ERA, 31(2): 812-839.

B\ Electroni DOT: 10.3934/era. 2023041
Atnig lectronic Received: 29 September 2022

@ Research Archive Revised: 14 November 2022

Accepted: 22 November 2022
http://www.aimspress.com/journal/era Published: 01 December 2022

Research article

Existence and asymptotical behavior of the ground state solution for the
Choquard equation on lattice graphs

Jun Wang'*, Yanni Zhu? and Kun Wang'

! Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China
% School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China

* Correspondence: Email: wangmath2011@ 126.com.

Abstract: In this paper, we study the nonlinear Choquard equation
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on lattice graph Z". Under some suitable assumptions, we prove the existence of a ground state solution
of the equation on the graph when the function V is periodic or confining. Moreover, when the potential
function V(x) = Ada(x) + 1 is confining, we obtain the asymptotic properties of the solution u, which
converges to a solution of a corresponding Dirichlet problem as 1 — co.
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1. Introduction

In the present paper, we proved the existence of a ground state solution of the following nonlinear
Choquard equation

|u(y)|? _
L |ul? 2y erN’

A Ve = | D (L1)

YEX
yeZN

ue H\(ZV),

on lattice graph Z". This equation can be viewed as a discrete version of the following Choquard
equation
—Au+ V(xu =, = [uP)u’u xeR", (1.2)
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where @ € (O, N), p> 1 and I, : RY — R is the Riesz potential defined at x € RV \ {0} by

N-a
d Aa/_ F(Z)

I(Y(x) = - 1_, (%) 7TN/22(I’

iV
with I" being the Euler gamma function.

In the past few decades, many mathematicians have been devoted to studying the Eq (1.2), for
example, see [1-6]. In particular, if N =3,V =1and p = 2,1e., ~Au+u = (I * lul*)u, appeared in
the literature at least as early as in 1954’s work by Pekar on quantum theory of a Polaron at rest [7].
Later in the 1970s, Choquard utilized model (1.2) to describe an electron caught in its own hole, in an
approximation to Hartree-Fock theory of one-component plasma [1]. Particularly, the equation is also
knows as the Schrodinger-Newton equation, which was used to a model of self-gravitating matter [8].
Also, the article [9] used this system to study the pseudo-relativistic boson stars. In a pioneering work,
Lieb [1] proved the existence and uniqueness of the ground state to the Eq (1.2)inR* with V = 1, @ = 2
and p = 2. In the paper [3], Moroz and Van Schaftingen first obtained the sharp range of the parameter
for the existence of solutions of the Eq (1.2) with 1% <p< % If V is the periodic function, since
the nonlocal term is invariant under translation, the paper [10] got the existence results. Furthermore,
Alves [11] proved the existence and convergence of nontrivial solutions of the nonlocal Choquard
equation. There are tremendous results on this direction in [12—18] and the references therein.

On the other hand, the analysis on the graph has become more and more popular, for example,
see [19-27]. In a series of work of Grigor’yan et al. [19-21], they studied the Yamabe type equa-
tions, Kazdan-Warner equation and some other nonlinear equations on graph by using the variational
methods. In [27], Zhang and Zhao investigated the existence of nontrivial solution of the equation
—Au + (da(x) + Du = |u|’'u on the locally finite graphs by using Nehari methods (see [28]) and
the asymptotic properties of the solution. Later, the paper [22] generalized the results of [27] to
higher order. Furthermore, Hua and Xu [24] obtained the existence results of nonlinear equation
—Au + V(x)u = f on the lattice graph Z". Recently, Huang et al. investigated extensively the Mean
field equation and the relativistic Abelian Chern-Simons equations on the finite graphs by using the
variational method in [23]. For other related results about the graph, we refer the reader to [29-34] and
references therein.

Inspired by the poineering works, in this paper we study the existence and asymptotical behavior of
solution for the Choquard equation (1.2) on the lattice graph Z". For clarity, let us introduce the basic
setting on the lattice graph Z". The graph Z" consists of the set of vertices

V={x=(x,,x):x€Z1<i<N},

and the set of edges

N
E= {{x,y} x,y€ZV,) Ixi -yl = 1}.

i=1

For any two vertices x,y € ZV, the distance d(x, y) between them is defined by
dix,y) =inflk:x=x1 ~Xx2 ~ ... ~ X =y},

where we write y ~ x if and only if the edge {x, y} € E. Assume Q c Z", we say Q is bounded if d(x, y)
is uniformly bounded for any x, y € Q. It is easy for us to see that a bounded domain of Z" can contain
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only finite vertices. We denote the boundary of Q is
0Q:={y¢ Q:3dxeQ suchthat xy € E}.

C(Z") denotes the set of real-valued functions on Z". For any u € C(Z"), its support set is defined
as supp(u) = {x € Z", u(x) # 0}. Let C.(Z") denote the set of all functions of finite support. We can
define the associated gradient for any function u, v € C(Z") by

1
T, V() = ) 5 (k) = u())vG) = v().
y~x

In particular, let I'(«) = I'(u, u) for simplicity. The length of the gradient of u is written by

1/2
1
[Vul(x) := /T(u)(x) = (Z E(u(y)—u(X))2> :

y~x

Let u be the counting measure on ZV, i.e., for any subset A C VAR u(A) := #{x : x € A}. For any

function f on Z", we write
[ gaui=3" seo.
ZN

xezZN

whenever it makes sense. £” is a space endowed with the norm

1
P
(Z |u(x)|f’> I<p<eo
”M”[P(ZN) =

xezZN
sup |u(x)| = oo,

xezZN

Assume u € C(ZV), the Laplacican on Z" is defined as

Au=7)  (u(y) - u(x).

y~x

The inner product of the Hilbert space H'(Z") is given by

(u,v) := T(u,v) + uv)du = (VuVv + uv)du.
zN N

Therefore, the corresponding norm reads

%
lleell 1 zvy = (/ (lVLtI2 + uz) d,u) )
ZN

For a bounded uniformly positive function V : Z"¥ — R, it is natural for us to consider the equivalent
norm in H'(ZV) as

llull® := / (IVul* + V(xu?) du.
7N

Then we have the conclusions for the Eq (1.1).
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Theorem 1.1. Let N € N, @ € (O,N) and p € (%, 00). Suppose that V(x) : ZV — R satisfies the
conditions:

(i) V is bounded uniformly positive, i.e. there exist constant Cy,C, > 0 satisfying C; < V(x) < C;
for any x € ZV.

(ii) V is T-periodic, i.e. for the positive integer T, we have V(x + Te;) = V(x), Yx € Z¥,1 <i < N,
where e; is the unit vector in the i-th coordinate.

Then there exists a ground state solution of (1.1).

Remark 1.2. The preceding theorem is a discrete version of the results in [3]. As in the paper [24],

we use the Concentration-Compactness Principle (P. L. Lions [35,36]) to recover the compactness and

prove the existence of ground state solution of (1.1). Interestingly, since the discreteness of the graph,

the Sobolev embedding on the lattice graph is different from that in the continuous setting, which allows
N+a

us to remove the upper critical exponents 5= in the continuous case.

Next we turn to studying the convergence of the solution for the nonlinear Choquard equation. The
results of Schrodinger type equation is already considered in the Euclidean space (see [11,37]). We
may expect that the nonlocal Choquard equation on lattice graphs has some similar results. As the
paper [22,27], we also consider the confining potential V = Aa(x) + 1, i.e.,

|u(y)I”

e lul”u. (1.3)

— Au+ (a(x) + Du = Z

yeZN

To study the problem (1.3), we introduce the following subspace of H LzZMy:
E(ZM) = {u e H(ZM) : / Aa(x)u*du < +oo} )
7N
It is easy to recognize that the scalar product of E(Z") is

U, VYg,@zv) = / T'(u,v) + (Aa(x) + Duv)du = / (VuVv + (Aa(x) + Duv)dpu.
ZN ZN

Then we have the following conclusions.

Theorem 1.3. Let N e N, @ € (0O,N) and p € %, 00). Suppose that a(x) : Z" — R satisfying

(A1) a(x) > 0 and the potential well Q = {x € Z" : a(x) = 0} is a non-empty, connected and bounded
domain in ZV.
(A2) There exists a point xq satisfying a(x) — oo when d(x, xy) — oo.

Then (1.3) has a ground state solution u, for any constant 1 > 1.

In order to observe the asymptotical properties of u, as 4 — oo, we first study the following Dirichlet
problem.

p
—Au+u=[)" " u”u  in Q.
— |x — y[Ne (1.4)

yeQ

u=0 on 0Q.
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We study the Eq (1.4) in the H}(Q) with the norm:

[ /Qum|vu|2dﬂ+/9u2du.

Similarly, the Eq (1.4) also possess a ground state solution.

Theorem 1.4. Let N € N*, @ € (0,N) and p € (1,). Suppose Q is a non-empty, connected and
bounded domain in Z". Then the Eq (1.4) has a ground state solution u € Hy(Q).

Finally, we show that the solutions u, of (1.3) converge to a solution of (1.4) as 4 — oo when
the domain in (1.4) is the set of satisfying a(x) = 0. On the other words, we obtain the following
conclusions.

Theorem 1.5. Let N € N*, a € (0,N) and p € [2, ). Assume that a(x) satisfies (A1) and (A2), then
for any sequence Ay — oo, up to a subsequence, the corresponding ground state solutions u,, of (1.3)
converge in H'(Z") to a ground state solution of (1.4).

The remaining parts of this paper are organized as follows. In Section 2, we give basic definitions
and Lemmas on the lattice graph. In Section 3, we establish the discrete Brézis-Lieb Lemma for the
nonlocal term and some important conclusions. Section 4 is devoted to proving Theorem 1.1. Then we
complete the proof of Theorems 1.3 and 1.4 in Section 5. Finally, we prove Theorem 1.5 in Section 6.

2. Preliminary results

In this section we give some basic results on the lattice graph. Firstly, we present the formula of
integration by parts on lattice graph, which is the basic conclusion when we apply variational methods.
Here we omit the concrete proofs and one can refer to [22] for more details.

Lemma 2.1. Suppose that u € H'(Z"). Then for any v € C.(Z"), we obtain

/ Vu - Vvdu = / I'(u,v)du = —/ Au - vdu. 2.1

ZN ZN zN

Lemma 2.2. Suppose Q) C ZV is a bounded domain and u € Hé(Q). Then for any v € C.(Q), we have
/ Vu - Vvdu = / I'(u, v)du = —/ Au - vdu. 2.2)
QuUIQ QUAQ Q

Now we are ready to define the weak solution as follows.

Definition 1. Assume u € H'(ZV). A function u is called a weak solution of (1.1) if for any ¢ € H'(Z"),

p
/Vchpd,u+/ V(x)ugod,u:/ ZM |ulP > updy. (2.3)
zv zv o | S e = yIve

yeZN

Definition 2. Assume u € E (Z"). A function u is called a weak solution of (1.3) if for any ¢ € E(ZN),

|u(y)|? _
/ VuVedu + / (Aa(x) + Dupdyu = / Z# P2 ugdp. (2.4)
ZN ZN |\ 54 -

yeZN
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Definition 3. Assume u € Hé (Q). A function u is called a weak solution of (1.4) if for any ¢ € Hé(Q),

p
/ VuVedu + /ugod,u :/ Z WL)JV_Q |ulP > updp. (2.5)
QUAQ Q o\ = |lx =yl

yeQ

Notice that if u is a weak solution of (1.1), we infer from Lemma 2.1 that for any test function
@€ H'(Z),

() _
/ZN (—Aupdu + V(x)up) du = /ZN Z m ulP~updu. (2.6)

YEX
yeZN

For any fixed x, € zV, choosing a test function ¢ : Z" — R in (2.6) which is defined as

X = Xo,

I,
QD(X)_{ 0, X # Xo,
we obtain

|u(y)I”

o —yV " Ju(xo)” " u(xo),
o —

—Au(xo) + Vixo)u(xo) = | >

YEX(
)'EZN

which implies that u is a point wise solution of (1.1). Thus, we have the following conclusion for the
relationship between the weak solution and the point wise solution.

Proposition 2.3. If u is a weak solution of (1.1), then u is a point wise solution. Similarly, if u is a
weak solution of (1.3) or (1.4), then u is also a point wise solution of the corresponding equation.

Finally, we state the following conclusions for the Sobolev embedding.

Lemma 2.4. ( [38]) H'(Z") is continuously embedded into t(Z") for any q € [2, co]. Namely, for any
u € H'(Z), there exists a constant C, depending only on q such that

lleelleazvy < Cyllullgrzvy. (2.7)

Lemma 2.5. ( [27, Lemma 2.6]) Assume that A > 1 and a(x) satisfies (A1) and (A2). Then E(Z")
is continuously embedded into t4(Z") for any q € [2, 0] and the embedding is independent of A.
Namely, there exists a constant C, depending only on q such that for any u € E (ZM), llzellpazvy <
C,llullg,zv). Moreover, for any bounded sequence {u} € E W(ZN), there exists u € E(ZN) such that, up
to a subsequence,

U, — u in E (ZM).
u(x) > u(x) VxeZV.
Uy — u in £4(ZM).

Lemma 2.6. ( [27, Lemma 2.7]) Assume that Q is a bounded domain in Z". Then Hé (Q) is continu-
ously embedded into t1(Q) for any q € [1, co]. Namely, there exists a constant C, depending only on q
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such that for any u € Hé(Q), llzellpac) < qulullH(l)(Q). Moreover, for any bounded sequence {u;} € Hé(Q),
there exists u € Hé (Q) such that, up to a subsequence,

U = u in Hy(Q).
up(x) - u(x) VYxeQ.
U, —> u in £1(Q).

3. Discrete Brézis-Lieb Lemma

In this section, we give a proof of the discrete Brézis-Lieb Lemma(see [3,39,40] for the continuous
case) for the nonlocal term on the lattice graph. First, let us recall the discrete Brézis-Lieb Lemma [38]
for the local case.

Lemma 3.1. ( [38, Lemma 9]) Let Q c Z" be a domain and {u,} c ¢4(Q) with 0 < q < oo. If{u,} is
bounded in €1(Q) and u,, — u pointwise on Q as n — oo, then
lim (lletallfay = Nt = ullfaeyy) = Ntllfacery- (3.1
From Lemma 3.1 and [38, Corollary 10], it is not hard for us to get the following corollary.

Corollary 3.2. Assume V is a uniformly bounded positive function. If {u,} is bounded in H' (Z") and
U, — U pointwise on ZVN, then

n—oo

lim ( / (IVu,* + V(x)uy, ) du — / (IV(uy = w)* + V() — u)z)d,u)
“ = (3.2)

= / (IVul* + V(x)u®) dp.
7N
Next, we prove a variant of the discrete Brézis-Lieb Lemma.

Lemma 3.3. Let Q ¢ Z" be a domain, 1 < g < co. If the sequence {u,} is bounded in £'(Q) and u,, — u
pointwise on Q as n — oo, then for every g € [1,r],

lim / 04l =l = l? = |ul? | dps = 0. (3.3)
Q

n—oo

Proof. Applying the Fatou’s Lemma, we obtain

el ) < Lim [[u,]lerq) < oo. (3.4)

n—oo

Fix £ > 0 and for all a, b € R, there exists C, satisfying
|la + bl — |al?| < elal? + C,lbl4.
Hence we obtain
+
£ = ([lal? = Ly — ul? = 1ul?| = elu, — ul?)
+
< ([lual® = Ity = ul?| + lul? = &lu, — ul?)
< (luy — ul? + Colul? + |ul? — glu, — ul?)*
=(1+C,)lul.
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Thus
(i) <1+ Co)ilul. (3.5)
It follows from the Dominated Convergence Theorem that
lim | (f,%)edu = / lim (f,%)7du = 0. (3.6)
n—oo Q Q n—o0o

From the definition of f, we obtain
letal? = Juty — l? = |l?| < 7 + &lut, — ul”.

Moreover, one deduces from the basic inequality (a + b)” < C,(a” + b")(Ya, b, p > 0) that
il = it =t = Yl | < (f7 + &ty = ) < Cp () + 5ty = ) (3.7)

Therefore, from (3.6) and (3.7), we get

T | [l = = = |
Q

n—oo

< lim Cyr (/ (fng)éd,u + /N gilu, — ulrd,u)

r
< Cyre7 sup lu, — ullpr -
neN

Then lete — O,
T | [l = b, = = | = .
Q

n—oo
This finishes the proof.
Next, we state the discrete Brézis-Lieb type Lemma.

Lemma 3.4. Suppose Q ¢ Z" and 1 < p < co. If the sequence {u,} is bounded in €"(Q) and u, — u
pointwise on Q as n — oo, then for every x € Z", we have

. e, ()1 |, (y) — u(y)l? lu(y)I?

lim — - — | = E — (3.8)
n—oo ; |X — le—Ot ; |)C _ le—a — |X _ le—a

yeQ yeQ yeQ

Proof. Since x # y and x,y € Z", we obtain |x — y| > 1 and it follows that

3 NP = la(y) = uWI = lu(y)I?

[x — y[V=@

L 5 O = ) — P = P,

YEX yeQ

yeQ
Thus the proof is complete as n — oo from Lemma 3.3.

Now we are in position to establish the discrete Brézis-Lieb Lemma for the nonlocal term of the
functional. To this purpose we first present an important inequality on the lattice graph which is studied
by many authors in the continuous setting.
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Lemma 3.5. ( [41]) (Discrete Hardy-Littlewood-Sobolev Inequality) Let 0 < @« < N, 1 < r,s < o
and % + % + % > 2. Assume f € £'(ZV) and g € €°(Z"). Then there exists a positive constant Crsa
depending only on r, s, « such that

(x)8)
3 lj:_% < Crall o lglloe (3.9)
.x,)‘EZN

The paper [38] also give the following equivalent form of (3.9).

Lemma 3.6. et O < o < N, 1 < rt < oo and % + % < % Assume f € £ (ZN), then there exists a

positive constant C,,, depending only on r,t, a such that

IAS))
g [P < Crrallfllery. (3.10)
yezN
WZ" £z

The next lemma states the discrete Brézis-Lieb Lemma for the nonlocal term.

Lemma 3.7. Let 1 < p < oo and the sequence {u,} is bounded in € %(ZN ). Suppose u,, — u pointwise
onZN asn — oo, then

: lut, ()17 / lun(y) — u()I
lim / T Py — MnlY) Z WO i, = ufPd
n—oo ZN Z |x - le—(Z /l ZN Z |x — le_(l’ /l

YEX YEX
_\‘EZN yGZN

(3.11)
|u(y)I”
= ———— | [u|dpu.
/ZN Z |x — yV-e K
_VEZN
Proof. For every n, we can divide the left-hand side of (3.11) into two parts,
|un ()1 |t (y) — u(y)l”
ot dps — —————— | |u, — ul’d
/ZN Z lx — y|¥-e 7 ) Z |x = yIN-e K
}'EZN )'EZN
|un DI — un(y) — u()I”
= [ |30 MO
0 W lx =l (3.12)
yéZN
| DI” = |1 (y) — uI”
+ 2/ |ty — ulpd
v ; |x = y[NV-e a
=:J; +2J,,
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where

e, DIP — 1 (y) — u(y)|?
Ji = / (lunl” = |y, — ul?)dyp,
: ZN ; |x — [N
yEZN
et DI = |t (y) — u(y)I”
Jr = / |, — ul’du.
27 o Z |x — yIN-e
yeZN
By Lemma 3.3, taking g = p, r = iﬁi, one has

2N
lim / utal? = lttyy = ul? = || ™ dpt = 0. (3.13)
7N

n—oo

We first give the estimate for the term J;. From the Hardy-Littlewood-Sobolev inequality (Eq 3.9),
one deduces that

lu(y)l”
Ji - S
1 /ZN e | e

y#FX

_VEZN
P =l (y) = 4P = ()PP
< al? =l — ul? — ul?|d,
/. > e | du
yeZN
a O =l (y) = 4P = ()PP |
2 / | jul’d
N ; lx — y[N=e a

<||letal?” = 1ty = ul” = Juf? + 2||letl” = ety — ul? = |ual? ||, 2

2
e 2 o |17 2
2N
H€N+a(ZN) [NW(ZN)Hlul [Aﬁ/a(zN)'

< Tim; o
From (3.13) and ||u||[%(ZN) < hﬂglf ||un||€%(ZN) < oo, it gives that

lim J; = / ZM e (3.14)
ZN

n—oo o |x — le—a
yEZN

Now we give the estimate for J,. From the Banach-Alaoglu theorem, |u, — u|” — 0 weakly in

Electronic Research Archive Volume 31, Issue 2, 812-839.
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{¥ia (ZN) as n — oo and (3.9), we deduce that

et DI = |t (y) — u(W)IP = lu(y)”
= u —
ZN Z lx —y"
yEZN
lu(y)I?
+ —— | |u, — ulPdu
/ZN )Z x — yV=e |
yeZN
Py — P — |yP )
SHlunl |u" I/t| |M| Hg%(zN)Hlun I/ll H[%(ZN)
lu(y)I”
+ ——— | |u, — ul’dpu.
/ZN ; |x = yN-e [
yezN
We infer from (3.10) that
lu(y)l”
Z A T < CN,p,a”u“pZNJ e
= |x— )l (Nra (ZV)
yezN f%(ZN)

. 2N
Moreover, |u, — ul’ — 0 in ¥+ (Z"). Hence we know that

Then one deduces from (3.13) that lim J, = 0. This together with (3.14), we get the results.

4. Proof of the Theorem 1.1

In the present section we are devoted to the proof of Theorem 1.1. Obviously, for any function
u: Z¥ — R, the energy functional related to (1.1) is given by

J(u) = % / (IVul* + V(x)u®) du - % / > O |l du. 4.1)
ZN ZN

lx —yV=e

y#EX
yEZN

Notice that the functional J is well defined in H'(Z"). Indeed, assume that u € (¥ (ZM), then by
applying the Hardy-littlewood-Sobolev inequality (Eq 3.9) to the function f = |ul’ € (% (ZY), we
obtain

N+a

|u(y)|p 2Np N
/ Z v | 1u"dp < Crpa |u|¥+e d . 4.2)
ZN |x =yl Z

YEX
yEZN
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It sufficient for us to confirm when the condition u € £¥ (ZV) is satisfied. According to the Lemma

2.4, HY(ZY) is continuously embedded into ¢ Vi (ZV) if and only if p > % Moreover, we infer from
the inequality (Eq 3.9) that

|u(y)l”
/ZN Z y |l/l|pd/,l S CN,[J,(Y”u”?{p](2N)9 (4,3)

— |X — le—a

ygzN

where the constant Cy,,, depends only on N, @ and p. Based on the previous argument, the function J
is meaningful.
Next, we define the Nehari manifold related to (4.1) by

N :={ueH@Z")\{0}: J'(wu =0}

ue H'(ZV)\ {0} : / (IVul® + V(xu®) du = / Z% |ul” du
N 7N Vix

Z |x —
yeZN

Let
m = inf J (u).
ueN

If there exists a function u € N satisfying J(u) = m, then the function u is called a ground state
solution. Obviously, u is a critical point of J.
Next, we shall find the critical point of the functional (4.1).

Proposition 4.1. Let N € N*, @ € (0,N) and p € (1,). Ifu € H'(Z") n £¥% (ZNY\ {0} and V is a
uniformly bounded positive function, there holds

1 1 P
max J(tu) = (5 - 5) S(u)rT,

where

/Z (IVul* + V() du
Su) = . _.

lu(y)l
/ZN le—le‘“ " dp

Y#EX
yezN

Proof. For any t > 0, we set

2

2
s(t) := J(tu) = %/ZN (IVul* + V(ou?)du — % /ZN Z O lulPdu.

|x — y|N-

YEX
yeZN

By a direct computation,

s'(t) =t / (IVul* + V(ou?)dp — 277! / Zﬂtﬂ lul du.
Al N

—_ y|N-«a
YEX X y |
yEZN
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When s'(f) = 0, we can obtain a unique 7, such that s’(z,) = 0. Moreover, one has

1
2p-2

/ (IVul* + V(x)u*) du
7N

lu(y)I”
L\ | s
N -

Y#EX
yEZN

Sinceas0 <t <t, s'(t) >0and as ¢ > t,, s'(t) < 0, thus

<
I[=

. ) /Z ) (IVul* + V(xu?) du

1
H,lf})x J(tu) = J(t,u) = (5 - 5

= -

lu(y)|?
L |
N -

Y#EX
yezN

This finishes the proof.

Note that the ground state energy of J can be characterized as

1 1 p
= inf = inf = inf (R T,
" ;EN J(u) uEHll(%N)\{O} n;l>%x J(m) uEHll(%N)\{O}( 2 2]) )S (u) ’

In the next conclusion we show the infirmum of S (#) can be achieved by some nontrivial function.

Proposition 4.2. Let N € N, @ € (O,N) and p € (%, oo). Suppose that V is a uniformly bounded

positive function, then there exists u € H'(Z") satisfying
S (u) = inf{S (v) : v € H'(Z")\{0}}.

Combining with Propositions 4.1 and 4.2, we complete the proof of Theorem 1.1. Then we only
need to focus on the proof Proposition 4.2 in the next. In the Euclidean space, we are familiar with the
different kinds of the proof of Proposition 4.2. For example, a strategy consists in minimizing among
radial functions and then prove with the symmetrization by rearrangement that a radial minimizer is a
global minimizer. In our setting, the main difficulty for the analysis is that there is no proper counterpart
for radial functions on Z" and moreover we do not have the compactness in this problem. To overcome
the difficulty we borrow an idea of [42, Section 4](also see [24]) and use the constraint method to prove
Proposition 4.2.

Proof of Proposition 4.2. Set
m = inf{S () : u € H' (Z")\{0}},
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then we can get
L { L yen "(z") and / (IVul* + V(ou?)du = 1}.
m S (u) v/
Let {u,} be a minimizing sequence in H 1(ZM) such that

/ (IVu,,I2 + V(x)u,zl)d,u =1,
ZN

1
and lim S = —. By the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we obtain
n—oo U, m

|, (V)
Cnpa —_— WPd
v | [ 228 |

YEX
yeZN

4.4

<l 22 T 4.4)
N+a N+a
<||un||52(zN)”un”goo(ZN)

N+a N+a

Sl|un||1.;llp(zN)”un”€oo(ZN)

Taking the limit from both sides, one can see

l N+a
CNPCY( )p < hm””n”gm(zN)- (45)
Since p > ¥, we obtain
lim|fu,lp=zvy > C > 0. (4.6)

Hence, there exists a subsequence {u,} and a sequence {y,} ¢ Z" such that |u,(y,)| > C for each n.
By translations, we define u,, =: u,(y + k,T) with k,, = (k,11, “.- k,llv ) to ensure that (v, — k,T) C Q where
=10, 7)Y N Z" is a bounded domain in Z". Then for each i,
lttnlle=() = ln(yn)l = C > 0.

Moreover, by translation invariance, we infer from V(x) is T-periodic in x that

1= / (IVu,* + V(xu)dp = / (IVi,|* + V(xu;) dp
ZN 7N

and
S (uy) = S ().

Without loss of generality, we can get a minimizing sequence {u,} satisfying |[u,||;~q) > C > O.
Since Q is bounded, there exists at least one point, say xy, such that u,(xy) — u(xy) > C > 0. Since the
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sequence {u,} is bounded in H'(Z"), it follows that u, — u in H'(Z") and u, — u # 0 pointwise on
ZN . Then it follows from Corollary 3.2 and Lemma 3.7 that

p

leen DI
/ |x_ny|N—n |I/ln |pd,u
7N YEX

yeZN

/ (IVu,|* + V(x)uy,) du
7N

— = lim

m n—oo

/ > s | luldp + / WO )y — "l
N y#£X N y£X
_ El z y)EZN z )')EZN (4 M 7)

S / (IVuP + V(xyu?) du + / (IV(uy = W + V() — u)?)dp
ZN ZN
1
» P
luI? D [un ) —u)IP —_ lP
/ZN ‘Z; |x_y|N—n/ |l/l| d/'l + /%N ; |x_y|N—(r |ul’l ul dl't
<En ):EZN yJeZN

/ (IVul* + V(xu®) du + / (V@ — w)* + V() — u)*) dps
N v

For every n, we have

/ (IV(uy, — W + V() — 1)) dp.
ZN

3|-

Y#EX
yEZN

_ p
/ 3 it (y) Ib\tl(y)l - uldy | <
N |x — ylhe

Since u # 0, one has

==

Y#EX
yEZN

P 1
[ ul”du) > o [ (9@ + V) du
ZN x_yl m JonN

which yields

<=

Y#EX
yeZN
By (4.7), one has

1

. |, () — u(y)I? .1 2 2

lim / —— | |u, — u|’d = lim — \V(u, — w)|~ + V(x)(u, — u)")du.
n—eo | Jgn ; |x — yIN-e a n—e0 M Jzn ( Jau
yEZN

P 1
/ Z % Iulpdu~) m / (IV@)? + V(x)w)*)du.
ZN x =yl . Jzy
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By Fatou’s Lemma, one gets

/ (IVul® + V(x)u*)du < liminf / (IVu,* + V(x)uy ) du < 1.
7N n—oo 7N

Then it is enough for us to prove that / (|Vun|2 + V(x)uﬁ)d,u = 1. Using a contradiction argument,
7N
suppose that

0< / (IVul* + V(xu)dpu = K < 1.
7N

then by

lim [ (IV(u, — w + V(x)(u, — u)*)du

n—oo ZN

=lim [ (Vu,] + V(u;)du - / (IVul® + V(x)u®) du
n—oo ZN ZN

=1-K>0.

However, (a + b)’ > a” + b” if a,b > 0. This yields a contradiction by (4.7).
5. Proof of Theorems 1.3 and 1.4

In this section we shall prove the existence result for (1.3) and (1.4) by using the standard variational
methods. Obviously, the functional associated with the problem (1.3) is given by

|u(y)I”

P |ul”dps,

1 1
() = 5 / (IVul® + (Aa(x) + Du?) du — % >
ZN 7N

y#EX
yeZN

where p > % The corresponding Nehari manifold is defined as

Ny :={ue EZ")\ {0} : Jy(wu =0}

u € Ex(Z)\ {0} 1/

7N

lu(y)l”?
IVul® + (Aa(x) + Du?) du = / ———_ | |ulPd
( ) M N ; |x_y|N—a H

We define the least energy level m, by
my = ule% Ja(u).
Then we first prove the Nehari manifold N, is nonempty.
Lemma 5.1. The Nehari manifold N, is non-empty.
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Proof. Fort € R and fix a function u € E A(ZM)\{0} and, we define

o _ 2 2 2 2 lu(y)l
y(1) ._J(m)m_z/ZN (IVul +(/la(x)+1)u)d,u—tp/ZN Zm lu|Pdu.
yeZN

Since p > 1 and u # 0, it is obvious that y(¢) > 0 for small # > 0 and that lim y(#) = —oco. Then there

t—00

exists #y € (0, co) such that y(#y) = 0, which implies that tyu € N,.
Next, we prove the least energy level m, is positive.

Lemma 5.2. We have m, = ir}\‘g Ja(u) > 0.
ue/N,

Proof. Since u € N, then

p
V 2 /l 1 2 d :/ |u(y)| pd .
/ZN(| ulP + (Aa(x) + D) du 5 ;—|x_y|N_a lulPdu
_VEZN

By Lemma 2.5 and (3.9), we obtain

2 lu(y)l? 2 2
lull, 2, = / Do | e < Clh, < Cllal g,
Z

lx — y|N-@ Nea (ZN)

yEX
yEZN

where C is independent of A. It follows from p > 1 that

1
1\ 2D
lleel| £, zvy = (E) > 0. (5.1

This gives
1
) 1 1 . ) 1 1 1\ 20
mi=ng o= (55, ) = (5-5,) () o

The next lemma states that the least energy m, can be achieved.

Lemma 5.3. The value m, can be achieved by some u, € N,. Namely, there exists some u, € N, such
that J,l(l/t,l) =m,.

Proof. Take a minimizing sequence {u;} C N, such that %im Ja(uy) = my. Since

~1
or(1) + my = Jh(wy) = pz—p””k”é(ZN)’
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we have that {1} is bounded in E (Z"), where ]}im 0i(1) = 0. By Lemma 2.5, we can assume that there

exists some u,; € E (Z") such that

U — U, in E(ZM).
u(x) = uy(x) VYxeZV.
U = Uy in £1(ZN).

From the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we infer that

lur(y) — ua(IP
/ Z S T iy — walPdp < Clluge = wall™a,
ZN

— |x—y[N@ (R 2Ny
yéZN
Therefore, one has
lur(y) — ua(n)IP
lim ———" | |uy — u,y|’du = 0.
k—oo oy Z |x — y|V=@ H

yEX
yeZN

Then from the Lemma 3.7, we get

p p
lim Z M lug|Pdu = / Z M ual”du.
ZN

k—o0 ZN |x — le—CX

— y|N-«a
Y#EX |x y | Y#EX
yezN yezN

Since the £, norm is weakly lower semi-continuous, one has

1 ! O
It = ol o= 5 || 30

Y#EX |x - le_a

)'EZN

. 1 1 | (VI
<timinf [ =l o - — [ | S22
= l}cr_l)gl 2||uk||E/l(ZN) 2p /ZN |)C — le—a |uk| 1%

YEX
yeZN

= llinll'lf Jﬁ(uk) =m,.

Next it suffices to show that u; € N;. We infer from (5.1) that

2 | ()1
0 < ¢ < llugll? vy = /Z A | el

[x — y|N-e

YEX
yeZN

This together with (5.2) which implies that

lua(IP
O<c< / ——— | |uy|Pdu.
ZN Z |.X _ le—a z H

YEX
yEZN

(5.2)

(5.3)

(5.4)
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Therefore u; # 0. Since u;, € N,, we infer that

) .. ) .. lur(V)IP
u < liminf ||u = lim inf E —— | |lwlPd,
” ﬂ”Eﬂ(zN) P ” k”E/l(ZN) k—oco  Jon . lx—y|N—a | k| M

yeZN

lu,(VIP
_ / ZL P,
VAl YEX

|x — [N
yEZN

We use the contradiction argument to obtain our results. Assume that

)
leeall? 2, < / > | waldp.
Z

N—
= Ix -yl
)'EZN

Similar as the proof of Lemma 5.1, there would exist a ¢ € (0, 1) such that tu, € N,. This implies
that

1 1
0 <my < Ja(tuy) = (5 - ZNWA”%AZN)

<P 1ikr§glf(% - E)”I/tk”él(zzv)
=7 lim inf J (14,)
= Pm, < my,.
This contradicts the fact that m, = ulenAE Ja(u). Therefore we have u,; € N,. Moreover, we infer from
(5.3) that m, is achieved by u,.
The following Lemma finishes the proof of Theorem 1.3.
Lemma 5.4. u, € N, is a critical point for J,.

Proof. Tt is enough for us to prove that for any ¢ € E,(Z"), there holds
Jy(u)¢ = 0.

Since u, # 0, we can choose a constant £ > 0 such that u, + s¢ # 0 for all s € (—¢, €). Furthermore,
for every given s € (—¢, ), we can find some #(s) € (0, o) satisfying #(s)(u, + s¢) € N,. Indeed, #(s)

can be taken as ]
=)

||u/l + S¢”éd(zN)

t(s) =

yEX
yeZN

NP
[ 5 e ) v+ soea
ZN
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Obviously, we can get #(0) = 1. Take a function y(s) : (—&, &) — R which is defined as
y(s) = Ja(t(s)(ua + s9)).

For t(s)(u, + s¢) € Ny and J (uy) = ir}g J(u), y(s) achieves its minimum at s = 0. Together with
UEN
uy € N,y and J)(u)u, = 0, it follows that
0 =9'(0) = J)#(O)u)[t' (0)u, + 1(0)¢]
= Jy(u)t' Oy + Ty ()
= Jy(un)g.

Next we focus on the proof of Theorem 1.4. The functional associated with the Eq (1.4) is given by

1 1 lu(y)l”
Jo(u) = = Vul>d +/u2d ——/ —2 | ulPdu. 55
o) 2/Qum| Pdu+ | wdu—7 | ;Ix—le‘“ lulPdu (5.5)

yeQ

We remark that ||u||pq) < Cllul| HI©Q) for g € [1, o] by Lemma 2.6. Therefore, the functional J,(u)

is well defined as p > a' The corresponding Nehari manifold is defined as

Na = {u € Hy(Q)\ {0} : Jy(wu =0}

lu(y)|” (5.6)
= ueHl(Q)\{O}:/ \Vul>d +/u2a’ :/ § —— |\ |ulPdu y .
° QUAQ a Q a o \ 57 e —ylVe a
yeQ

Let mq be

Mg = ulerll\g2 Jo(u).

Since Q contains only finite vertices, the proofs of the previous results can be easily applied to the
Eq (1.4). Moreover, p > 1 is enough for us to prove Theorem 1.4. Here we omit the details of the
proofs.

6. Convergence of the ground state solution

In the current section, we mainly focus on the asymptotical properties of the solution. That is, we
show that the ground state solutions u, of (1.3) converge to a ground state solution of (1.4) as 4 — oo.
To accomplish this we first prove that any solution of (1.3) is bounded away from zero.

Lemma 6.1. There exists a constant o > O which is independent of A, such that for any critical point
u e EJZN) of 1), we have ullg,zv) > o

Proof. From Lemma 2.5 and the inequality (Eq 3.9), one has

0=Jwu= /Z ) (IVal + (Aa(x) + Du?) du ~ /Z ) Z % ulPdu

yeZN

2 2 2
2 el vy = € el vy
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1 »
where C is independent of A. Then we can choose o = (E)ﬁ and Lemma 6.1 is proved.

The next lemma studies the property of (PS). sequence of J,.

Lemma 6.2. For any (PS), sequence {uy} of J,, there holds

: 2p
Hn el ) = e 6.1)

Furthermore, there would exist a constant C; > 0 independent of A, such that either ¢ > C; or
c=0.

Proof. Since J(ux) — c and J)(u;) — 0 as k — oo, we have

) | ) 1 1 p—1_.
c= ]11_210 <J/l(uk) - Eh(uk)uk) = lim (5 - 5) lotglI7: 2y = BT ]}l_)nolo||uk||%;ﬁ(zzv),

k—o0

which gives (6.1). By Lemma 2.5 and (3.9), for any u € E(Z"), we obtain

, _ 2 |u(y)|p ¥4 2 2p 2p

Ty = Nlull, o, - /Z 3 ey | 1 2l vy = C* Ml (6.2)

YEX
)'EZN

1

Take p = ( >C

1
)22 I (lullgy@vy < p, we get
’ 1 2
J/l(u)l/l > EHMHEl(ZN)

-1
Take C; = pz—,o2 and suppose ¢ < Cy. Since {u;} is a (PS). sequence, it yields
14

. 2 _ _
]}I_)I?o”uk”EA(ZN) = D c< Ci=p".
Hence, for large k, we have

T
§||Mk||EA(ZN) < Jyu)uy = op(Dllugl| g,y zv)s

which implies that ||ul|g,zv) — 0 as k — oo. It follows immediately that J,(ux) — ¢ = 0 and the
e P — 1 2 1 1
ositive constant can be taken as C; = ——p* = pT,
|y 1 2 P (2 C2P)
Remark 6.3. If we take ¢ = m,, then there would exist a (PS). sequence u; such that u, — u, when
proving the existence of a ground state solutions u,. Since the E,, norm of u,, is weakly lower semi-

. . 2
continuous, then ||uyl|g, @z~ is bounded by pfplm/l.

Next, we study the relationship between the ground states m, and mg,.

Lemma 6.4. m; — mgq as A — .
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Proof. Notice that m; < mgq for every positive A owing to No C N,. Take a sequence 4; — oo
satisfying
lim m,, = M < mq, (6.3)

k—co
where m,, is the ground state and u,, € N, is the corresponding ground state solution of (1.3). Then
it follows M > 0 from Lemma 6.2. According to Remark 6.3, we know that the E,, norm of u,, is
controlled by the constant pzfplmg, which is independent of A;. Up to a subsequence, we can assume
that u,, (x) — up(x) on Z" and for any g € [2, +0), Uy, — Up in £9(Z"). Moreover, we get that uy % 0
from Lemma 6.1.

We first claim that ug|oc = 0. If it is not true, we can find a point x, satisfying ug(xo) # 0. Since
uy, € Ny, then

-1

T (uy,) = %Iluakllé,,k(m > pz;pl/lk /Z ) a(ond du > L= d a0y, (xo).
Since a(xp) > 0, uy, (x0) — uo(xp) # 0 and A, — oo, we get
lim Jy, (u,) = o,
which contradicts with the conclusion m,;, < mgq. Since the norm || - ||z zv) 1s weakly lower semi-

continuous and (5.2), we get

/ \Vuol*du + / uddu < / (IVuol* + u) du
QUIQ Q ZN

< lim inf / (IVup, > + u3,) du

k%oo ZN

k— o0

< lim inf/ (IVLt/lkl2 + (Ara(x) + D”ik) du
ZN

.. |, (V)IP
= liminf e Pd
oo /ZN Z o ypa | et

)'EZN

oI
= / . Z% uol”dp.
Z

YEX
)'EZN

Noticing that yylg. = 0, we get

luo(y)I”
\Vuol*du + / uddy < / eI (6.4)
/Quag ’ Q 0 Q Z |x — [NV ’

YEX
yeQ

Then there exists a € (0, 1] such that auy € Ng, i.e.,

auy(y)lP
| tovuafaus [ jowban = [ {30 )
QUAQ Q Q |x — y[N=

YEX
yeQ
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This implies that

—1
Jotarug) = 21 ( / Vo + / |6wo|2dﬂ>
P QUAQ Q

p—1 / 2 2
< laVug|™ + |aug|”) du
TR )

p—1 2 2
< \YJ + d
<755 /ZN (IVuol® + luol*) du

< liminf p
k—o0 p

/Z ) (IVup I + (ra(x) + Duy ) du

= lim inf J,(uy,) = M.

Consequently, M > mgq. Combining with (6.3), we get that

lim m,; = mg.

A—o0

Next, we are devoted to proving Theorem 1.5.

Proof of Theorem 1.5. We need to prove that for any sequence A; — oo, the corresponding u,, €
N,, satistying J,, (u,,) = m,, converges in H 2™ to a ground state solution ug of (1.4) along a
subsequence. According to Remark 6.3, the E, norm of u,, is uniformly bounded by the constant
%mg, which is independent of A;. Consequently, we can assume that there would exist some u
satisfying u,, (x) — up(x) in Z¥and for any q € [2,+00), uy, — up in £4(ZN). Moreover, we get that

uy # 0 from Lemma 6.1. As what we have done in Lemma 6.4, we can prove that uy|o- = 0.
First, we claim that

Ak / a(x)uydu — 0, ask — o (6.5)
7N

and

/ \Vuy, |*du — / \Vuoldu. (6.6)
ZN ZN

If for some 6 > 0, there holds

k—o0

lim Ay / a(x)u dp =6 >0,
7N
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we have

/ (IVuol* + ug) du < / (IVuol* + ug) du + 6
QUIQ

7N

< lim inf/ (IVwkl2 + (ra(x) + l)uﬁk) du
ZN

k—o0

. |0, (V)IP
= liminf — Pd
k—o0 /ZN Z |x — y|N-e o, |

yEX
yEZN

luo)I”
= / > | el
o\ 5= lx =yl

yeQ

Then there exists a € (0, 1) such that auy € Ng. On the other hand, if

lim inf / \Vu,, [*du > / \Vuol*du,
7N 7N

k—o0

we also have /

p
(IVuol2 + u(z)) du < / Z M |ug|’du. Then in both cases, we can find
QUAQ

o\ 57 - yN-@
yeQ

a € (0, 1) such that auy € Ng. Consequently, we have

-1
mq < Jo(auy) = p2— (/ |a/Vuo|2d,u + / Ia/uolzdu)
14 QUIQ Q

-1
=Ly ( / Vol + / |M0|2d/l>
D QUIQ Q

p—1 / 2 2
< [Vuol™ + luol”) du
5 ( )

-1
< liminf P
k—o0 2p

/ZN (IVua I + (ea(x) + D3, ) du
= likrn inf Jy (uy,) = mq,

which arrives at a contradiction.
To prove Theorem 1.5, we also need verify that i is a ground state solution of (1.4). The first step
is to prove that i is a critical point of Jg. Since ]jlk(udk)qb =0, for any ¢ € Hé(Q) c H'(ZM), we have

/ Vi, Vel + / (Aa(x) + D, pelyt = / SO e 6)
ZN zN zN

e |x —_ le—(Y
Since a(x) = 0in Q and ¢ = 0 in Q°, there holds
ok s
Vqu+/u d:/ k u P20 ddu. 6.8
/QUz?Q & dau Q /lk¢ H o) ; |x_y|N—(y I /lkl /lk¢ M (6.8)

yEZN
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Let k — oo, the above equality becomes

p
/ VuoVodu + / uopdu = / lim ZM ol uopdp. (6.9)
QUIQ Q

o k= |x — y[V-@

YEX
yezN

Since u,, — up in £” (Z") with p > 2 and Lemma 3.4, we obtain

/ ViV + / uogdyt = / S O ol o, (6.10)
QUOQ Q Q

— y|N=
= Ix -yl
yeQ

which yields uy € Ng, and uy is a solution of (1.4).
Finally, we prove that i, achieves the infimum of Jq in Ng.

| : : I s IV
T =3 /Z (Pl + a0+ DG ) da= 5 | DS s | ol
yEZN
1 1 leto ()P
== V2+2d——/ _ Pdu + o (1
2/ZN (IVuol” + ug) d 25 ) le_yw_a luol”dpt + 0x(1) 6.11)

YEX
yeZN

1 / 2 2 1 oI
= - |Vu|d,u+/ud,u—— ———— | |upPdu + ox(1)
awo Q" 2p Ja ; oo —yV-e | ¢

= Ja(up) + o(1).

Since Jy, (1) = m,,, we get Jo(up) = mq by Lemma 6.4. Hence the function u is a ground state
solution of (1.4).

Finally, we have the following lemma for the convergence of the sequence {u,, }.

Corollary 6.5. Furthermore, we have ]}im |22, — uol| Ey@V) = 0.

Proof. Indeed, since u,, € N,, and up|oc = 0, we have
s, = ol ) = / (W, — ) + Ca) + Dy, )
Z
= ”uﬂk”;k(zN) + ”uO”é/zk(ZN) -2 /ZN Vuakvuodﬂ - 2/Z M/lkuodﬂ

N
2 2
= ”u/lk”Egk(ZN) + ”uO”Hé(Q) - 2/
QUIQ

2 2 2
= ||u/1k||E4k(ZN) + ”uO”Hé(Q) - 2””0”]_1(1)(9) + Ok(l)

Vu,, Vupdu — 2/ Uy, uodpl

Q

2 2
= ”u/lk”E,{k(ZN) - ||u0||H(1)(Q) + o (1)

O o
- [ | [ (300 ldas o),
7N - Q —

y#EX y#EX
yezN yeQ
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which finishes the proof.
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