which provides uncertainty assessment while improving the bi-
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directional prediction accuracy. 

We first review the knowledge about uncertainty [39]. Uncertainty is broadly divided into 

epistemic uncertainty (EU) and aleatoric uncertainty (AU) [40]. EU describes the uncertainty of model 

parameters, which is due to the fact that the prediction can be affected by factors such as poor training 

and insufficient training data. AU refers to the error caused by the intrinsic noise of data. [24] proposed 

that the AU may be predicted directly using the likelihood loss, which will be described in detail in 

Section 2.3. Common methods for EU acquisition include model fusion as well as Bayesian neural 

networks (BNN). The model fusion-based approach aims to train multiple network models on the same 

dataset; the predictions of these models are finally synthesized. The weight of each parameter in BNN 

is a distribution, so weights are sampled to get different results when predicting. The Monte Carlo 

dropout approach is a simple implementation, which we adopt in this work. The forward prediction 

distribution is drawn according to Eq (4): 

�(�, �|�, �) = ∫ �(�, �|�, �)�(�, �)��                       (4) 

where D is the training dataset, �(�, �|�, �) is the likelihood function, and �(�, �) is the posterior 

function of the weight parameters. 

T dropout samples are produced to approximate the distribution of weights, and use Monte-Carlo 

to estimate the first moment of the prediction function: 

������, ��(�) ≈
�

�
∑ ŷ(�, ��

�, … , ��
�)�

���                        (5) 

where ��
� represents the parameter matrix of the i-th layer, and it is assumed the INN has a total of 

L layers. The second moment is solved in a similar way. In practice, we only need to activate dropout 

in forward process. EU is represented the calculated variance of T predictions. 

The inverse process takes response y, predefined σ, and the sampled z as input, and derives the x. 

Set � = ��� , then ���(�, �, ��; �)  is denoted as �(�, �; �) . The latent variable z is set to be the 

standard normal distribution �~�(�) = �(0, �). Depending on the specific y each set of z is sampled 

from the distribution �(�) in order to derive the corresponding x. A one-to-many mapping of the 

inverse process (a set of y generates multiple sets of x) is implemented by sampling z multiple times. 

Define the complete distribution of results for inverse process as shown in Eq (6): 

�(�|�) =
�(�)

����
��(�,�;�)

�[�,�]
�
                              (6) 

where the denominator part is the Jacobian determinant embodied by the inverse process. The dropout 

of the fully connected layer is activated where the generated x is combined with EU. 

2.3. Loss function  

The loss function is formulated with 6 terms from 2 categories. The loss terms in the first category 

aim for improving the forward prediction accuracy, including the mean square error (MSE) of output 

responses, the likelihood of output responses and the distribution term of latent variables. The loss 

terms in the second category are beneficial to improve the inverse prediction accuracy, including the 

distribution term of input parameters, reconstruction term and bidirectional term. Each loss term has a 

specific contribution as detailed in the following paragraphs.  
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MSE term of output response. The purpose of this loss term is to make the predicted output 

response and true value as identical as possible, which is the main goal of forward process. The MSE 

loss term is defined in Eq (7):  

����(θ) =
�

�
∑ �ŷ(�) − �∗(�)�

�
�
���                          (7) 

where ŷ(�) is the forward predicted output response value, �∗(�) is the ground-truth response value, 

θ refers to the weight parameters that INN needs to learn, and N denotes the number of training samples. 

Likelihood term of output response. This loss term is proposed to obtain the AU of the response. 

AU measures the noise within the data, which we characterize directly using an additional σ channel. 

In general, the input dimension is much larger than the output dimension. INN requires that the input 

dimension be consistent with the output dimension, which will be supplemented with the zero vector. 

The σ channel replaces part of the zero vectors. Thus, the loss function of this term is defined as follows: 

�����������(�) =
�

�
∑ �

�ŷ(�)��∗(�)
�

�

�(�(�))� +
�

�
log�(�(�))����

���                (8) 

In Eq (8), the dimension of �(�) is aligned with the dimension of the output response. 

Distribution term of latent variable. The latent variable z can be arbitrarily distributed, and we 

take �~�(0, 1) to simplify the calculation. In the inverse process, the probability distribution of the 

input parameters is acquired with sampled z. The distribution term aims for measuring the difference 

between the distribution of forward predictions and the distribution of the training samples. The loss 

function is defined as follows: 

��������������
(�) = �����(ŷ, �̃; �), �(�∗)�(�∗)�                (9) 

where �̃  and �∗ , respectively, represent the predicted and genuine value of the latent variable; 

�(ŷ, �̃; �) is the distribution for the result in forward process; �(�∗) is the prior knowledge of output 

response from training samples; �(�∗) is the standard normal distribution. MMD refers to Maximum 

Mean Discrepancy, which is an effective way to compare differences between distributions. 

Distribution term of input parameters. This term aims to narrow the difference between the 

inverse prediction distribution and the prior knowledge of input parameters from training samples, 

which can improve the accuracy of inverse prediction to a certain extent. The loss term is defined in 

Eq (10): 

��������������
(�) = �����(��; �), �(�∗)�                   (10) 

where ��  denotes the prediction result in inverse process; �∗  refers to the authentic input data; 

�(��; �) is the distribution of the prediction result; and �(�∗) is the prior knowledge of inputs from 

training samples.  

Reconstruction term. In the inverse process, a set of input parameters is generated for each set 

of z samples. Since the value of z is infinite, the result of INN backward prediction has a high degree 

of freedom for a given set of the output response. Design and reasoning of critical engineering systems 
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require accurate posterior distribution of input parameters from a given system response. This loss 

term ensures that the same input parameters are predicted as identical as possible when sampling 

similar z. The loss term is defined in Eq (11): 

���������������(�) =
�

�
∑ ������∗(�), �̃(�), ��; �� − �∗(�)�

�
�
���               (11) 

where ���(�, �, ��; �) refers to the inverse process, and �� takes a small constant because the given 

y is a ground truth value. Noise term is added to the predicted latent variable form increased robustness. 

Bidirectional term. The bidirectional loss is proposed for further improvement of the inverse 

prediction accuracy. The distribution of input parameters is captured by the sampled latent variable z, 

but there is no guarantee that the distribution can precisely reflect the true input parameters. It is 

difficult to directly measure the gap between predicted values and the ground-truth values. We propose 

an indirect measurement for the distribution of inverse prediction. The predicted input parameters are 

first converted using the trained forward process h(x) where we then calculate the MSE between the 

transformed and true values. Here h(x) is set to be �(�; �) and the loss term is defined as in Eq (12): 

��������������(�) =
�

�
∑ ��������∗(�), �(�), ��; �� + �����; �� − �∗(�)�

�
�
���        (12) 

where �(�; �)  represents the forward process. Different from reconstruction loss term, �(�)  is 

sampled from the standard normal distribution. The bidirectional loss forces all potential predicted 

input parameters to be reducible to the specified value. 

Total loss. The total loss is the sum of all the above losses, as in Eq (13): 

������ = ∑ �����
���                               (13) 

where �� represents the weight of each loss. After data preprocessing, y is normalized to be between 0 

and 1. It is obvious that the MSE term, Likelihood term, and Bidirectional term all correlate directly 

or indirectly with y. Consequently, the order of magnitudes for these terms is the same. Meanwhile, 

the experiments indicate that the results of the two distribution terms are also appropriate. We consider 

that these five terms are balanced for model training, taking their weights as the one here. To adjust 

the Reconstruction term, its coefficient is the reciprocal of the square for the value range taken by the 

input data, which has a normalization-like effect. 

3. Numerical evaluations 

In this section, two mathematical problems are adopted to evaluate the proposed method. 

Experiments show that the method has better results in multi-objective predictions and high-

dimensional input situations. 

3.1. Multi-objective problem  

Mathematical settings. To test the performance of P-INN on the inverse problem, we design a 

multi-objective regression task. Consider an example of two-dimensional input and two-dimensional 

output. The input x is written as [x1, x2], and the output y is written as [y1, y2]. The input domains are 

���
�[−5,10] , ���

�[0,15]  which equipped with a uniform probability density �(��) . The two-
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objective functions ��  and  ��  are modified from the branin and hyperbolic paraboloid function. 

Moreover, the curved surfaces are shown in Figure 3a,b respectively, where the outputs have been 

normalized. The function expressions are shown in Eq (14): 

�� = �(�� − ���
� + ��� − �)� + �(1 − �) cos(��) + � 

�� =
(����)�

�
−

(����)�

�
                             (14) 

where � = 1，� =
�.�

���，� =
�

�
，� = 6，� = 10，� =

�

��
；� = 2，� = 7，� = 2.25，� = 400. Branin 

function is a commonly used complex surface for optimization problems, while hyperbolic paraboloid 

function is a universal surface in structural design, so we select them as the test functions. We train the 

P-INN with 6 invertble blocks and the �� and �� functions of the invertble block both use a 5-layer 

NN. All hidden layers are followed by a dropout layer with a dropout coefficient of 0.1. Train on 

datasets of size 50, 100 and 150 while optimizing for 3000 iterations using the Adam optimizer. 

Benchmarks. To evaluate the superiority of the proposed method, we compare it with the 

standard INN. In fairness, the standard INN has the same number of reversible blocks, and the �� and 

��  of reversible blocks are also consistent with P-INN. We also train a forward 5-layer DNN to 

compare the prediction accuracy of the proposed method. 

Evaluation metrics. To intuitively evaluate the performance of P-INN, we use two types of 

metrics to measure the quality. The first type measures the prediction accuracy, including the root mean 

square error (RMSE). However, since the reverse prediction has multiple unknown truth values, the 

inverse RMSE cannot be calculated. We use an indirect approach: convert the obtained input 

parameters through the ground-truth functions; then compute the RMSE between transformed values 

and true output parameters. The second type measures uncertainty interval includes Prediction Interval 

Coverage Probability (PICP) and PI Normalized Averaged Width (PINAW). PICP evaluates the ability 

of the uncertainty interval for capturing the true value, as follows: 

���� =
�

�
∑ ��

�
���                                (15) 

where �� = 1 if the true value is in the uncertainty interval, otherwise �� = 0. PICP ranges from 0% 

to 100%. For a specified probability of 100(1 − �)%, the uncertainty can be considered reliable if 

���� ≈ 100(1 − �)%. PINAW evaluates the width of the uncertainty, as a percentage of the target 

range. The following definitions are given: 

����� =
�

��
∑ ��

�
���                             (16) 

where �  is the range of the target variable and ��  is the range of the uncertainty interval. The 

predicted uncertainty behaves better with a lower PINAW. Similarly, since the true value of the inverse 

is difficult to determine, we transform the inverse predicted value into the output space through the 

ground-truth functions, and then perform uncertainty evaluation. 
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a b

c d

e f
 

Figure 3. Response of the multi-objective problems. The ground-truth surfaces are shown 

in (a) and (d). Surfaces fitted by P-INN are shown in (c) and (d). Surfaces fitted by DNN 

are shown in (e) and (f). The poor fit of INN is not shown here.  

Forward discussion. The prediction accuracy and uncertainty estimates of the forward process 

are analyzed from Tables 1 and 2, where the data that perform outstanding are bolded. When the 

training dataset size is small (such as size 50), the prediction accuracy of P-INN is lower, but still more 

accurate than INN. If trained on a sufficient dataset, the proposed method will even outperform DNNs. 

It is intuitive that the forward RMSE of P-INN is only 0.0199 and 0.0338 with 150 sets of training data 

while the forward RMSE of INN is 0.2021 and 0.2861, which is even considered as a fitting failure. 

The surfaces acquired by the proposed method are shown in Figure 3c,d while the surfaces derived by 
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DNN are shown in Figure 3e,f. The surfaces fitted by INN are poor so we don’t show them. Obviously, 

although the surfaces obtained by the proposed method are not smooth, they fit the real surface better 

than DNN. We find that in the case of few data, the PICP of the forward process can still be close to 1 

(assuming a reliability of 0.95), but the PINAW is a bit large. This means that the uncertainty interval 

covers almost all true values, but it is wide so the uncertainty is not entirely convincing. With an 

appropriate increase in training data (such as a size of 100), PINAW drops below 0.5. 

Table 1. Comparison of forward prediction accuracy of different methods. 

Data size Objective 1 Objective 2 

50 100 150 50 100 150 

P-INN 0.1235 0.0325 0.0199 0.1855 0.0251 0.0338 

INN 0.2281 0.4173 0.2021 0.9457 0.1896 0.2861 

DNN 0.0648 0.0629 0.0572 0.1073 0.0700 0.0588 

 

Table 2. Forward uncertainty evaluation of P-INN. 

Data size Objective 1 Objective 2 

50 100 150 50 100 150 

PICP 1 1 1 0.9833 1 1 

PINAW 1.0489 0.4032 0.2855 0.8948 0.3304 0.7166 

Inverse discussion. Tables 3 and 4 demonstrate the superiority of P-INN in reverse process. 

Because DNN does not have the capability of inverse prediction, only the proposed method is 

compared with INN. Experiments show that the inverse prediction accuracy of P-INN is often much 

higher than that of INN. PICP remains above 0.95 when the training dataset size is greater than 50. 

Therefore, the obtained uncertainty is considered to be reliable. Meanwhile, PINAW stays under 0.5, 

which means that the uncertainty interval is narrow enough.  

Table 3. Comparison of inverse prediction accuracy of different methods. 

Data size Objective 1 Objective 2 

50 100 150 50 100 150 

P-INN 0.1749 0.1392 0.1200 0.2353 0.1579 0.1832 

INN 0.1595 0.2412 0.2330 0.2982 0.2551 0.2753 

DNN × × × × × × 

Table 4. Inverse uncertainty evaluation of P-INN. 

Data size Objective 1 Objective 2 

50 100 150 50 100 150 

PICP 0.8417 0.9667 0.9750 0.6750 1 0.9917 

PINAW 0.2971 0.3557 0.3248 0.3287 0.4456 0.4481 
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3.2. High-dimensional input problem 

Mathematical settings. We design a high-dimensional input example to show that P-INN is 

effective in general applications. The weight of an airplane’s wing is related to a number of factors that 

designers must take into account when designing a wing. Therefore, we take the classical wing weight 

function, which has 10-dimensional inputs, as follows: 

� = 0.036��
�.������

�.���� �
�

����(�)
�

�.�

��.���λ�.�� �
�����

���(�)
�

��.�

�������
�.��

+ ����     (17) 

Where �� refers to the wing area, ���[150,200]; ���
 represents the fuel weight of the aircraft, 

���
�[220,300]; � denotes the aspect ratio of the wing, ��[6,10]; � denotes quarter-chord sweep, 

Λ�[6,10] ; �  denotes dynamic pressure at cruise, ��[16,45] ; λ  denotes taper ratio, λ�[0.5,1] ; �� 

denotes aerofoil thickness to chord ratio, ���[0.08,0.18] ; ��  denotes ultimate load factor, 
���[2.5,6]; ��� refers to flight design gross weight, ����[1700,2500]; �� denotes paint weight, 

���[0.025,0.08]. Each input variable is uniformly sampled in its domain. The training parameters are 

similar to Section 3.1. It should be noted that the order of magnitude difference between the input 

variables is significant, thus the reconstruction loss must be assigned weights related to the range of 

input variables. The reverse process is followed by data post-processing, which is implemented by 

limiting the predicted value within the corresponding domain. Figure 4 presents the loss curves for a 

given training data set of 100. As this is a high-dimension input problem, the output requires 

complementary zero vectors to guarantee dimensional alignment, which will contribute to greater 

values of MSE term and likelihood term at the early stage of training. In the meantime, it can be seen 

from Eq (8) that the value of likelihood term may be less than 0 when the �(�) is small. Due to the 

above reasons, we add a constant of 10 to the loss results and then logarithmically process them to 

obtain better visualization. As shown in Eq (12), the bidirectional term relies on the exact forward 

process, hence we incorporate this loss after the 400th epoch. It is noticed that all six losses converge 

and tend to stabilize after the 450th epoch.  
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Figure 4. Loss curves for training data. (a) Total loss. (b) MSE term loss. (c) Likelihood 

term loss. (d) Reconstruction term loss. (e) Distribution term loss of x and z. (f) 

Bidirectional term loss. 

Benchmarks and metrics. INN and DNN are provided to compare the prediction results in 

bidirectional, where their network parameters are analogous to those in the multi-objective problem. 

The evaluation metric of prediction accuracy is RMSE, while the evaluation metric of uncertainty 

interval is PICP and PINAW. 

Discussion. The comparison of prediction accuracy of different methods is shown in Table 5. The 

proposed method excels on high-dimensional input examples: the forward RMSE is already the lowest 

with a dataset size of 50, while the forward process of INN behaves terribly. The forward RMSE 

and reverse RMSE of the proposed method are 0.0839 and 0.1309 with an increase in training set 
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size to 150. The inverse uncertainty of P-INN is calculated, as shown in Table 6. The final PICP is 0.95 

and the PINAW is 0.357, both indicating that the uncertainty is certainly convincing.  

Table 5. Comparison of prediction accuracy of different methods. 

 Forward RMSE Inverse RMSE 

Data size 50 100 150 50 100 150 

P-INN 0.1521 0.1115 0.0839 0.3574 0.1286 0.1309 

INN 3.6367 3.9584 3.0569 0.5253 0.4706 0.2788 

DNN 0.1715 0.1662 0.1609 × × × 

Table 6. Inverse uncertainty evaluation of P-INN. 

Data size PICP PINAW 

50 0.5250 0.4321 

100 1 0.4803 

150 0.9500 0.3570 

Visualization. The input dimension in this example is 10, which means that the performance of 

the model is unable to be visualized. We use principal component analysis (PCA) to reduce 

dimensionality of the input. The main idea of PCA is to map n-dimensional features to k-dimensions, 

which are completely new orthogonal features. The new features are reconstructed on the basis of the 

original n-dimensional features. The calculation shows that the cumulative contribution rate of the first 

two eigenvalues is 0.9943, so the original input features can be replaced with new two-dimensional 

features. The eigenvectors corresponding to the eigenvalues indicate the contribution of the original 
features to the new features, and the results show that ��� plays an important role. Figure 5 shows 

the mapping relationship between ���  and output (all other input parameters are fixed; here the 

average of each parameter is taken). The generated training data is added with noise that satisfies the 

standard normal distribution to simulate the real situation, and some training points are shown in 

Figure 5a. The curve derived by P-INN almost coincides with the real curve, while the curve obtained 

by INN is unacceptable. The curve fitted by DNN is also not quite satisfactory. 
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Figure 5. Visual demonstration of ���  to output (weight) mapping using different 

methods. (a) Ground truth curve and training data points. (b) Comparison of P-INN fitted 

curve with ground truth curve. (c) Comparison of INN fitted curve with ground truth curve. 

(d) Comparison of DNN fitted curve with ground truth curve. 

4. Application to the turbine blade design 

4.1. Turbine blade simulation  

Jet engine produces thrust by jetting backwards to achieve forward movement. Gas turbine is a 

vital component of jet engine because of its light weight, compact structure, and high combustion 

efficiency [41]. Gas turbine engines are divided into four categories: turbojet, turbofan, turboprop, and 

turboshaft. When a jet engine works, the gas drawn in is compressed by a compressor to the smallest 

possible optimal volume. The compressed gas pressure is almost 30 times the original, while the 

temperature rises to 1000°C. It is then sent to the combustion chamber for combustion. The turbine is 

responsible for extracting energy from the high temperature and pressure gases produced by the 

combustion chamber. Due to the long-term extreme working environment, turbine blade materials are 

usually chosen from high-strength, high-melting nickel alloys. Turbine blades expand when heated, 

creating significant stress at their joints resulting in strains of several millimeters, which can cause 

friction and even damage between the blade tip and the casing. Therefore, designers must consider the 

stress and strain of the blade in the normal working state when designing the turbine. It is natural for 

us to apply P-INN to the inverse design of the blade. 
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The simulated 3D structure of the turbine blade is shown in Figure 6. In reality, the stresses and 

strains of the blade are affected by a combination of pressure and thermal effects. We first calculate 

the stress and strain that are only affected by the pressure while ignoring the thermal effect; then 

analyze the stress and strain that only has the thermal effect while ignoring the pressure; finally, the 

simulation model with the combined effect of the two factors is obtained. The stress or temperature 

heat maps of the three processes are shown in Figure 7. The pressure model parameters include Young's 

modulus �, Poisson’s ratio ��, the thermal expansion coefficient ��� of the nickel-chromium alloy, 

and the pressures �1 and �2 on both sides of the blade; the thermal effect model parameters include 

the thermal conductivity ���� of the nickel-chromium alloy. 

 

Figure 6. 3D structure of blade simulation. 

a cb
 

Figure 7. Stress heat map: (a) pressure model, (b) thermal effect model, (c) combined model. 

Here, ���� is fixed and the remaining 5 variables are taken as input. Each variable ranges from 80% 

to 120% of the recommended value, sampling 100 sets of input data evenly. The simulated stress is 

used as output. 20 sets of data were randomly selected as the test set. The prediction accuracy of P-

INN is compared with INN and DNN. 
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4.2. Design space exploration with P-INN 

The prediction accuracy of different methods is shown in Table 7. It can be found that even if the 

training set is small, the forward accuracy of the proposed method is already ahead of other algorithms; 

when given more data to train, the forward accuracy and inverse accuracy of P-INN have reached a 

satisfactory level (respectively 0.0634 and 0.1052). After sufficient training, INN’s forward accuracy 

is poor but inverse accuracy is acceptable. DNN does not perform well in this case. 

Table 7. Comparison of prediction accuracy of different methods. 

Data size Forward RMSE Inverse RMSE 

20 40 80 20 40 80 

P-INN 0.2017 0.1327 0.0634 0.2894 0.2057 0.1052 

INN 5.0359 0.7367 0.2194 0.4048 0.2652 0.1564 

DNN 0.2110 0.2014 0.2002 × × × 

The inverse uncertainty predicted by the proposed method is shown in Table 8. The PICP has 

reached 1 with a training set size of 40, which indicates that the uncertainty interval fully covers the 

true value. PINAW remains around 0.5 with adequate training datasets. Figure 8 visualizes the 

uncertainty intervals of the inverse forecast, where the results for P-INN and INN are represented by 

green histograms and orange histograms respectively. Three stress values were randomly selected from 

the test set (we take y = 942.46, 720.85, 1000.37). After that 100 sets of input parameters were 

generated by P-INN and INN. Since the real input parameters are not available to obtain, we use 

simulation to convert the reverse predicted values. In this way, the input parameters distribution is 

referred to by the output parameters distribution. The true stress value is marked with a red dashed line. 

It can be found that both P-INN and INN cover the ground truth, but the distribution of our proposed 

method is more concentrated, which means that our inverse process is more reliable and convincing. 

For a given specific stress, the solution generated by P-INN has a higher probability of manifesting 

the desired performance compared to the solution generated by INN. In Figure 8c and Figure 8e, 

although the probability of the interval in which the true value falls is not the maximum, the interval 

adjoins the maximum probability interval. Moreover, the truth interval probability of P-INN is larger 

than that of INN. 

Table 8. Inverse uncertainty evaluation of P-INN. 

Data size PICP PINAW 

20 0.5000 0.4711 

40 1 0.6461 

80 1 0.4620 
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Figure 8. Posterior pdfs of the output converted from the input. (a and b) Posterior pdfs 

predicted by P-INN (green histogram) and INN (orange histogram) when y = 942.46. (c 

and d) Posterior pdfs predicted by P-INN (green histogram) and INN (orange histogram) 

when y = 720.85. (e and f) Posterior pdfs predicted by P-INN (green histogram) and INN 

(orange histogram) when y = 1000.37. 

Based on the above analysis, we use P-INN to generate thorough and reliable turbine blade design 

solutions, given the stress conditions. Specifically, the distance between the blade and the case is 

specified in advance, while the stress and strain during operation are known; possible design solutions 

(including design parameters such as blade material) are available through P-INN as a way to avoid 
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collisions between the blade and the chassis. Our proposed method indeed contributes to the inverse 

design of turbine blades. 

5. Conclusions 

This work proposes the P-INN framework incorporating both epistemic and aleatory uncertainty 

for better inverse design and reasoning. The bi-directional loss is developed to enhance the inverse 

prediction accuracy. We applied the method to two mathematical problems and turbine blade design, 

as demonstrated by comparing the results with standard INN and DNN. Experiments show that P-INN 

provides not only more accurate forward predictions, but also generates more concentrated and reliable 

inverse posterior distributions. After training, the P-INN can generate possible inverse solutions 

corresponding to the target system response within a second, which is beneficial for the fast design 

space exploration and reasoning of critical engineering systems. Although promising results have been 

observed with P-INN, further study is needed regarding the down-sampling of design candidates and 

the screening of optimal solutions. 
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