

ERA, 31(2): 770–775. DOI: 10.3934/era.2023038 Received: 13 October 2022 Revised: 09 November 2022 Accepted: 13 November 2022 Published: 23 November 2022

http://www.aimspress.com/journal/era

### Research article

# On $\sigma$ -subnormal subgroups and products of finite groups

# A. A. Heliel<sup>1</sup>, A. Ballester-Bolinches<sup>2,\*</sup>, M. M. Al-Shomrani<sup>1</sup> and R. A. Al-Obidy<sup>1</sup>

<sup>1</sup> Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

<sup>2</sup> Departament de Matemàtiques, Universitat de València, Valencia, Spain

\* Correspondence: Email: adolfo.ballester@uv.es.

**Abstract:** Suppose that  $\sigma = \{\sigma_i : i \in I\}$  is a partition of the set  $\mathbb{P}$  of all primes. A subgroup A of a finite group G is said to be  $\sigma$ -subnormal in G if A can be joined to G by a chain of subgroups  $A = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n = G$  such that either  $A_{i-1}$  normal in  $A_i$  or  $A_i/Core_{A_i}(A_{i-1})$  is a  $\sigma_j$ -group for some  $j \in I$ , for every  $1 \le i \le n$ . A  $\sigma$ -subnormality criterion related to products of subgroups of finite  $\sigma$ -soluble groups is proved in the paper. As a consequence, a characterisation of the  $\sigma$ -Fitting subgroup of a finite  $\sigma$ -soluble group naturally emerges.

Keywords: finite group;  $\sigma$ -soluble group;  $\sigma$ -subnormal subgroup; products of groups

## 1. Introduction

We consider only finite groups.

The starting point for this note is the following nice connection between the subnormality of a subgroup A of a group G and the number of elements of the product AB for any subgroup B of G showed by Levi in [1].

**Theorem 1.** Let A be a subgroup of a group G. Then the following are equivalent.

- 1. A is a subnormal subgroup of G.
- 2. |AB| divides |G| for every subgroup B of G.
- 3. |AP| divides |G| for every Sylow p-subgroup P of G and all primes p.

This result is a consequence of the known Kegel-Wielandt conjecture proved by Kleidman [2] making use of the classification of finite simple groups.

**Theorem 2.** A subgroup A of a group G is subnormal in G if and only if  $A \cap P$  is a Sylow p-subgroup of A for each Sylow p-subgroup P of G and each prime p.

Let  $\sigma = \{\sigma_i : i \in I\}$  be a partition of the set  $\mathbb{P}$  of all prime numbers. Following Skiba [3–5], a subgroup *A* of a finite group *G* is said to be  $\sigma$ -subnormal in *G* if *A* can be joined to *G* by a chain of subgroups

$$A = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n = G$$

such that either  $A_{i-1}$  normal in  $A_i$  or  $A_i/\operatorname{Core}_{A_i}(A_{i-1})$  is a  $\sigma_j$ -group for some  $j \in I$ , for every  $1 \le i \le n$ .

It is abundantly clear that the embedding property of  $\sigma$ -subnormality coincides with the subnormality when  $\sigma$  is the partition of  $\mathbb{P}$  into sets containing exactly one prime each.

A group  $G \neq 1$  is called  $\sigma$ -primary if all the primes dividing |G| belong to the same member of the partition  $\sigma$ . We stipulate that the trivial group is  $\sigma$ -primary.

**Definition 1.** A group G is called  $\sigma$ -soluble if all chief factors of G are  $\sigma$ -primary. G is called  $\sigma$ -nilpotent if it is a direct product of  $\sigma$ -primary groups.

If  $\pi = \{p_1, \dots, p_r\}$ , and  $\sigma = \{\{p_1\}, \dots, \{p_r\}, \pi'\}$ , then the class of all  $\sigma$ -soluble groups is just the class of all  $\pi$ -soluble groups, and the class of all  $\sigma$ -nilpotent groups is just the class of all groups having a normal Hall  $\pi'$ -subgroup and a normal Sylow  $p_i$ -subgroup, for all *i*. In particular, soluble and nilpotent groups are exactly the  $\sigma$ -soluble and  $\sigma$ -nilpotent groups for the partition  $\sigma = \{\{2\}, \{3\}, \{5\}, ...\}$ .

Skiba [6,7] proved that  $\sigma$ -soluble groups have a nice arithmetic structure.

**Theorem 3.** Assume that G is a  $\sigma$ -soluble group. Then G has a Hall  $\sigma_i$ -subgroup E and every  $\sigma_i$ -subgroup is contained in a conjugate of E for all  $i \in I$ . In particular, the Hall  $\sigma_i$ -subgroups are conjugate for all  $i \in I$ . Furthermore, G has Hall  $\sigma'_i$ -subgroups.

A non- $\sigma$ -nilpotent group has a non-trivial proper  $\sigma$ -subnormal subgroup if and only if it si not simple Therefore criteria for the  $\sigma$ -subnormality of a subgroup is important in the study of the normal structure of a group [8]. The significance of the  $\sigma$ -subnormal subgroups in  $\sigma$ -soluble groups is also apparent since they are precisely the  $K - N_{\sigma}$ -subnormal subgroups. In particular, they form a distinguished sublattice of the subgroup lattice of G [9].

It is worth mentioning that  $\sigma$ -subnormality has been recently studied in the locally finite case by Ferrara and Trombetti in [10].

**Definition 2.** Let A be a subgroup of a  $\sigma$ -soluble group G. We say that A satisfies property  $C_{\sigma_i}$  in G if |AB| divides |G| for every Hall  $\sigma_i$ -subgroup B of G.

Taking the close relationship between  $\sigma$ -subnormal subgroups and Hall subgroups of  $\sigma$ -soluble groups into account, it seems natural to think about an extension of Theorem 1 in the  $\sigma$ -soluble universe. Then main result here is the following  $\sigma$ -subnormality criterion.

**Theorem A.** Let A be a subgroup of a  $\sigma$ -soluble group G. Then the following are equivalent.

- 1. A is  $\sigma$ -subnormal in G.
- 2. A satisfies  $C_{\sigma_i}$  in G for all  $i \in I$ .

#### 2. Proof of Theorem A

The proof of Theorem A depends on the following lemma.

**Lemma 1** ([4]). Let A, B and N be subgroups of a group G. Suppose that A is  $\sigma$ -subnormal in G and N is normal in G. Then:

- 1.  $A \cap B$  is a  $\sigma$ -subnormal subgroup of B.
- 2. If B is  $\sigma$ -subnormal in A, then B is  $\sigma$ -subnormal in G.
- 3. If B is a  $\sigma$ -subnormal subgroup of G, then  $A \cap B$  is  $\sigma$ -subnormal in G.
- 4. AN/N is  $\sigma$ -subnormal in G/N.
- 5. If  $N \subseteq B$  and B/N is a  $\sigma$ -subnormal subgroup of G/N, then B is  $\sigma$ -subnormal in G.
- 6. If  $L \leq B$  and B is a  $\sigma$ -nilpotent group, then L is  $\sigma$ -subnormal in B.
- 7. If the primes dividing |G:A| belong to  $\sigma_i$ , then  $O^{\sigma_i}(A) = O^{\sigma_i}(G)$ .

*Proof of Theorem A.* Assume that *A* is  $\sigma$ -subnormal in *G*, and let *B* be a Hall  $\sigma_i$ -subgroup of *G* for some  $i \in I$ . We show that |AB| divides |G| by induction on the order of *G*. If *A* is normal in *G*, then *AB* is a subgroup of *G* and the result follows. Suppose that *A* is a maximal subgroup of *G*. Then  $G/\operatorname{Core}_G(A)$  is a  $\sigma_j$ -group for some  $j \in I$ . If  $i \neq j$ , then *B* is contained in  $\operatorname{Core}_G(A)$ , AB = A and |AB| = |A| divides |G|. If i = j, then  $G = \operatorname{Core}_G(A)B$  and the result also follows.

Assume that *A* is not a maximal subgroup of *G*, and let *M* be a  $\sigma$ -subnormal maximal subgroup of *G* containing *A*. Then *A* is  $\sigma$ -subnormal in *M*. By the above argument,  $B \leq M$  or  $G = \text{Core}_G(M)B$ . In both cases,  $B \cap M$  is a Hall  $\sigma_i$ -subgroup of *M*. By induction,  $|A(B \cap M)|$  divides |M|. Then there exists a positive integer *a* such that

$$|M| = a \cdot |A(B \cap M)| = a \cdot \frac{|A||B \cap M|}{|A \cap B|}$$

If  $B \le M$ , then |AB| divides |M| and the result follows. Assume that  $G = \text{Core}_G(M)B = MB$ . Then

$$|G| = \frac{|M||B|}{|B \cap M|} = a \cdot \frac{|A||B \cap M|}{|A \cap B|} \cdot \frac{|B|}{|B \cap M|} = a \cdot \frac{|A||B|}{|A \cap B|} = a \cdot |AB|.$$

Therefore the condition is necessary.

Conversely, assume that A satisfies property  $C_{\sigma_i}$  in G for all  $i \in I$ , but A is not  $\sigma$ -subnormal in G. We argue by induction on the order of G. Let N be a minimal normal subgroup of G. Since G is  $\sigma$ -soluble, it follows that N is a  $\sigma_i$ -group for some  $j \in I$ . If T/N is a Hall  $\sigma_i$ -subgroup of G/N for some  $i \in I$ , then there exists a Hall  $\sigma_i$ -subgroup B of G such that T/N = BN/N by Theorem 3. Moreover, either  $N \leq B$ or  $N \cap B = 1$ . Since |AB| divides |G| = |B||G : B|, we conclude that  $|A : A \cap B|$  divides |G : B| and then  $A \cap B$  is a Hall  $\sigma_i$ -subgroup of A. Hence if  $N \cap B = 1$ , then  $AN \cap B = A \cap B$ . Thus |(AN/N)(T/N)| divides |G/N| and AN/N satisfies the  $C_{\sigma_i}$  in G/N for all  $i \in I$ . By induction, AN/N is  $\sigma$ -subnormal in G/N. From Lemma 1(5), we have that AN is  $\sigma$ -subnormal in G. Suppose that AN is a proper subgroup of G. Let C be a Hall  $\sigma_i$ -subgroup of AN. If i = j, then N is contained in C and  $C = (A \cap C)N$ . In this case, AC = AN and so |AC| divides |AN|. Suppose that  $i \neq j$ . By Theorem 3, there exists a Hall  $\sigma_i$ -subgroup B of G such that  $C \leq B$ . Since |AB| divides |G| = |B||G : B|, it follows that  $|A : A \cap B|$  divides |G : B|and so  $A \cap B$  is a Hall  $\sigma_i$ -subgroup of A. Hence  $C = A \cap B$  and AC = A. In particular, |AC| divides |AN|. Consequently, A satisfies property  $C_{\sigma_i}$  in AN for all  $i \in I$ . Then the induction hypothesis again applies and gives that A is  $\sigma$ -subnormal in AN. From Lemma 1(2), we conclude that A is  $\sigma$ -subnormal in G. Therefore we may assume that G = AN. From Lemma 1(7), we conclude that  $O^{\sigma_i}(A) = O^{\sigma_i}(G)$ . This yields  $O^{\sigma_i}(G) \leq \operatorname{Core}_G(A)$ . If  $O^{\sigma_i}(G) \neq 1$ , we can take  $N \leq O^{\sigma_i}(G)$  and conclude A = AN is

Electronic Research Archive

 $\sigma$ -subnormal in *G* and if  $O^{\sigma_i}(G) = 1$ , then *G* is a  $\sigma_i$ -group and then *A* is obviously a  $\sigma$ -subnormal subgroup of *G*, as desired.

#### 3. Corollaries

We now derive some consequences of Theorem A, the first being a particular case of the theorem.

**Corollary 1.** Let A be a  $\sigma_i$ -subgroup of a  $\sigma$ -soluble group G. Then A is  $\sigma$ -subnormal in G if and only if A satisfies property  $C_{\sigma_i}$  in G.

*Proof.* Only the necessity of the condition is in doubt. Assume that *B* is a Hall  $\sigma_i$ -subgroup of *G*. Since |AB| divides |G|, it follows that every prime dividing |AB| belongs to  $\sigma_i$ . Therefore, AB = B and so  $A \leq B$ . Since the Hall  $\sigma_i$ -subgroups are conjugate, we have that  $A \leq O_{\sigma_i}(G)$  and so *A* is  $\sigma$ -subnormal in  $O_{\sigma_i}(G)$ . Since  $O_{\sigma_i}(G)$  is normal in *G*, we have that *A* is  $\sigma$ -subnormal in *G* by Lemma 1(2).

A nice consequence of Theorem A is the following extension of a classical result of Kegel due to Skiba [6].

**Corollary 2.** A subgroup A of a  $\sigma$ -soluble group G is  $\sigma$ -subnormal in G if and only if  $A \cap B$  is a Hall  $\sigma_i$ -subgroup of A for every Hall  $\sigma_i$ -subgroup B of G for all  $i \in I$ .

*Proof.* Assume that *A* is  $\sigma$ -subnormal in *G* and let *B* be a Hall  $\sigma_i$ -subgroup of *G*. Then |AB| divides |G| and so  $|A : A \cap B|$  is a  $\sigma'_i$ -number. Hence  $A \cap B$  is a Hall  $\sigma_i$ -subgroup of *A*.

Conversely, if *B* is a Hall  $\sigma_i$ -subgroup of *G* such that  $A \cap B$  is a Hall  $\sigma_i$ -subgroup of *A*, then  $|A : A \cap B|$  divides the order of a Hall  $\sigma'_i$ -subgroup of *G*. Consequently, |AB| divides |G| and hence *A* satisfies property  $C_{\sigma_i}$  in *G* for all  $i \in I$ . By Theorem A, *A* is  $\sigma$ -subnormal in *G*.

It is clear that the class  $N_{\sigma}$  of all  $\sigma$ -nilpotent groups behaves in the class of all  $\sigma$ -soluble groups like nilpotent groups in the class of all soluble groups. In fact,  $N_{\sigma}$  is a subgroup-closed saturated Fitting formation [4].

The  $\mathcal{N}_{\sigma}$ -radical of a group *G* is called the  $\sigma$ -*Fitting subgroup* of *G* and it is denoted by  $F_{\sigma}(G)$ . By [9],  $F_{\sigma}(G)$  contains every  $\sigma$ -subnormal  $\sigma$ -nilpotent subgroup of *G*. Consequently, a group *G* is  $\sigma$ -nilpotent if and only if every subgroup of *G* is  $\sigma$ -subnormal in *G*. Therefore the following  $\sigma$ -version of [1] holds.

**Corollary 3.** Let G be a  $\sigma$ -soluble group. Then G is  $\sigma$ -nilpotent if and only if every  $\sigma_i$ -subgroup of G satisfies property  $C_{\sigma_i}$  in G for all  $i \in I$ .

*Proof.* If *G* is  $\sigma$ -nilpotent and  $i \in I$ , then every  $\sigma_i$ -subgroup *A* of *G* is  $\sigma$ -subnormal in *G*. By Theorem A, *A* satisfies property  $C_{\sigma_i}$  in *G*. Conversely, let  $i \in I$  and let *A* be a Hall  $\sigma_i$ -subgroup of *G*. Then |AB| divides |G| for every Hall  $\sigma_i$ -subgroup *B* of *G*. Since |AB| is a  $\sigma_i$ -number, it follows that A = B. Therefore *G* has a normal Hall  $\sigma_i$ -subgroup for all  $i \in I$  and hence *G* is  $\sigma$ -nilpotent.

Our last result can be regarded as an extension of [1].

**Corollary 4.** Let G be a  $\sigma$ -soluble group. Then

- 1. All  $\sigma_i$ -subgroups of  $F_{\sigma}(G)$  satisfy property  $C_{\sigma_i}$  in G for all  $i \in I$ .
- 2.  $F_{\sigma}(G)$  contains every subgroup F of G such that, for every  $i \in I$ , all  $\sigma_i$ -subgroups of F satisfy property  $C_{\sigma_i}$  in G.

*Proof.* Let  $i \in I$  and let A be a  $\sigma_i$ -subgroup of a  $\sigma$ -soluble group G contained in  $F_{\sigma}(G)$ . Then A is a  $\sigma$ -subnormal subgroup of  $F_{\sigma}(G)$  and  $F_{\sigma}(G)$  is normal in G, it follows that A is  $\sigma$ -subnormal in G by Lemma 1(2). Therefore A satisfies property  $C_{\sigma_i}$  in G.

Assume that *F* is a subgroup of *G* with all its  $\sigma_i$ -subgroups satisfying property  $C_{\sigma_i}$  for every  $i \in I$ . By Corollary 1, every Hall  $\sigma_i$ -subgroup  $F_i$  of *F* is  $\sigma$ -subnormal in *G*. Then  $F_i$  is contained in  $F_{\sigma}(G)$  by [9]. Since *F* is generated by its Hall  $\sigma_i$ -subgroups for all  $i \in I$ , it follows that  $F \leq F_{\sigma}(G)$ .

#### Acknowledgments

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (KEP-PhD: 20-130-1443).

#### **Conflict of interest**

The authors declare that there is no conflict of interest.

#### References

- 1. D. Levy, The size of a product of two subgroups and subnormality, *Arch. Math.*, **118** (2022), 361–364. https://doi.org/10.1007/s00013-022-01710-8
- P. B. Kleidman, A proof of the Kegel-Wielandt conjecture on subnormal subgroups, *Ann. Math.*, 133 (1991), 369–428. https://doi.org/10.2307/2944342
- 3. A. N. Skiba, On *σ*-properties of finite groups I, *Probl. Phys. Math. Tech.*, **4** (2014), 89–96. http://mi.mathnet.ru/eng/pfmt/y2014/i4/p89
- A. N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra, 436 (2015), 1–16. https://doi.org/10.1016/j.jalgebra.2015.04.010
- 5. A. N. Skiba, On *σ*-properties of finite groups II, *Probl. Phys. Math. Tech.*, **3** (2015), 70–83. http://mi.mathnet.ru/eng/pfmt/y2015/i3/p70
- 6. A. N. Skiba, A generalization of a Hall theorem, J. Algebra Appl., 15 (2016). https://doi.org/10.1142/S0219498816500857
- 7. A. N. Skiba, On some arithmetic properties of finite groups, *Note Mat.*, **36** (2016), 65–89. https://doi.org/10.1285/i15900932v36supp11p65
- 8. A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, V. Pérez-Calabuig, On  $\sigma$ -subnormality criteria in finite  $\sigma$ -soluble groups, *RACSAM*, **114** (2020). https://doi.org/10.1007/s13398-020-00824-4

- 9. A. Ballester-Bolinches, L. M. Ezquerro, Classes of finite groups, in *Mathematics and its Applications*, Springer, (2006).
- 10. M. Ferrara, M. Trombetti, On  $\sigma$ -subnormality in locally finite groups, J. Algebra, **614** (2023), 867–897. https://doi.org/10.1016/j.jalgebra.2022.10.013



 $\bigcirc$  2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)