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Abstract: In this paper, we study the nonlinear Choquard equation

−∆u + V(x)u =

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|p−2u

on lattice graph ZN . Under some suitable assumptions, we prove the existence of a ground state solution
of the equation on the graph when the function V is periodic or confining. Moreover, when the potential
function V(x) = λa(x) + 1 is confining, we obtain the asymptotic properties of the solution uλ which
converges to a solution of a corresponding Dirichlet problem as λ→ ∞.
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1. Introduction

In the present paper, we proved the existence of a ground state solution of the following nonlinear
Choquard equation 

−∆u + V(x)u =

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|p−2u x ∈ ZN ,

u ∈ H1(ZN),

(1.1)

on lattice graph ZN . This equation can be viewed as a discrete version of the following Choquard
equation

− ∆u + V(x)u = (Iα ∗ |u|p)|u|p−2u x ∈ RN , (1.2)
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where α ∈ (0,N), p > 1 and Iα : RN → R is the Riesz potential defined at x ∈ RN \ {0} by

Iα(x) =
Aα
|x|N−α

and Aα =
Γ
(

N−α
2

)
Γ
(
α
2

)
πN/22α

,

with Γ being the Euler gamma function.
In the past few decades, many mathematicians have been devoted to studying the Eq (1.2), for

example, see [1–6]. In particular, if N = 3, V = 1 and p = 2, i.e., −∆u + u = (I2 ∗ |u|2)u, appeared in
the literature at least as early as in 1954’s work by Pekar on quantum theory of a Polaron at rest [7].
Later in the 1970s, Choquard utilized model (1.2) to describe an electron caught in its own hole, in an
approximation to Hartree-Fock theory of one-component plasma [1]. Particularly, the equation is also
knows as the Schrödinger-Newton equation, which was used to a model of self-gravitating matter [8].
Also, the article [9] used this system to study the pseudo-relativistic boson stars. In a pioneering work,
Lieb [1] proved the existence and uniqueness of the ground state to the Eq (1.2) in R3 with V = 1, α = 2
and p = 2. In the paper [3], Moroz and Van Schaftingen first obtained the sharp range of the parameter
for the existence of solutions of the Eq (1.2) with N+α

N < p < N+α
N−2 . If V is the periodic function, since

the nonlocal term is invariant under translation, the paper [10] got the existence results. Furthermore,
Alves [11] proved the existence and convergence of nontrivial solutions of the nonlocal Choquard
equation. There are tremendous results on this direction in [12–18] and the references therein.

On the other hand, the analysis on the graph has become more and more popular, for example,
see [19–27]. In a series of work of Grigor’yan et al. [19–21], they studied the Yamabe type equa-
tions, Kazdan-Warner equation and some other nonlinear equations on graph by using the variational
methods. In [27], Zhang and Zhao investigated the existence of nontrivial solution of the equation
−∆u + (λa(x) + 1)u = |u|p−1u on the locally finite graphs by using Nehari methods (see [28]) and
the asymptotic properties of the solution. Later, the paper [22] generalized the results of [27] to
higher order. Furthermore, Hua and Xu [24] obtained the existence results of nonlinear equation
−∆u + V(x)u = f on the lattice graph ZN . Recently, Huang et al. investigated extensively the Mean
field equation and the relativistic Abelian Chern-Simons equations on the finite graphs by using the
variational method in [23]. For other related results about the graph, we refer the reader to [29–34] and
references therein.

Inspired by the poineering works, in this paper we study the existence and asymptotical behavior of
solution for the Choquard equation (1.2) on the lattice graph ZN . For clarity, let us introduce the basic
setting on the lattice graph ZN . The graph ZN consists of the set of vertices

V = {x = (x1, · · · , xN) : xi ∈ Z, 1 ≤ i ≤ N} ,

and the set of edges

E =

{
{x, y} : x, y ∈ ZN ,

N∑
i=1

|xi − yi| = 1

}
.

For any two vertices x, y ∈ ZN , the distance d(x, y) between them is defined by

d(x, y) := in f {k : x = x1 ∼ x2 ∼ . . . ∼ xk = y},

where we write y ∼ x if and only if the edge {x, y} ∈ E. AssumeΩ ⊂ ZN , we say Ω is bounded if d(x, y)
is uniformly bounded for any x, y ∈ Ω. It is easy for us to see that a bounded domain of ZN can contain
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only finite vertices. We denote the boundary of Ω is

∂Ω := {y < Ω : ∃x ∈ Ω such that xy ∈ E} .

C(ZN) denotes the set of real-valued functions on ZN . For any u ∈ C(ZN), its support set is defined
as supp(u) = {x ∈ ZN , u(x) , 0}. Let Cc(ZN) denote the set of all functions of finite support. We can
define the associated gradient for any function u, v ∈ C(ZN) by

Γ(u, v)(x) :=
∑
y∼x

1
2

(u(y) − u(x))(v(y) − v(x)).

In particular, let Γ(u) = Γ(u, u) for simplicity. The length of the gradient of u is written by

|∇u|(x) :=
√
Γ(u)(x) =

(∑
y∼x

1
2

(u(y) − u(x))2

)1/2

.

Let µ be the counting measure on ZN , i.e., for any subset A ⊂ ZN , µ(A) := #{x : x ∈ A}. For any
function f on ZN , we write ∫

ZN
f dµ :=

∑
x∈ZN

f (x),

whenever it makes sense. ℓp is a space endowed with the norm

∥u∥ℓp(ZN ) :=


(∑

x∈ZN

|u(x)|p
) 1

p

1 ≤ p < ∞.

sup
x∈ZN
|u(x)| p = ∞.

Assume u ∈ C(ZN), the Laplacican on ZN is defined as

∆u =
∑
y∼x

(u(y) − u(x)) .

The inner product of the Hilbert space H1(ZN) is given by

⟨u, v⟩ :=
∫
ZN

(Γ(u, v) + uv)dµ =
∫
ZN

(∇u∇v + uv)dµ.

Therefore, the corresponding norm reads

∥u∥H1(ZN ) =

(∫
ZN

(
|∇u|2 + u2

)
dµ
) 1

2

.

For a bounded uniformly positive function V : ZN → R, it is natural for us to consider the equivalent
norm in H1(ZN) as

∥u∥2 :=
∫
ZN

(
|∇u|2 + V(x)u2

)
dµ.

Then we have the conclusions for the Eq (1.1).

Electronic Research Archive Volume 31, Issue 2, 812–839.



815

Theorem 1.1. Let N ∈ N∗, α ∈ (0,N) and p ∈ ( N+α
N ,∞). Suppose that V(x) : ZN → R satisfies the

conditions:

(i) V is bounded uniformly positive, i.e. there exist constant C1,C2 > 0 satisfying C1 < V(x) < C2

for any x ∈ ZN .

(ii) V is T-periodic, i.e. for the positive integer T , we have V(x + Tei) = V(x), ∀x ∈ ZN , 1 ≤ i ≤ N,
where ei is the unit vector in the i-th coordinate.

Then there exists a ground state solution of (1.1).

Remark 1.2. The preceding theorem is a discrete version of the results in [3]. As in the paper [24],
we use the Concentration-Compactness Principle (P. L. Lions [35,36]) to recover the compactness and
prove the existence of ground state solution of (1.1). Interestingly, since the discreteness of the graph,
the Sobolev embedding on the lattice graph is different from that in the continuous setting, which allows
us to remove the upper critical exponents N+α

N−α in the continuous case.

Next we turn to studying the convergence of the solution for the nonlinear Choquard equation. The
results of Schrödinger type equation is already considered in the Euclidean space (see [11, 37]). We
may expect that the nonlocal Choquard equation on lattice graphs has some similar results. As the
paper [22, 27], we also consider the confining potential V = λa(x) + 1, i.e.,

− ∆u + (λa(x) + 1)u =

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|p−2u. (1.3)

To study the problem (1.3), we introduce the following subspace of H1(ZN):

Eλ(ZN) =
{

u ∈ H1(ZN) :
∫
ZN
λa(x)u2dµ < +∞

}
.

It is easy to recognize that the scalar product of Eλ(ZN) is

⟨u, v⟩Eλ(ZN ) :=
∫
ZN

(Γ(u, v) + (λa(x) + 1)uv)dµ =
∫
ZN

(∇u∇v + (λa(x) + 1)uv)dµ.

Then we have the following conclusions.

Theorem 1.3. Let N ∈ N∗, α ∈ (0,N) and p ∈ [ N+α
N ,∞). Suppose that a(x) : ZN → R satisfying

(A1) a(x) ≥ 0 and the potential well Ω = {x ∈ ZN : a(x) = 0} is a non-empty, connected and bounded
domain in ZN .

(A2) There exists a point x0 satisfying a(x)→ ∞ when d(x, x0)→ ∞.

Then (1.3) has a ground state solution uλ for any constant λ > 1.

In order to observe the asymptotical properties of uλ as λ→ ∞, we first study the following Dirichlet
problem. 

−∆u + u =

∑
y,x
y∈Ω

|u(y)|p

|x − y|N−α

 |u|p−2u in Ω.

u = 0 on ∂Ω.

(1.4)
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We study the Eq (1.4) in the H1
0(Ω) with the norm:

∥u∥2H1
0 (Ω) :=

∫
Ω∪∂Ω

|∇u|2dµ +
∫
Ω

u2dµ.

Similarly, the Eq (1.4) also possess a ground state solution.

Theorem 1.4. Let N ∈ N∗, α ∈ (0,N) and p ∈ (1,∞). Suppose Ω is a non-empty, connected and
bounded domain in ZN . Then the Eq (1.4) has a ground state solution u ∈ H1

0(Ω).

Finally, we show that the solutions uλ of (1.3) converge to a solution of (1.4) as λ → ∞ when
the domain in (1.4) is the set of satisfying a(x) = 0. On the other words, we obtain the following
conclusions.

Theorem 1.5. Let N ∈ N∗, α ∈ (0,N) and p ∈ [2,∞). Assume that a(x) satisfies (A1) and (A2), then
for any sequence λk → ∞, up to a subsequence, the corresponding ground state solutions uλk of (1.3)
converge in H1(ZN) to a ground state solution of (1.4).

The remaining parts of this paper are organized as follows. In Section 2, we give basic definitions
and Lemmas on the lattice graph. In Section 3, we establish the discrete Brézis-Lieb Lemma for the
nonlocal term and some important conclusions. Section 4 is devoted to proving Theorem 1.1. Then we
complete the proof of Theorems 1.3 and 1.4 in Section 5. Finally, we prove Theorem 1.5 in Section 6.

2. Preliminary results

In this section we give some basic results on the lattice graph. Firstly, we present the formula of
integration by parts on lattice graph, which is the basic conclusion when we apply variational methods.
Here we omit the concrete proofs and one can refer to [22] for more details.

Lemma 2.1. Suppose that u ∈ H1(ZN). Then for any v ∈ Cc(ZN), we obtain∫
ZN
∇u · ∇vdµ =

∫
ZN
Γ(u, v)dµ = −

∫
ZN
∆u · vdµ. (2.1)

Lemma 2.2. Suppose Ω ⊂ ZN is a bounded domain and u ∈ H1
0(Ω). Then for any v ∈ Cc(Ω), we have∫

Ω∪∂Ω

∇u · ∇vdµ =
∫
Ω∪∂Ω

Γ(u, v)dµ = −
∫
Ω

∆u · vdµ. (2.2)

Now we are ready to define the weak solution as follows.

Definition 1. Assume u ∈ H1(ZN). A function u is called a weak solution of (1.1) if for any φ ∈ H1(ZN),

∫
ZN
∇u∇φdµ +

∫
ZN

V(x)uφdµ =
∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|p−2uφdµ. (2.3)

Definition 2. Assume u ∈ Eλ(ZN). A function u is called a weak solution of (1.3) if for any φ ∈ Eλ(ZN),

∫
ZN
∇u∇φdµ +

∫
ZN

(λa(x) + 1)uφdµ =
∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|p−2uφdµ. (2.4)
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Definition 3. Assume u ∈ H1
0(Ω). A function u is called a weak solution of (1.4) if for any φ ∈ H1

0(Ω),

∫
Ω∪∂Ω

∇u∇φdµ +
∫
Ω

uφdµ =
∫
Ω

∑
y,x
y∈Ω

|u(y)|p

|x − y|N−α

 |u|p−2uφdµ. (2.5)

Notice that if u is a weak solution of (1.1), we infer from Lemma 2.1 that for any test function
φ ∈ H1(ZN), ∫

ZN
(−∆uφdµ + V(x)uφ) dµ =

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|p−2uφdµ. (2.6)

For any fixed x0 ∈ Z
N , choosing a test function φ : ZN → R in (2.6) which is defined as

φ (x)=
{

1, x = x0,

0, x , x0,

we obtain

−∆u(x0) + V(x0)u(x0) =

∑
y,x0
y∈ZN

|u(y)|p

|x0 − y|N−α

 |u(x0)|p−2u(x0),

which implies that u is a point wise solution of (1.1). Thus, we have the following conclusion for the
relationship between the weak solution and the point wise solution.

Proposition 2.3. If u is a weak solution of (1.1), then u is a point wise solution. Similarly, if u is a
weak solution of (1.3) or (1.4), then u is also a point wise solution of the corresponding equation.

Finally, we state the following conclusions for the Sobolev embedding.

Lemma 2.4. ( [38]) H1(ZN) is continuously embedded into ℓq(ZN) for any q ∈ [2,∞]. Namely, for any
u ∈ H1(ZN), there exists a constant Cq depending only on q such that

∥u∥ℓq(ZN ) ≤ Cq∥u∥H1(ZN ). (2.7)

Lemma 2.5. ( [27, Lemma 2.6]) Assume that λ > 1 and a(x) satisfies (A1) and (A2). Then Eλ(ZN)
is continuously embedded into ℓq(ZN) for any q ∈ [2,∞] and the embedding is independent of λ.
Namely, there exists a constant Cq depending only on q such that for any u ∈ Eλ(ZN), ∥u∥ℓq(ZN ) ≤

Cq∥u∥Eλ(ZN ). Moreover, for any bounded sequence {uk} ∈ Eλ(ZN), there exists u ∈ Eλ(ZN) such that, up
to a subsequence, 

uk ⇀ u in Eλ(ZN).
uk(x)→ u(x) ∀x ∈ ZN .

uk → u in ℓq(ZN).

Lemma 2.6. ( [27, Lemma 2.7]) Assume that Ω is a bounded domain in ZN . Then H1
0(Ω) is continu-

ously embedded into ℓq(Ω) for any q ∈ [1,∞]. Namely, there exists a constant Cq depending only on q

Electronic Research Archive Volume 31, Issue 2, 812–839.
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such that for any u ∈ H1
0(Ω), ∥u∥ℓq(Ω) ≤ Cq∥u∥H1

0 (Ω). Moreover, for any bounded sequence {uk} ∈ H1
0(Ω),

there exists u ∈ H1
0(Ω) such that, up to a subsequence,

uk ⇀ u in H1
0(Ω).

uk(x)→ u(x) ∀x ∈ Ω.

uk → u in ℓq(Ω).

3. Discrete Brézis-Lieb Lemma

In this section, we give a proof of the discrete Brézis-Lieb Lemma(see [3,39,40] for the continuous
case) for the nonlocal term on the lattice graph. First, let us recall the discrete Brézis-Lieb Lemma [38]
for the local case.

Lemma 3.1. ( [38, Lemma 9]) Let Ω ⊂ ZN be a domain and {un} ⊂ ℓ
q(Ω) with 0 < q < ∞. If {un} is

bounded in ℓq(Ω) and un → u pointwise on Ω as n→ ∞, then

lim
n→∞

(
∥un∥

q
ℓq(Ω) − ∥un − u∥qℓq(Ω)

)
= ∥u∥qℓq(Ω). (3.1)

From Lemma 3.1 and [38, Corollary 10], it is not hard for us to get the following corollary.

Corollary 3.2. Assume V is a uniformly bounded positive function. If {un} is bounded in H1(ZN) and
un → u pointwise on ZN , then

lim
n→∞

(∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ −

∫
ZN

(
|∇(un − u)|2 + V(x)(un − u)2

)
dµ
)

=

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ.

(3.2)

Next, we prove a variant of the discrete Brézis-Lieb Lemma.

Lemma 3.3. LetΩ ⊂ ZN be a domain, 1 ≤ q < ∞. If the sequence {un} is bounded in ℓr(Ω) and un → u
pointwise on Ω as n→ ∞, then for every q ∈ [1, r],

lim
n→∞

∫
Ω

∣∣|un|
q − |un − u|q − |u|q

∣∣ r
q dµ = 0. (3.3)

Proof. Applying the Fatou’s Lemma, we obtain

∥u∥ℓr(Ω) ≤ lim
n→∞
∥un∥ℓr(Ω) < ∞. (3.4)

Fix ε > 0 and for all a, b ∈ R, there exists Cε satisfying∣∣|a + b|q − |a|q
∣∣ ≤ ε|a|q +Cε|b|q.

Hence we obtain

f εn :=
(∣∣|un|

q − |un − u|q − |u|q
∣∣ − ε|un − u|q

)+
≤
(∣∣|un|

q − |un − u|q
∣∣ + |u|q − ε|un − u|q

)+
≤ (ε|un − u|q +Cε|u|q + |u|q − ε|un − u|q)+

= (1 +Cε) |u|q.
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Thus
( fn
ε)

r
q ≤ (1 +Cε)

r
q |u|r. (3.5)

It follows from the Dominated Convergence Theorem that

lim
n→∞

∫
Ω

( fn
ε)

r
q dµ =

∫
Ω

lim
n→∞

( fn
ε)

r
q dµ = 0. (3.6)

From the definition of f εn , we obtain∣∣|un|
q − |un − u|q − |u|q

∣∣ ≤ f εn + ε|un − u|q.

Moreover, one deduces from the basic inequality (a + b)p ≤ Cp(ap + bp)(∀a, b, p > 0) that∣∣|un|
q − |un − u|q − |u|q

∣∣ r
q ≤

(
f εn + ε|un − u|q

) r
q ≤ Cq,r

(
( f εn )

r
q + ε

r
q |un − u|r

)
. (3.7)

Therefore, from (3.6) and (3.7), we get

lim
n→∞

∫
Ω

∣∣|un|
q − |un − u|q − |u|q

∣∣ r
q dµ

≤ lim
n→∞

Cq,r

(∫
Ω

( fn
ε)

r
q dµ +

∫
ZN
ε

r
q |un − u|rdµ

)
≤ Cq,rε

r
q sup

n∈N
∥un − u∥rℓr(Ω).

Then let ε→ 0,

lim
n→∞

∫
Ω

∣∣|un|
q − |un − u|q − |u|q

∣∣ r
q dµ = 0.

This finishes the proof.

Next, we state the discrete Brézis-Lieb type Lemma.

Lemma 3.4. Suppose Ω ⊂ ZN and 1 ≤ p < ∞. If the sequence {un} is bounded in ℓp(Ω) and un → u
pointwise on Ω as n→ ∞, then for every x ∈ ZN , we have

lim
n→∞

∑
y,x
y∈Ω

|un(y)|p

|x − y|N−α
−
∑

y,x
y∈Ω

|un(y) − u(y)|p

|x − y|N−α

 =∑
y,x
y∈Ω

|u(y)|p

|x − y|N−α
. (3.8)

Proof. Since x , y and x, y ∈ ZN , we obtain |x − y| ≥ 1 and it follows that∑
y,x
y∈Ω

∣∣|un(y)|p − |un(y) − u(y)|p − |u(y)|p
∣∣

|x − y|N−α
≤
∑
y∈Ω

∣∣|un(y)|p − |un(y) − u(y)|p − |u(y)|p
∣∣.

Thus the proof is complete as n→ ∞ from Lemma 3.3.

Now we are in position to establish the discrete Brézis-Lieb Lemma for the nonlocal term of the
functional. To this purpose we first present an important inequality on the lattice graph which is studied
by many authors in the continuous setting.

Electronic Research Archive Volume 31, Issue 2, 812–839.



820

Lemma 3.5. ( [41]) (Discrete Hardy-Littlewood-Sobolev Inequality) Let 0 < α < N, 1 < r, s < ∞
and 1

r +
1
s +

N−α
N ≥ 2. Assume f ∈ ℓr(ZN) and g ∈ ℓs(ZN). Then there exists a positive constant Cr,s,α

depending only on r, s, α such that

∑
x,y∈ZN
y,x

f (x)g(y)
|x − y|N−α

≤ Cr,s,α∥ f ∥ℓr(ZN )∥g∥ℓs(ZN ). (3.9)

The paper [38] also give the following equivalent form of (3.9).

Lemma 3.6. Let 0 < α < N, 1 < r, t < ∞ and 1
t +

α
N ≤

1
r . Assume f ∈ ℓr(ZN), then there exists a

positive constant Cr,t,α depending only on r, t, α such that∥∥∥∥∥∥∥
∑
y∈ZN
y,x

f (y)
|x − y|N−α

∥∥∥∥∥∥∥
ℓt(ZN )

≤ Cr,t,α∥ f ∥ℓr(ZN ). (3.10)

The next lemma states the discrete Brézis-Lieb Lemma for the nonlocal term.

Lemma 3.7. Let 1 ≤ p < ∞ and the sequence {un} is bounded in ℓ
2N p
N+α (ZN). Suppose un → u pointwise

on ZN as n→ ∞, then

lim
n→∞

∫
ZN

∑
y,x

y∈ZN

|un(y)|p

|x − y|N−α

 |un|
pdµ −

∫
ZN

∑
y,x

y∈ZN

|un(y) − u(y)|p

|x − y|N−α

 |un − u|pdµ


=

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ.

(3.11)

Proof. For every n, we can divide the left-hand side of (3.11) into two parts,

∫
ZN

∑
y,x

y∈ZN

|un(y)|p

|x − y|N−α

 |un|
pdµ −

∫
ZN

∑
y,x

y∈ZN

|un(y) − u(y)|p

|x − y|N−α

 |un − u|pdµ

=

∫
ZN

∑
y,x

y∈ZN

|un(y)|p − |un(y) − u(y)|p

|x − y|N−α

 (|un|
p
− |un − u|p)dµ

+ 2
∫
ZN

∑
y,x

y∈ZN

|un(y)|p − |un(y) − u(y)|p

|x − y|N−α

|un − u|pdµ

=:J1 + 2J2,

(3.12)
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where

J1 =

∫
ZN

∑
y,x

y∈ZN

|un(y)|p − |un(y) − u(y)|p

|x − y|N−α

 (|un|
p − |un − u|p)dµ,

J2 =

∫
ZN

∑
y,x

y∈ZN

|un(y)|p − |un(y) − u(y)|p

|x − y|N−α

 |un − u|pdµ.

By Lemma 3.3, taking q = p, r = 2N p
N+α , one has

lim
n→∞

∫
ZN

∣∣|un|
p − |un − u|p − |u|p

∣∣ 2N
N+αdµ = 0. (3.13)

We first give the estimate for the term J1. From the Hardy-Littlewood-Sobolev inequality (Eq 3.9),
one deduces that

∣∣∣∣∣∣∣J1 −

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ

∣∣∣∣∣∣∣
≤

∫
ZN

∑
y,x

y∈ZN

∣∣|un(y)|p − |un(y) − u(y)|p − |u(y)|p
∣∣

|x − y|N−α

∣∣|un|
p − |un − u|p − |u|p

∣∣dµ
+ 2
∫
ZN

∑
y,x

y∈ZN

∣∣|un(y)|p − |un(y) − u(y)|p − |u(y)|p
∣∣

|x − y|N−α

|u|pdµ

≤
∥∥|un|

p − |un − u|p − |u|p
∥∥2

ℓ
2N

N+α (ZN )
+ 2
∥∥|un|

p − |un − u|p − |u|p
∥∥
ℓ

2N
N+α (ZN )

∥∥|u|p∥∥
ℓ

2N
N+α (ZN )

.

From (3.13) and ∥u∥
ℓ

2N p
N+α (ZN )

≤ lim inf
n→∞

∥un∥
ℓ

2N p
N+α (ZN )

< ∞, it gives that

lim
n→∞

J1 =

∫
ZN

∑
y,x

y∈ZN

|u (y)|p

|x − y|N−α

 |u|pdµ. (3.14)

Now we give the estimate for J2. From the Banach-Alaoglu theorem, |un − u|p ⇀ 0 weakly in
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ℓ
2N

N+α (ZN) as n→ ∞ and (3.9), we deduce that

J2 =

∫
ZN

∑
y,x

y∈ZN

|un(y)|p − |un(y) − u(y)|p − |u(y)|p

|x − y|N−α

|un − u|pdµ

+

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

|un − u|pdµ

≤
∥∥|un|

p − |un − u|p − |u|p
∥∥
ℓ

2N
N+α (ZN )

∥∥|un − u|p
∥∥
ℓ

2N
N+α (ZN )

+

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

|un − u|pdµ.

We infer from (3.10) that ∥∥∥∥∥∥∥
∑

y,x
y∈ZN

|u(y)|p

|x − y|N−α

∥∥∥∥∥∥∥
ℓ

2N
N−α (ZN )

≤ CN,p,α∥u∥
p

ℓ
2N p
N+α (ZN )

.

Moreover, |un − u|p ⇀ 0 in ℓ
2N

N+α (ZN). Hence we know that

lim
n→∞

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

|un − u|pdµ = 0.

Then one deduces from (3.13) that lim
n→∞

J2 = 0. This together with (3.14), we get the results.

4. Proof of the Theorem 1.1

In the present section we are devoted to the proof of Theorem 1.1. Obviously, for any function
u : ZN → R, the energy functional related to (1.1) is given by

J(u) =
1
2

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ −

1
2p

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ. (4.1)

Notice that the functional J is well defined in H1(ZN). Indeed, assume that u ∈ ℓ
2NP
N+α (ZN), then by

applying the Hardy-littlewood-Sobolev inequality (Eq 3.9) to the function f = |u|p ∈ ℓ
2N

N+α (ZN), we
obtain ∫

ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ ≤ CN,p,α

(∫
ZN
|u|

2N p
N+αdµ

) N+α
N

. (4.2)
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It sufficient for us to confirm when the condition u ∈ ℓ
2NP
N+α (ZN) is satisfied. According to the Lemma

2.4, H1(ZN) is continuously embedded into ℓ
2N p
N+α (ZN) if and only if p ≥ N+α

N . Moreover, we infer from
the inequality (Eq 3.9) that

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ ≤ CN,p,α∥u∥
2p
H1(ZN ), (4.3)

where the constant CN,p,α depends only on N, α and p. Based on the previous argument, the function J
is meaningful.

Next, we define the Nehari manifold related to (4.1) by

N : =
{

u ∈ H1(ZN) \ {0} : J′(u)u = 0
}

=

u ∈ H1(ZN) \ {0} :
∫
ZN

(
|∇u|2 + V(x)u2

)
dµ =

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ

 .
Let

m = inf
u∈N

J (u) .

If there exists a function u ∈ N satisfying J(u) = m, then the function u is called a ground state
solution. Obviously, u is a critical point of J.

Next, we shall find the critical point of the functional (4.1).

Proposition 4.1. Let N ∈ N∗, α ∈ (0,N) and p ∈ (1,∞). If u ∈ H1(ZN) ∩ ℓ
2N p
N+α (ZN) \ {0} and V is a

uniformly bounded positive function, there holds

max
t>0

J(tu) =
(

1
2
−

1
2p

)
S (u)

p
p−1 ,

where

S (u) =

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ∫

ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ


1
p
.

Proof. For any t > 0, we set

s(t) := J(tu) =
t2

2

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ −

t2p

2p

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ.

By a direct computation,

s′(t) = t
∫
ZN

(
|∇u|2 + V(x)u2

)
dµ − t2p−1

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ.
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When s′(t) = 0, we can obtain a unique tu such that s′(tu) = 0. Moreover, one has

tu =



∫
ZN

(
|∇u|2 + V(x)u2

)
dµ

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ



1
2p−2

.

Since as 0 < t < tu, s′(t) > 0 and as t > tu, s′(t) < 0, thus

max
t>0

J(tu) = J(tuu) =
(

1
2
−

1
2p

)


∫
ZN

(
|∇u|2 + V(x)u2

)
dµ∫

ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ


1
p



p
p−1

.

This finishes the proof.

Note that the ground state energy of J can be characterized as

m = inf
u∈N

J(u) = inf
u∈H1(ZN )\{0}

max
t>0

J(tu) = inf
u∈H1(ZN )\{0}

(
1
2
−

1
2p

)S (u)
p

p−1 .

In the next conclusion we show the infirmum of S (u) can be achieved by some nontrivial function.

Proposition 4.2. Let N ∈ N∗, α ∈ (0,N) and p ∈
(

N+α
N ,∞

)
. Suppose that V is a uniformly bounded

positive function, then there exists u ∈ H1(ZN) satisfying

S (u) = inf{S (v) : v ∈ H1(ZN)\{0}}.

Combining with Propositions 4.1 and 4.2, we complete the proof of Theorem 1.1. Then we only
need to focus on the proof Proposition 4.2 in the next. In the Euclidean space, we are familiar with the
different kinds of the proof of Proposition 4.2. For example, a strategy consists in minimizing among
radial functions and then prove with the symmetrization by rearrangement that a radial minimizer is a
global minimizer. In our setting, the main difficulty for the analysis is that there is no proper counterpart
for radial functions on ZN and moreover we do not have the compactness in this problem. To overcome
the difficulty we borrow an idea of [42, Section 4](also see [24]) and use the constraint method to prove
Proposition 4.2.

Proof of Proposition 4.2. Set
m = inf{S (u) : u ∈ H1(ZN)\{0}},
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then we can get

1
m
= sup

{
1

S (u)
: u ∈ H1(ZN) and

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ = 1

}
.

Let {un} be a minimizing sequence in H1(ZN) such that∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ = 1,

and lim
n→∞

1
S (un)

=
1
m

. By the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we obtain

CN,p,α

∫
ZN

∑
y,x

y∈ZN

|un(y)|p

|x − y|N−α

 |un|
pdµ


1
p

≤∥un∥
ℓ

2N p
N+α (ZN )

≤∥un∥
N+α
N p

ℓ2(ZN )∥un∥
1− N+α

N p

ℓ∞(ZN )

≤∥un∥
N+α
N p

H1(ZN )∥un∥
1− N+α

N p

ℓ∞(ZN ).

(4.4)

Taking the limit from both sides, one can see

CN,p,α(
1
m

)
1
p ≤ lim

n→∞
∥un∥

1− N+α
N p

ℓ∞(ZN ). (4.5)

Since p > N+α
N , we obtain

lim
n→∞
∥un∥ℓ∞(ZN ) ≥ C > 0. (4.6)

Hence, there exists a subsequence {un} and a sequence {yn} ⊂ Z
N such that |un(yn)| ≥ C for each n.

By translations, we define ũn =: un(y + knT ) with kn = (k1
n, · · · k

N
n ) to ensure that (yn − knT ) ⊂ Ω where

Ω = [0,T )N ∩ ZN is a bounded domain in ZN . Then for each ũn,

∥ũn∥ℓ∞(Ω) ≥ |un(yn)| ≥ C > 0.

Moreover, by translation invariance, we infer from V(x) is T-periodic in x that

1 =
∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ =

∫
ZN

(
|∇ũn|

2 + V(x)ũ2
n

)
dµ

and
S (un) = S (ũn).

Without loss of generality, we can get a minimizing sequence {un} satisfying ∥un∥ℓ∞(Ω) ≥ C > 0.
Since Ω is bounded, there exists at least one point, say x0, such that un(x0)→ u(x0) ≥ C > 0. Since the

Electronic Research Archive Volume 31, Issue 2, 812–839.



826

sequence {un} is bounded in H1(ZN), it follows that un ⇀ u in H1(ZN) and un → u , 0 pointwise on
ZN . Then it follows from Corollary 3.2 and Lemma 3.7 that

1
m
= lim

n→∞

∫
ZN

∑
y,x

y∈ZN

|un(y)|p

|x−y|N−α

 |un|
pdµ

 1
p

∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ

= lim
n→∞

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x−y|N−α

 |u|pdµ +
∫
ZN

∑
y,x

y∈ZN

|un(y)−u(y)|p

|x−y|N−α

 |un − u|pdµ

 1
p

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ +

∫
ZN

(
|∇(un − u)|2 + V(x)(un − u)2

)
dµ

≤ lim
n→∞

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x−y|N−α

 |u|pdµ

 1
p

+

∫
ZN

∑
y,x

y∈ZN

|un(y)−u(y)|p

|x−y|N−α

 |un − u|pdµ


1
p

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ +

∫
ZN

(
|∇(un − u)|2 + V(x)(un − u)2

)
dµ

.

(4.7)

For every n, we have∫
ZN

∑
y,x

y∈ZN

|un(y) − u(y)|p

|x − y|N−α

 |un − u|pdµ


1
p

≤
1
m

∫
ZN

(
|∇(un − u)|2 + V(x)(un − u)2

)
dµ.

Since u , 0, one has∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ


1
p

≥
1
m

∫
ZN

(
|∇(u)|2 + V(x)(u)2

)
dµ,

which yields ∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ.


1
p

=
1
m

∫
ZN

(
|∇(u)|2 + V(x)(u)2

)
dµ.

By (4.7), one has

lim
n→∞

∫
ZN

∑
y,x

y∈ZN

|un(y) − u(y)|p

|x − y|N−α

 |un − u|pdµ


1
p

= lim
n→∞

1
m

∫
ZN

(
|∇(un − u)|2 + V(x)(un − u)2

)
dµ.

Electronic Research Archive Volume 31, Issue 2, 812–839.



827

By Fatou’s Lemma, one gets∫
ZN

(
|∇u|2 + V(x)u2

)
dµ ≤ lim inf

n→∞

∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ ≤ 1.

Then it is enough for us to prove that
∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ = 1. Using a contradiction argument,

suppose that

0 <
∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ = K < 1.

then by

lim
n→∞

∫
ZN

(
|∇(un − u)|2 + V(x)(un − u)2

)
dµ

= lim
n→∞

∫
ZN

(
|∇un|

2 + V(x)u2
n

)
dµ −

∫
ZN

(
|∇u|2 + V(x)u2

)
dµ

=1 − K > 0.

However, (a + b)p > ap + bp if a, b > 0. This yields a contradiction by (4.7).

5. Proof of Theorems 1.3 and 1.4

In this section we shall prove the existence result for (1.3) and (1.4) by using the standard variational
methods. Obviously, the functional associated with the problem (1.3) is given by

Jλ(u) =
1
2

∫
ZN

(
|∇u|2 + (λa(x) + 1)u2

)
dµ −

1
2p

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ,

where p ≥ N+α
N . The corresponding Nehari manifold is defined as

Nλ : =
{

u ∈ Eλ(ZN) \ {0} : J′λ(u)u = 0
}

=

u ∈ Eλ(ZN) \ {0} :
∫
ZN

(
|∇u|2 + (λa(x) + 1)u2

)
dµ =

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ

 .
We define the least energy level mλ by

mλ := inf
u∈Nλ

Jλ(u).

Then we first prove the Nehari manifold Nλ is nonempty.

Lemma 5.1. The Nehari manifold Nλ is non-empty.
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Proof. For t ∈ R and fix a function u ∈ Eλ(ZN)\{0} and, we define

γ(t) := J′(tu)tu = t2
∫
ZN

(
|∇u|2 + (λa(x) + 1)u2

)
dµ − t2p

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ.

Since p > 1 and u , 0, it is obvious that γ(t) > 0 for small t > 0 and that lim
t→∞
γ(t) = −∞. Then there

exists t0 ∈ (0,∞) such that γ(t0) = 0, which implies that t0u ∈ Nλ.

Next, we prove the least energy level mλ is positive.

Lemma 5.2. We have mλ = inf
u∈Nλ

Jλ(u) > 0.

Proof. Since u ∈ Nλ, then

∫
ZN

(
|∇u|2 + (λa(x) + 1)u2

)
dµ =

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ.

By Lemma 2.5 and (3.9), we obtain

∥u∥2Eλ(ZN ) =

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ ≤ C∥u∥2p

ℓ
2N p
N+α (ZN )

≤ C∥u∥2p
Eλ(ZN ),

where C is independent of λ. It follows from p > 1 that

∥u∥Eλ(ZN ) ≥

(
1
C

) 1
2(p−1)

> 0. (5.1)

This gives

mλ = inf
u∈Nλ

Jλ(u) =
(

1
2
−

1
2p

)
inf

u∈Nλ
∥u∥2Eλ(ZN ) ≥

(
1
2
−

1
2p

)(
1
C

) 1
2(p−1)

> 0.

The next lemma states that the least energy mλ can be achieved.

Lemma 5.3. The value mλ can be achieved by some uλ ∈ Nλ. Namely, there exists some uλ ∈ Nλ such
that Jλ(uλ) = mλ.

Proof. Take a minimizing sequence {uk} ⊂ Nλ such that lim
k→∞

Jλ(uk) = mλ. Since

ok(1) + mλ = Jλ(uk) =
p − 1
2p
∥uk∥

2
Eλ(ZN ),
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we have that {uk} is bounded in Eλ(ZN), where lim
k→∞

ok(1) = 0. By Lemma 2.5, we can assume that there

exists some uλ ∈ Eλ(ZN) such that 
uk ⇀ uλ in Eλ(ZN).
uk(x)→ uλ(x) ∀x ∈ ZN .

uk → uλ in ℓq(ZN).

From the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we infer that

∫
ZN

∑
y,x

y∈ZN

|uk(y) − uλ(y)|p

|x − y|N−α

 |uk − uλ|pdµ ≤ C∥uk − uλ∥
2p

ℓ
2N p
N+α (ZN )

.

Therefore, one has

lim
k→∞

∫
ZN

∑
y,x

y∈ZN

|uk(y) − uλ(y)|p

|x − y|N−α

 |uk − uλ|pdµ = 0.

Then from the Lemma 3.7, we get

lim
k→∞

∫
ZN

∑
y,x

y∈ZN

|uk(y)|p

|x − y|N−α

 |uk|
pdµ =

∫
ZN

∑
y,x

y∈ZN

|uλ(y)|p

|x − y|N−α

 |uλ|pdµ. (5.2)

Since the Eλ norm is weakly lower semi-continuous, one has

Jλ(uλ) =
1
2
∥uλ∥2Eλ(ZN ) −

1
2p

∫
ZN

∑
y,x

y∈ZN

|uλ(y)|p

|x − y|N−α

 |uλ|pdµ

≤ lim inf
k→∞

1
2
∥uk∥

2
Eλ(ZN ) −

1
2p

∫
ZN

∑
y,x

y∈ZN

|uk(y)|p

|x − y|N−α

 |uk|
pdµ


= lim inf

k→∞
Jλ(uk) = mλ.

(5.3)

Next it suffices to show that uλ ∈ Nλ. We infer from (5.1) that

0 < c ≤ ∥uk∥
2
Eλ(ZN ) =

∫
ZN

∑
y,x

y∈ZN

|uk(y)|p

|x − y|N−α

 |uk|
pdµ.

This together with (5.2) which implies that

0 < c ≤
∫
ZN

∑
y,x

y∈ZN

|uλ(y)|p

|x − y|N−α

 |uλ|pdµ. (5.4)
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Therefore uλ , 0. Since uk ∈ Nλ, we infer that

∥uλ∥2Eλ(ZN ) ≤ lim inf
k→∞

∥uk∥
2
Eλ(ZN ) = lim inf

k→∞

∫
ZN

∑
y,x

y∈ZN

|uk(y)|p

|x − y|N−α

 |uk|
pdµ

=

∫
ZN

∑
y,x

y∈ZN

|uλ(y)|p

|x − y|N−α

 |uλ|pdµ.

We use the contradiction argument to obtain our results. Assume that

∥uλ∥2Eλ(ZN ) <

∫
ZN

∑
y,x

y∈ZN

|uλ(y)|p

|x − y|N−α

 |uλ|pdµ.

Similar as the proof of Lemma 5.1, there would exist a t ∈ (0, 1) such that tuλ ∈ Nλ. This implies
that

0 < mλ ≤ Jλ(tuλ) = (
1
2
−

1
2p

)∥tuλ∥2Eλ(ZN )

≤ t2 lim inf
k→∞

(
1
2
−

1
2p

)∥uk∥
2
Eλ(ZN )

= t2 lim inf
k→∞

Jλ(uk)

= t2mλ < mλ.

This contradicts the fact that mλ = inf
u∈Nλ

Jλ(u). Therefore we have uλ ∈ Nλ. Moreover, we infer from

(5.3) that mλ is achieved by uλ.

The following Lemma finishes the proof of Theorem 1.3.

Lemma 5.4. uλ ∈ Nλ is a critical point for Jλ.

Proof. It is enough for us to prove that for any ϕ ∈ Eλ(ZN), there holds

J′λ(uλ)ϕ = 0.

Since uλ . 0, we can choose a constant ε > 0 such that uλ + sϕ . 0 for all s ∈ (−ε, ε). Furthermore,
for every given s ∈ (−ε, ε), we can find some t(s) ∈ (0,∞) satisfying t(s)(uλ + sϕ) ∈ Nλ. Indeed, t(s)
can be taken as

t(s) =


∥uλ + sϕ∥2Eλ(ZN )∫

ZN

∑
y,x

y∈ZN

|(uλ+sϕ)(y)|p
|x−y|N−α

 |uλ + sϕ|pdµ



1
2p−2

.
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Obviously, we can get t(0) = 1. Take a function γ(s) : (−ε, ε)→ R which is defined as

γ(s) := Jλ(t(s)(uλ + sϕ)).

For t(s)(uλ + sϕ) ∈ Nλ and Jλ(uλ) = inf
u∈Nλ

Jλ(u), γ(s) achieves its minimum at s = 0. Together with

uλ ∈ Nλ and J′λ(uλ)uλ = 0, it follows that

0 = γ′(0) = J′λ(t(0)uλ)[t′(0)uλ + t(0)ϕ]
= J′λ(uλ)t

′(0)uλ + J′λ(uλ)ϕ
= J′λ(uλ)ϕ.

Next we focus on the proof of Theorem 1.4. The functional associated with the Eq (1.4) is given by

JΩ(u) =
1
2

∫
Ω∪∂Ω

|∇u|2dµ +
∫
Ω

u2dµ −
1

2p

∫
Ω

∑
y,x
y∈Ω

|u(y)|p

|x − y|N−α

 |u|pdµ. (5.5)

We remark that ∥u∥ℓq(Ω) ≤ C∥u∥H1
0 (Ω) for q ∈ [1,∞] by Lemma 2.6. Therefore, the functional JΩ(u)

is well defined as p ≥
N + α

2N
. The corresponding Nehari manifold is defined as

NΩ =
{

u ∈ H1
0(Ω) \ {0} : J′λ(u)u = 0

}
=

u ∈ H1
0(Ω) \ {0} :

∫
Ω∪∂Ω

|∇u|2dµ +
∫
Ω

u2dµ =
∫
Ω

∑
y,x
y∈Ω

|u(y)|p

|x − y|N−α

 |u|pdµ

 . (5.6)

Let mΩ be
mΩ := inf

u∈NΩ
JΩ(u).

Since Ω contains only finite vertices, the proofs of the previous results can be easily applied to the
Eq (1.4). Moreover, p > 1 is enough for us to prove Theorem 1.4. Here we omit the details of the
proofs.

6. Convergence of the ground state solution

In the current section, we mainly focus on the asymptotical properties of the solution. That is, we
show that the ground state solutions uλ of (1.3) converge to a ground state solution of (1.4) as λ→ ∞.
To accomplish this we first prove that any solution of (1.3) is bounded away from zero.

Lemma 6.1. There exists a constant σ > 0 which is independent of λ, such that for any critical point
u ∈ Eλ(ZN) of Jλ, we have ∥u∥Eλ(ZN ) ≥ σ.

Proof. From Lemma 2.5 and the inequality (Eq 3.9), one has

0 = J′(u)u =
∫
ZN

(
|∇u|2 + (λa(x) + 1)u2

)
dµ −

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ

≥ ∥u∥2Eλ(ZN ) −C2p∥u∥2p
Eλ(ZN ),
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where C is independent of λ. Then we can choose σ = (
1
C

)
p

p−1 and Lemma 6.1 is proved.

The next lemma studies the property of (PS )c sequence of Jλ.

Lemma 6.2. For any (PS )c sequence {uk} of Jλ, there holds

lim
k→∞
∥uk∥

2
Eλ(ZN ) =

2p
p − 1

c. (6.1)

Furthermore, there would exist a constant C1 > 0 independent of λ, such that either c ≥ C1 or
c = 0.

Proof. Since Jλ(uk)→ c and J′λ(uk)→ 0 as k → ∞, we have

c = lim
k→∞

(
Jλ(uk) −

1
2p

J′λ(uk)uk

)
= lim

k→∞

(
1
2
−

1
2p

)
∥uk∥

2
Eλ(ZN ) =

p − 1
2p

lim
k→∞
∥uk∥

2
Eλ(ZN ),

which gives (6.1). By Lemma 2.5 and (3.9), for any u ∈ Eλ(ZN), we obtain

J′λ(u)u = ∥u∥2Eλ(ZN ) −

∫
ZN

∑
y,x

y∈ZN

|u(y)|p

|x − y|N−α

 |u|pdµ ≥ ∥u∥2Eλ(ZN ) −C2p∥u∥2p
Eλ(ZN ). (6.2)

Take ρ = (
1

2C2p )
1

2p−2 . If ∥u∥Eλ(ZN ) ≤ ρ, we get

J′λ(u)u ≥
1
2
∥u∥2Eλ(ZN ).

Take C1 =
p − 1
2p
ρ2 and suppose c < C1. Since {uk} is a (PS )c sequence, it yields

lim
k→∞
∥uk∥

2
Eλ(ZN ) =

2p
p − 1

c <
2p

p − 1
C1 = ρ

2.

Hence, for large k, we have

1
2
∥uk∥

2
Eλ(ZN ) ≤ J′λ(uk)uk = ok(1)∥uk∥Eλ(ZN ),

which implies that ∥uk∥Eλ(ZN ) → 0 as k → ∞. It follows immediately that Jλ(uk) → c = 0 and the

positive constant can be taken as C1 =
p − 1
2p
ρ2 = (

1
2C2p )

1
p−1 .

Remark 6.3. If we take c = mλ, then there would exist a (PS )c sequence uk such that uk ⇀ uλ when
proving the existence of a ground state solutions uλ. Since the Eλk norm of uλk is weakly lower semi-
continuous, then ∥uλ∥Eλ(ZN ) is bounded by 2p

p−1mλ.

Next, we study the relationship between the ground states mλ and mΩ.

Lemma 6.4. mλ → mΩ as λ→ ∞.
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Proof. Notice that mλ ≤ mΩ for every positive λ owing to NΩ ⊂ Nλ. Take a sequence λk → ∞

satisfying
lim
k→∞

mλk = M ≤ mΩ, (6.3)

where mλk is the ground state and uλk ∈ Nλk is the corresponding ground state solution of (1.3). Then
it follows M > 0 from Lemma 6.2. According to Remark 6.3, we know that the Eλk norm of uλk is
controlled by the constant 2p

p−1mΩ, which is independent of λk. Up to a subsequence, we can assume
that uλk(x) → u0(x) on ZN and for any q ∈ [2,+∞), uλk → u0 in ℓq(ZN). Moreover, we get that u0 . 0
from Lemma 6.1.

We first claim that u0|Ωc = 0. If it is not true, we can find a point x0 satisfying u0(x0) , 0. Since
uλk ∈ Nλk , then

Jλk(uλk) =
p − 1
2p
∥uλk∥

2
Eλk (ZN ) ≥

p − 1
2p
λk

∫
ZN

a(x)u2
λk

dµ ≥
p − 1
2p
λka(x0)u2

λk
(x0).

Since a(x0) > 0, uλk(x0)→ u0(x0) , 0 and λk → ∞, we get

lim
k→∞

Jλk(uλk) = ∞,

which contradicts with the conclusion mλk ≤ mΩ. Since the norm ∥ · ∥H1(ZN ) is weakly lower semi-
continuous and (5.2), we get∫

Ω∪∂Ω

|∇u0|
2dµ +

∫
Ω

u2
0dµ ≤

∫
ZN

(
|∇u0|

2 + u2
0

)
dµ

≤ lim inf
k→∞

∫
ZN

(
|∇uλk |

2 + u2
λk

)
dµ

≤ lim inf
k→∞

∫
ZN

(
|∇uλk |

2 + (λka(x) + 1)u2
λk

)
dµ

= lim inf
k→∞

∫
ZN

∑
y,x

y∈ZN

|uλk(y)|p

|x − y|N−α

 |uλk |
pdµ

=

∫
ZN

∑
y,x

y∈ZN

|u0(y)|p

|x − y|N−α

 |u0|
pdµ.

Noticing that u0|Ωc = 0, we get∫
Ω∪∂Ω

|∇u0|
2dµ +

∫
Ω

u2
0dµ ≤

∫
Ω

∑
y,x
y∈Ω

|u0(y)|p

|x − y|N−α

 |u0|
pdµ. (6.4)

Then there exists α ∈ (0, 1] such that αu0 ∈ NΩ, i.e.,∫
Ω∪∂Ω

|α∇u0|
2dµ +

∫
Ω

|αu0|
2dµ =

∫
Ω

∑
y,x
y∈Ω

|αu0(y)|p

|x − y|N−α

 |αu0|
pdµ.
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This implies that

JΩ(αu0) =
p − 1
2p

(∫
Ω∪∂Ω

|α∇u0|
2dµ +

∫
Ω

|αu0|
2dµ
)

≤
p − 1
2p

∫
ZN

(
|α∇u0|

2 + |αu0|
2
)

dµ

≤
p − 1
2p

∫
ZN

(
|∇u0|

2 + |u0|
2
)

dµ

≤ lim inf
k→∞

p − 1
2p

∫
ZN

(
|∇uλk |

2 + (λka(x) + 1)u2
λk

)
dµ

= lim inf
k→∞

Jλk(uλk) = M.

Consequently, M ≥ mΩ. Combining with (6.3), we get that

lim
λ→∞

mλ = mΩ.

Next, we are devoted to proving Theorem 1.5.

Proof of Theorem 1.5. We need to prove that for any sequence λk → ∞, the corresponding uλk ∈

Nλk satisfying Jλk(uλk) = mλk converges in H1(ZN) to a ground state solution uΩ of (1.4) along a
subsequence. According to Remark 6.3, the Eλk norm of uλk is uniformly bounded by the constant
2p
p−1mΩ, which is independent of λk. Consequently, we can assume that there would exist some u0

satisfying uλk(x) → u0(x) in ZNand for any q ∈ [2,+∞), uλk → u0 in ℓq(ZN). Moreover, we get that
u0 . 0 from Lemma 6.1. As what we have done in Lemma 6.4, we can prove that u0|Ωc = 0.

First, we claim that

λk

∫
ZN

a(x)u2
λk

dµ→ 0, as k → ∞ (6.5)

and ∫
ZN
|∇uλk |

2dµ→
∫
ZN
|∇u0|

2dµ. (6.6)

If for some δ > 0, there holds

lim
k→∞
λk

∫
ZN

a(x)u2
λk

dµ = δ > 0,
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we have ∫
Ω∪∂Ω

(
|∇u0|

2 + u2
0

)
dµ <

∫
ZN

(
|∇u0|

2 + u2
0

)
dµ + δ

≤ lim inf
k→∞

∫
ZN

(
|∇uλk |

2 + (λka(x) + 1)u2
λk

)
dµ

= lim inf
k→∞

∫
ZN

∑
y,x

y∈ZN

|uλk(y)|p

|x − y|N−α

 |uλk |
pdµ

=

∫
Ω

∑
y,x
y∈Ω

|u0(y)|p

|x − y|N−α

 |u0|
pdµ.

Then there exists α ∈ (0, 1) such that αu0 ∈ NΩ. On the other hand, if

lim inf
k→∞

∫
ZN
|∇uλk |

2dµ >
∫
ZN
|∇u0|

2dµ,

we also have
∫
Ω∪∂Ω

(
|∇u0|

2 + u2
0

)
dµ <

∫
Ω

∑
y,x
y∈Ω

|u0(y)|p

|x − y|N−α

 |u0|
pdµ. Then in both cases, we can find

α ∈ (0, 1) such that αu0 ∈ NΩ. Consequently, we have

mΩ ≤ JΩ(αu0) =
p − 1
2p

(∫
Ω∪∂Ω

|α∇u0|
2dµ +

∫
Ω

|αu0|
2dµ
)

=
p − 1
2p
α2
(∫
Ω∪∂Ω

|∇u0|
2dµ +

∫
Ω

|u0|
2dµ
)

<
p − 1
2p

∫
ZN

(
|∇u0|

2 + |u0|
2
)

dµ

≤ lim inf
k→∞

p − 1
2p

∫
ZN

(
|∇uλk |

2 + (λka(x) + 1)u2
λk

)
dµ

= lim inf
k→∞

Jλk(uλk) = mΩ,

which arrives at a contradiction.
To prove Theorem 1.5, we also need verify that u0 is a ground state solution of (1.4). The first step

is to prove that u0 is a critical point of JΩ. Since J′λk
(uλk)ϕ = 0, for any ϕ ∈ H1

0(Ω) ⊂ H1(ZN), we have

∫
ZN
∇uλk∇ϕdµ +

∫
ZN

(λka(x) + 1)uλkϕdµ =
∫
ZN

∑
y,x

y∈ZN

|uλk(y)|p

|x − y|N−α

 |uλk |
p−2uλkϕdµ. (6.7)

Since a(x) = 0 in Ω and ϕ = 0 in Ωc, there holds

∫
Ω∪∂Ω

∇uλk∇ϕdµ +
∫
Ω

uλkϕdµ =
∫
Ω

∑
y,x

y∈ZN

|uλk(y)|p

|x − y|N−α

 |uλk |
p−2uλkϕdµ. (6.8)
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Let k → ∞, the above equality becomes∫
Ω∪∂Ω

∇u0∇ϕdµ +
∫
Ω

u0ϕdµ =
∫
Ω

lim
k→∞

∑
y,x

y∈ZN

|uλk(y)|p

|x − y|N−α

 |u0|
p−2u0ϕdµ. (6.9)

Since uλk → u0 in ℓp(ZN) with p ≥ 2 and Lemma 3.4, we obtain

∫
Ω∪∂Ω

∇u0∇ϕdµ +
∫
Ω

u0ϕdµ =
∫
Ω

∑
y,x
y∈Ω

|u0(y)|p

|x − y|N−α

 |u0|
p−2u0ϕdµ, (6.10)

which yields u0 ∈ NΩ, and u0 is a solution of (1.4).
Finally, we prove that u0 achieves the infimum of JΩ in NΩ.

Jλk(uλk) =
1
2

∫
ZN

(
|∇uλk |

2 + (λka(x) + 1)u2
λk

)
dµ −

1
2p

∫
ZN

∑
y,x

y∈ZN

|uλk(y)|p

|x − y|N−α

 |uλk |
pdµ

=
1
2

∫
ZN

(
|∇u0|

2 + u2
0

)
dµ −

1
2p

∫
ZN

∑
y,x

y∈ZN

|u0(y)|p

|x − y|N−α

 |u0|
pdµ + ok(1)

=
1
2

∫
Ω∪∂Ω

|∇u0|
2dµ +

∫
Ω

u2
0dµ −

1
2p

∫
Ω

∑
y,x
y∈Ω

|u0(y)|p

|x − y|N−α

 |u0|
pdµ + ok(1)

= JΩ(u0) + ok(1).

(6.11)

Since Jλk(uλk) = mλk , we get JΩ(u0) = mΩ by Lemma 6.4. Hence the function u0 is a ground state
solution of (1.4).

Finally, we have the following lemma for the convergence of the sequence {uλk}.

Corollary 6.5. Furthermore, we have lim
k→∞
∥uλk − u0∥Eλk (ZN ) = 0.

Proof. Indeed, since uλk ∈ Nλk and u0|Ωc = 0, we have

∥uλk − u0∥
2
Eλk (ZN ) =

∫
ZN

(
|∇(uλk − u0)|2 + (λka(x) + 1)(uλk − u0)2

)
dµ

= ∥uλk∥
2
Eλk (ZN ) + ∥u0∥

2
Eλk (ZN ) − 2

∫
ZN
∇uλk∇u0dµ − 2

∫
ZN

uλku0dµ

= ∥uλk∥
2
Eλk (ZN ) + ∥u0∥

2
H1

0 (Ω) − 2
∫
Ω∪∂Ω

∇uλk∇u0dµ − 2
∫
Ω

uλku0dµ

= ∥uλk∥
2
Eλk (ZN ) + ∥u0∥

2
H1

0 (Ω) − 2∥u0∥
2
H1

0 (Ω) + ok(1)

= ∥uλk∥
2
Eλk (ZN ) − ∥u0∥

2
H1

0 (Ω) + ok(1)

=

∫
ZN

∑
y,x

y∈ZN

|uk(y)|p

|x − y|N−α

 |uk|
pdµ −

∫
Ω

∑
y,x
y∈Ω

|u0(y)|p

|x − y|N−α

 |u0|
pdµ + ok(1),
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which finishes the proof.
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