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Abstract: We discuss a poly-Laplacian system involving concave-convex nonlinearities and parame-
ters subject to the Dirichlet boundary condition on locally finite graphs. It is obtained that the system
admits at least one nontrivial solution of positive energy and one nontrivial solution of negative energy
based on the mountain pass theorem and the Ekeland’s variational principle. We also obtain an esti-
mate about semi-trivial solutions. Moreover, by using a result due to Brown et al., which is based on
the fibering method and the Nehari manifold, we get the existence of the ground-state solution to the
single equation corresponding to the poly-Laplacian system. Especially, we present some ranges of
parameters for all of the results.
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variational principle; locally finite graph

1. Introduction

The research on the existence of nontrivial solutions of elliptic partial differential equations and sys-
tems involving concave-convex nonlinearities in Euclidean space have attracted some attentions. In [1],
Ambrosetti et al. studied the second order Laplacian equation involving concave-convex nonlineari-
ties with a constant coefficient. With the help of the sub- and supersolutions, as well as variational
arguments, they obtained some existence and multiplicity results of solutions. In [2], Brown and Wu
also studied the second order Laplacian equation involving concave-convex nonlinearities with weight
functions. With the help of the fibering method and the Nehari manifold which was introduced by
Pohozaev in [3], they obtained that the equation has at least two nontrivial solutions. Moreover, in [4],
Brown and Wu studied a potential operator equation. By using methods similar to those in [2], they
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obtained that the equation has at least two nontrivial solutions when the functionals related to poten-
tial operators satisfy some appropriate conditions. In [5], Chen et al. studied a class of second order
Kirchhoff equations involving concave-convex nonlinearities and parameters. Their result was that the
equation has multiple positive solutions basd on the fibering method and the Nehari manifold. In [6],
Chen et al. studied the nonhomogeneous p-Kirchhoff equation involving concave-convex nonlineari-
ties with weight functions and a perturbation. Their result was the existence of two nontrivial solutions
of the equation basd on the mountain pass theorem and Ekeland’s variational principle. In [7], Wu
investigated the following second order Laplacian elliptic system:

−∆u = λ f (x)|u|γ−2u + α
α+β

h(x)|u|α−2u|v|β, x ∈ Ω,

−∆v = µg(x)|v|γ−2v + β

α+β
h(x)|u|α|v|β−2v, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(1.1)

whereΩ ⊆ RN is a bounded domain and 1 < γ < 2 < α+β < 2N
N−2 . With the help of the fibering method

and the Nehari manifold, he obtained that when the parameters λ and µ belong to the appropriate range,
the system has two nontrivial nonnegative solutions. In [8], Echarghaoui and Sersif investigated a class
of second order semilinear elliptic systems involving critical Sobolev growth and concave nonlinear-
ities. By using the fountain theorem, they obtained that the system has two completely different but
infinitely many radial solution sets. Moreover, the energy functional of one solution set is positive, and
the energy functional of the other solution set is negative. In [9], Bozhkova and Mitidieri considered
the (p, q)-Laplacian elliptic system with the Diriclet boundary condition. Their results were on the
existence and multiplicity of solutions of the system basd on the fibering method and the Nehari man-
ifold. Moreover, by using the Pokhozhaev identity, they obtained the nonexistence result of solutions.
In [10], Liu and Ou investigated the following (p, q)-Laplacian elliptic system:

−∆pu = λαa(x)|u|α−2u|v|β + γb(x)|u|γ−2u|v|η, x ∈ Ω,

−∆qv = λβa(x)|u|αu|v|β−2 + ηb(x)|u|γu|v|η−2, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

where Ω ⊆ RN is a bounded domain, 1 < p, q < N, α, β, γ, η > 0, 1 < α + β < min{p, q} and
max{p, q} < γ + η < min{p∗, q∗}. Their result was on the existence of two nontrivial solutions basd on
the fibering method and the Nehari manifold. We refer the reader to [11–14] for more results about the
elliptic systems involving concave-convex nonlinearities.

Moreover, in recent years, the research about equations on graphs have also attracted some atten-
tions. For example, see [15–17]. In [15], Grigor’yan et al. considered the second order Laplacian
equation with the nonlinear term satisfying the superquadratic condition and some additional assump-
tions on finite graphs and locally finite graphs. With the help of the mountain pass theorem, the
conclusion they reached was on the existence of a nontrivial solution for the equation. Furthermore,
they also investigated the p-Laplacian equation and poly-Laplacian equation on finite graphs and lo-
cally finite graphs and obtained some similar results. In [16], Han and Shao studied the p-Laplacian
equation with the Dirichlet boundary condition on the locally finite graph. With the help of the moun-
tain pass theorem and the Nehari manifold, their result was the existence of a positive solution and a
ground-state solution for the equation. In addition, in [17], Han et al. studied a nonlinear biharmonic
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equation with a parameter λ and the Dirichlet boundary condition on the locally finite graph. With the
help of the mountain pass theorem and the method of the Nehari manifold, they obtained that when the
parameter λ is small enough, the equation has a ground-state solution. Moreover, when λ → +∞, the
ground-state solutions converge.

Next, we recall some basic knowledge and notations of locally finite graphs, which were taken
from [15–17]. Suppose that G = (V, E) is a graph, where V is a vertex set and E is a edge set. xy
denotes the edge connecting x with y. Assume that for any x ∈ V , there are only finite edges xy ∈ E;
then, (V, E) is called a locally finite graph. Moreover, assume that both the vertex set V and edge set
E are finite sets; then, (V, E) is called a finite graph. ωxy > 0 is defined as the weight of the edge
xy ∈ E, and it is assumed that ωxy = ωyx. Furthermore, for any x ∈ V , the degree is defined as
deg(x) =

∑
y∼x ωxy, where y ∼ x denotes that y ∈ V and xy ∈ E. d(x, y) is the distance of two vertices x

and y, which is the minimal number of edges that connect x with y. Let Ω ⊂ V . Assume that for any
x, y ∈ Ω, there exists a positive constant c such that d(x, y) ≤ c; then, Ω is a bounded domain in V . The
definition of the boundary of Ω is as follows:

∂Ω = {y ∈ V, y < Ω
∣∣∣ ∃ x ∈ Ω such that xy ∈ E}.

Assume that µ : V → R+ is a finite measure and it is assumed that µ(x) ≥ µ0 > 0. For any function
u : V → R, one denotes ∫

V

u(x)dµ =
∑
x∈V

u(x)µ(x). (1.2)

Let C(V) = {u|u : V → R}. Define the Laplacian operator ∆ : C(V)→ C(V) by

∆u(x) =
1
µ(x)

∑
y∼x

ωxy(u(y) − u(x)) (1.3)

and define the associate gradient Γ(u1, u2) as

Γ(u1, u2)(x) =
1

2µ(x)

∑
y∼x

wxy(u1(y) − u1(x))(u2(y) − u2(x)). (1.4)

Denote Γ(u) := Γ(u, u). The definition of the length of the gradient is as follows:

|∇u|(x) =
√
Γ(u)(x) =

 1
2µ(x)

∑
y∼x

wxy(u(y) − u(x))2


1
2

, (1.5)

and the definition of the length of the m-order gradient is as follows:

|∇mu| =

|∇∆
m−1

2 u|, if m is odd,
|∆

m
2 u|, if m is even.

(1.6)

For any given s > 1, define the s-Laplacian operator ∆s : C(V)→ C(V) by

∆su(x) =
1

2µ(x)

∑
y∼x

(
|∇u|s−2(y) + |∇u|s−2(x)

)
ωxy(u(y) − u(x)). (1.7)
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Let Cc(Ω) := {u : V → R
∣∣∣supp u ⊂ Ω and ∀x ∈ V\Ω, u(x) = 0}. For any function ϕ ∈ Cc(Ω), the

following equality holds: ∫
Ω

∆suϕdµ = −
∫
Ω∪∂Ω

|∇u|s−2Γ(u, ϕ)dµ. (1.8)

For any 1 ≤ r < +∞, assume that the completion space of Cc(Ω) is Lr(Ω) under the norm

∥u∥Lr(Ω) =

(∫
Ω

|u(x)|rdµ
) 1

r

.

Moreover, the completion space of Cc(Ω) is Wm,s
0 (Ω) under the norm

∥u∥Wm,s
0 (Ω) =

(∫
Ω∪∂Ω

|∇mu(x)|sdµ
) 1

s

,

where m is a positive integer and s > 1. For any u ∈ Wm,s
0 (Ω), we also define the following norm:

∥u∥∞ = max
x∈Ω
|u(x)|.

Wm,s
0 (Ω) is of finite dimension. See [15, 16] for more details.
In this paper, our work was mainly inspired by [4, 6, 7, 10, 15]. We shall employ the mountain

pass theorem and Ekeland’s variational principle as in [6] to investigate the multiplicity of solutions
for a class of poly-Laplacian systems on graphs, which can be seen as a discrete version of (1.1) on
graphs in some sense, and we also obtain that a poly-Laplacian equation on a locally finite graph has
a ground-state solution basd on an abstract result in [4], which was essentially obtained by using the
fibering method and the Nehari manifold as in [2, 4, 7, 10]. To be specific, we discuss the following
poly-Laplacian system on a locally finite graph G = (V, E):

£m1,pu = λ1h1(x)|u|γ1−2u + α
α+β

c(x)|u|α−2u|v|β, x ∈ Ω,

£m2,qv = λ2h2(x)|v|γ2−2v + β

α+β
c(x)|u|α|v|β−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.9)

where Ω ∪ ∂Ω ⊂ V is a bounded domain, mi, i = 1, 2 denotes positive integers, p, q, γ1, γ2 > 1,
λ1, λ2, α, β > 0, max{γ1, γ2} < min{p, q} ≤ max{p, q} < α + β, h1(x), h2(x), c(x) : Ω → R+ and the
definitions of £mi,s (i = 1, 2, s = p, q) is expressed as follows for any function ϕ : Ω ∪ ∂Ω→ R:∫

Ω

(£mi,su)ϕdµ =


∫
Ω∪∂Ω
|∇miu|s−2Γ(∆

mi−1
2 u,∆

mi−1
2 ϕ), if mi is odd,∫

Ω∪∂Ω
|∇miu|s−2∆

mi
2 u∆

mi
2 ϕ, if mi is even.

(1.10)

When m = 1, £m,pu = −∆pu, and when p = 2, £m,pu = (−∆m)u, which is called a poly-Laplacian
operator of u. More details can be seen in [15] for the definition of £m,p. Obviously, system (1.9) with
m1 = m2 = 1, p = q = 2 and γ1 = γ2 = γ is a generalization of (1.1) from the Euclidean setting to a
locally finite graph.

In this paper, when (u, v) is a solution of system (1.9) with either (u, v) = (u, 0) or (u, v) = (0, v),
(u, v) is called a semi-trivial solution of system (1.9). Moreover, when (u, v) is a solution of system
(1.9) and (u, v) , (0, 0), (u, v) is called a nontrivial solution of system (1.9).
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Denote

M(λ1,λ2) = 21−max{p,q}min
{

1 − λ1C
p
m1,p(Ω)

p
,

1 − λ2C
q
m2,q(Ω)

q

}
,

M2 =
C0

(α + β)2

(
αCα+β

m1,p(Ω) + βCα+β
m2,q(Ω)

)
,

where C0 = maxx∈Ω c(x) and Cm1,p(Ω) and Cm2,q(Ω) are embedding constants given in Lemma 2.1
below. Especially, we present concrete values of Cm1,p(Ω) and Cm2,q(Ω) if m1 = m2 = 1, p, q ≥ 2 and
for each x ∈ Ω, there is at least one y ∈ ∂Ω satisfying that y ∼ x (see Lemma 2.2 below).

Our main results are as follows. We suppose that λ1 and λ2 satisfy the following inequalities:

0 < λ1 < C−p
m1,p(Ω),

0 < λ2 < C−q
m2,q(Ω),

M(λ1,λ2) ≤
α+β

max{p,q}M2,

λ1(p−γ1)
pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)
+

λ2(q−γ2)
qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)
< α+β−max{p,q}

α+β
M

α+β
α+β−max{p,q}

(λ1,λ2)

(
max{p,q}
(α+β)M2

) max{p,q}
α+β−max{p,q}

.

(1.11)

Theorem 1.1. Suppose that G = (V, E) is a locally finite graph, Ω , ∅ and ∂Ω , ∅. If (λ1, λ2) satisfies
(1.11), system (1.9) admits one nontrivial solution of positive energy and one nontrivial solution of
negative energy .

Remark 1.1. There exist λ1 and λ2 satisfying (1.11). For example, let m1 = 2, m2 = 3, γ1 = 2, γ2 = 3,
p = 4, q = 5, α = 2, β = 4 and

C0 =
1

C6
2,4(Ω) + 2C6

3,5(Ω)
, ∥h1∥

2
L2(Ω) =

56

9 · 231 C4
2,4(Ω), ∥h2∥

5
2

L
5
2 (Ω)
=

56

232 C5
3,5(Ω).

When λ1 =
1
5C−4

2,4(Ω) and λ2 =
1
6C−5

3,5(Ω), we can obtain that

M(λ1,λ2) =
1

3 · 25 =
1

96
, M2 =

1
18
.

Evidently,

M(λ1,λ2) <
6
5

M2.

Moreover,
1

20
C−4

2,4(Ω)∥h1∥
2
L2(Ω) +

1
45

C−5
3,5(Ω)∥h2∥

5
2

L
5
2 (Ω)
=

55

9 · 233 +
55

9 · 232 <
55

9 · 231 .

Hence, (1.11) holds for λ1 =
1
5C−4

2,4(Ω) and λ2 =
1
6C−5

3,5(Ω).

Theorem 1.2. Suppose that G = (V, E) is a locally finite graph, Ω , ∅ and ∂Ω , ∅. For each λ1 > 0,
assume that (u, 0) is a semi-trivial solution of system (1.9). Then

∥u∥Wm1 ,p
0 (Ω) ≤

(
λ1H1Cγ1

m1,p(Ω)
) 1

p−γ1 ,

where H1 = maxx∈Ω h1(x). Similarly, for each λ2 > 0, assume that (0, v) is a semi-trivial solution of
system (1.9). Then

∥v∥Wm2 ,q
0 (Ω) ≤

(
λ2H2Cγ2

m2,q(Ω)
) 1

q−γ2 ,

where H2 = maxx∈Ω h2(x).
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Moreover, we also investigate the existence of a ground-state solution for the following poly-
Laplacian equation on G = (V, E) by applying Theorem 3.3 in [4]:£m,pu = λh(x)|u|γ−2u + c(x)|u|α−2u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.12)

where Ω ∪ ∂Ω ⊂ V is a bounded domain, m is a positive integer, p, γ > 1, λ > 0, γ < p < α and
h(x), c(x) : Ω→ R+. Denote

λ0 =
p − γ
H0

C−γm,p(Ω)
((

C0Cα
m,p(Ω)

)p−α
(α − p)α−p(α − γ)γ−α

) 1
p−γ
,

λ⋆ =
γ(α − p)

pαH0C
γ
m,p(Ω)

(
C0Cα

m,p(Ω)
) p−γ

p−α
, λ⋆⋆ = min{λ0, λ⋆}, (1.13)

where H0 = maxx∈Ω h(x) and C0 = maxx∈Ω c(x). We obtain the following result.

Theorem 1.3. Suppose that G = (V, E) is a locally finite graph, Ω , ∅ and ∂Ω , ∅. If λ ∈ (0, λ0), then
(1.12) admits one nontrivial solution of positive energy and one nontrivial solution of negative energy.
Furthermore, if λ ∈ (0, λ⋆⋆), the negative energy solution is the ground-state solution of (1.12).

Remark 1.2. Similar to the arguments of Theorem 1.1, applying the mountain pass theorem and Eke-
land’s variational principle, we can also get one nontrivial solution of positive energy and one non-
trivial solution of negative energy for (1.12). We do not know whether these two solutions are different
from those two solutions in Theorem 1.3 which were obtained, essentially, by using the fibering method
and the Nehari manifold.

2. Preliminaries

Define the space W = Wm1,p
0 (Ω) ×Wm2,q

0 (Ω) with the norm

∥(u, v)∥W = ∥u∥Wm1 ,p
0 (Ω) + ∥v∥Wm2 ,q

0 (Ω).

Then, W is a finite dimensional Banach space. The energy functional ψ : W → R of system (1.9) is
defined as follows:

ψ(u, v) =
1
p

∫
Ω∪∂Ω

|∇m1u|pdµ −
λ1

γ1

∫
Ω

h1(x)|u|γ1dµ

+
1
q

∫
Ω∪∂Ω

|∇m2v|qdµ −
λ2

γ2

∫
Ω

h2(x)|v|γ2dµ −
1

α + β

∫
Ω

c(x)|u|α|v|βdµ. (2.1)

Then, ψ(u, v) ∈ C1(W,R). Moreover,

⟨ψ′(u, v), (ϕ, φ)⟩ =
∫
Ω∪∂Ω

(£m1,pu)ϕdµ − λ1

∫
Ω

h1(x)|u|γ1−2uϕdµ

+

∫
Ω∪∂Ω

(£m2,qv)φdµ − λ2

∫
Ω

h2(x)|v|γ2−2φdµ

−
α

α + β

∫
Ω

c(x)|u|α−2u|v|βϕdµ −
β

α + β

∫
Ω

c(x)|u|α|v|β−2vφdµ. (2.2)
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Definition 2.1. (u, v) ∈ W is called a weak solution of system (1.9) whenever, for all (ϕ, φ) ∈ W, the
following equalities are true:∫

Ω∪∂Ω

(£m1,pu)ϕdµ = λ1

∫
Ω

h1(x)|u|γ1−2uϕdµ +
α

α + β

∫
Ω

c(x)|u|α−2u|v|βϕdµ, (2.3)∫
Ω∪∂Ω

(£m2,qv)φdµ = λ2

∫
Ω

h2(x)|v|γ2−2vφdµ +
β

α + β

∫
Ω

c(x)|u|α|v|β−2vφdµ. (2.4)

Evidently, (u, v) ∈ W is a weak solution of system (1.9) if and only if (u, v) is a critical point of ψ.

Proposition 2.1. Assume that (u, v) ∈ W is a weak solution of system (1.9). Then, (u, v) ∈ W is also a
point-wise solution of (1.9).

Proof. We define two functions ϕ, φ : V → R as follows for any fixed y ∈ V:

φ(x) = ϕ(x) =

1, x = y,

0, x , y.

Hence, by (2.3) and (2.4), the following holds:

£m1,pu(y) = λ1h1(y)|u(y)|γ1−2u(y) +
α

α + β
c(y)|u(y)|α−2u(y)|v(y)|β,

£m2,qv(y) = λ2h2(y)|v(y)|γ2−2v(y) +
β

α + β
c(y)|u(y)|α|v(y)|β−2v(y).

By the arbitrariness of y, we come to the conclusion.

Lemma 2.1. ( [15]). Assume that G = (V, E) is a locally finite graph: Ω ∪ ∂Ω ⊂ V is a bounded
domain with Ω , ∅. For any given m and s with m ∈ N+ and s > 1, Wm,s

0 (Ω) is embedded in Lr(Ω) for
each 1 ≤ r ≤ +∞. Especially, there exists a positive constant Cm,s(Ω) such that(∫

Ω

|u(x)|rdµ
) 1

r

≤ Cm,s(Ω)
(∫
Ω∪∂Ω

|∇mu(x)|sdµ
) 1

s

, (2.5)

where

Cm,s(Ω) =
C
µmin

(1 + |Ω|) with C satisfying that ∥u∥Lr(Ω) ≤ C∥u∥Wm,r
0 (Ω), (2.6)

and |Ω| =
∑

x∈Ω µ(x). Furthermore, Wm,s
0 (Ω) is pre-compact.

Moreover, if for each x ∈ Ω, there is at least one y ∈ ∂Ω satisfying that y ∼ x, we can present a
specific value of Cm,s(Ω) with m = 1 and s ≥ 2. The details are as follows.

Lemma 2.2. Suppose that G = (V, E) is a locally finite graph, Ω ∪ ∂Ω ⊂ V is a bounded domain with
Ω , ∅ and ∂Ω , ∅, and for each x ∈ Ω, there is at least one y ∈ ∂Ω satisfying that y ∼ x. Then, for any
s ≥ 2 and 1 ≤ r < +∞, (∫

Ω

|u(x)|rdµ
) 1

r

≤ C1,s(Ω)
(∫
Ω∪∂Ω

|∇u(x)|sdµ
) 1

s

, (2.7)
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where

C1,s(Ω) = (1 + |Ω|)µ̂−
1
s

min

(
2µmax

wmin

) 1
2

,

µ̂min = minx∈Ω µ(x), µmax = maxx∈Ω∪∂Ω µ(x) and wmin = minx∈Ω∪∂Ω wxy.

Proof. The following holds:

∥u∥s
W1,s

0 (Ω)
=

∫
Ω∪∂Ω

|∇u(x)|sdµ

=
∑

x∈Ω∪∂Ω

 1
2µ(x)

∑
y∼x

wxy(u(y) − u(x))2


s
2

µ(x)

≥

(
wmin

2µmax

) s
2 ∑

x∈Ω∪∂Ω

∑
y∼x

|u(y) − u(x)|sµ(x)

=

(
wmin

2µmax

) s
2
∑

x∈Ω

∑
y∼x

|u(y) − u(x)|s +
∑
x∈∂Ω

∑
y∼x

|u(y) − u(x)|s
 µ(x)

≥

(
wmin

2µmax

) s
2
∑

x∈Ω

∑
y∼x,y∈Ω

|u(y) − u(x)|s +
∑
x∈Ω

∑
y∼x,y∈∂Ω

|u(x)|s
 µ(x)

≥

(
wmin

2µmax

) s
2 ∑

x∈Ω

∑
y∼x,y∈∂Ω

|u(x)|sµ(x)

≥

(
wmin

2µmax

) s
2 ∑

x∈Ω

|u(x)|sµ(x).

Hence,

∥u∥Ls(Ω) ≤

(
2µmax

wmin

) 1
2

∥u∥W1,s
0 (Ω). (2.8)

Moreover, by (2.8), we have

∥u∥∞ ≤ µ̂
− 1

s
min∥u∥Ls(Ω) ≤ µ̂

− 1
s

min

(
2µmax

wmin

) 1
2

∥u∥W1,s
0 (Ω). (2.9)

It follows from (2.9) that for any 1 ≤ r < +∞, the following holds:

∥u∥Lr(Ω) =

∑
x∈Ω

|u(x)|rµ(x)


1
r

≤ |Ω|
1
r ∥u∥∞

≤ |Ω|
1
r µ̂
− 1

s
min

(
2µmax

wmin

) 1
2

∥u∥W1,s
0 (Ω)
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≤ (1 + |Ω|)µ̂−
1
s

min

(
2µmax

wmin

) 1
2

∥u∥W1,s
0 (Ω).

Assume that B is a real Banach space and f ∈ C1(B,R). We say that f satisfies the Palais-Smale
condition if any Palais-Smale sequence {un} ⊆ B has a convergent subsequence, where {un} is called
the Palais-Smale sequence if for all n ∈ N, there exists a positive constant c such that | f (un)| ≤ c and
f ′(un)→ 0 as n→ ∞.

Lemma 2.3. ( [18]) Assume that B is a real Banach space and f ∈ C1(B,R), where f satisfies the
Palais-Smale condition and f (0) = 0. Moreover, if f satisfies the following conditions:
(i) there exist two constants r and m with r,m ∈ R+ such that f∂Br(0) ≥ m, where Br = {x ∈ B : ∥x∥B < r};
(ii) there is x ∈ B\B̄r(0) satisfying that f (x) ≤ 0,
then f admits a critical value m∗ ≥ m and

m∗ := inf
π∈Π

max
t∈[0,1]

f (π(t)),

where
Π := {π ∈ C([0, 1], B) : π(0) = 0, π(1) = x}.

Lemma 2.4. ( [19]) Assume that (B, ρ) is a complete metric space and f : B → R, which is lower-
semicontinuous and bounded from below. Moreover, there exist δ > 0 and x ∈ B such that

f (x) ≤ inf
B

f + δ.

On that occasion, there exists y ∈ B such that

f (y) ≤ f (x), ρ(x, y) ≤ 1.

Furthermore, for all w ∈ B, the following holds:

f (y) ≤ f (w) + δρ(y,w).

3. Proofs for Theorems 1.1 and 1.2

Lemma 3.1. For each (λ1, λ2) satisfying (1.11), there exists a positive constant r(λ1,λ2) such that
ψ(u, v) > 0 whenever ||(u, v)||W = r(λ1,λ2).

Proof. Note that

c(x) ≤ max
x∈Ω

c(x) := C0, h⋆i := min
x∈Ω

hi(x) ≤ hi(x) ≤ max
x∈Ω

hi(x) := Hi, i = 1, 2, for all x ∈ Ω. (3.1)

Then, by using Lemma 2.1 and Young’s inequality, for all u ∈ Wm1,p
0 (Ω), the following holds:∫

Ω

h1(x)|u|γ1dµ
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≤
p − γ1

p

∫
Ω

h1(x)
p

p−γ1 dµ +
γ1

p

∫
Ω

|u|pdµ

≤
p − γ1

p
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)
+
γ1

p
Cp

m1,p(Ω)∥u∥p
Wm1 ,p

0 (Ω)
. (3.2)

Similarly, for all v ∈ Wm2,q
0 (Ω), the following holds:∫

Ω

h2(x)|v|γ2dµ ≤
q − γ2

q
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)
+
γ2

q
Cq

m2,q(Ω)∥v∥q
Wm2 ,q

0 (Ω)
. (3.3)

Furthermore, for all (u, v) ∈ W, Lemma 2.1 and Young’s inequality imply that∫
Ω

c(x)|u|α|v|βdµ

≤ C0

∫
Ω

|u|α|v|βdµ

≤ C0

(
α

α + β

∫
Ω

|u|α+βdµ +
β

α + β

∫
Ω

|v|α+βdµ
)

≤ C0

αCα+β
m1,p(Ω)
α + β

∥u∥α+β
Wm1 ,p

0 (Ω)
+
βCα+β

m2,q(Ω)
α + β

∥v∥α+β
Wm2 ,q

0 (Ω)

 . (3.4)

Thus, (2.1) and (3.2)–(3.4) imply that when (λ1, λ2) ∈ (0,C−p
m1,p(Ω)) × (0,C−q

m2,q(Ω)), for any (u, v) ∈ W
with ∥(u, v)∥W ≤ 1, the following holds:

ψ(u, v) =
1
p
∥u∥p

Wm1 ,p
0 (Ω)

−
λ1

γ1

∫
Ω

h1(x)|u|γ1dµ

+
1
q
∥v∥q

Wm2 ,q
0 (Ω)

−
λ2

γ2

∫
Ω

h2(x)|v|γ2dµ −
1

α + β

∫
Ω

c(x)|u|α|v|βdµ

≥
1
p

(
1 − λ1Cp

m1,p(Ω)
)
∥u∥p

Wm1 ,p
0 (Ω)

−
λ1(p − γ1)

pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)

+
1
q

(
1 − λ2Cq

m2,q(Ω)
)
∥v∥q

Wm2 ,q
0 (Ω)

−
λ2(q − γ2)

qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)

−
C0

α + β

αCα+β
m1,p(Ω)
α + β

∥u∥α+β
Wm1 ,p

0 (Ω)
+
βCα+β

m2,q(Ω)
α + β

∥v∥α+β
Wm2 ,q

0 (Ω)


≥ min

{
1 − λ1C

p
m1,p(Ω)

p
,

1 − λ2C
q
m2,q(Ω)

q

} (
∥u∥max{p,q}

Wm1 ,p
0 (Ω)

+ ∥v∥max{p,q}
Wm2 ,q

0 (Ω)

)
−

C0

(α + β)2

(
αCα+β

m1,p(Ω) + βCα+β
m2,q(Ω)

)
∥(u, v)∥α+βW

−
λ1(p − γ1)

pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)
−
λ2(q − γ2)

qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)

≥ 21−max{p,q}min
{

1 − λ1C
p
m1,p(Ω)

p
,

1 − λ2C
q
m2,q(Ω)

q

}
∥(u, v)∥max{p,q}

W

−
C0

(α + β)2

(
αCα+β

m1,p(Ω) + βCα+β
m2,q(Ω)

)
∥(u, v)∥α+βW
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−
λ1(p − γ1)

pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)
−
λ2(q − γ2)

qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)
. (3.5)

Note that

M(λ1,λ2) = 21−max{p,q}min
{

1 − λ1C
p
m1,p(Ω)

p
,

1 − λ2C
q
m2,q(Ω)

q

}
,

M2 =
C0

(α + β)2

(
αCα+β

m1,p(Ω) + βCα+β
m2,q(Ω)

)
.

Define

f (t) = M(λ1,λ2)tmax{p,q} − M2tα+β −
λ1(p − γ1)

pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)
−
λ2(q − γ2)

qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)
, t ∈ [0, 1]. (3.6)

To find r(λ1,λ2) satisfying that ψ(u, v) > 0 whenever ∥(u, v)∥W = r(λ1,λ2), it suffices to prove that there is
t⋆(λ1,λ2) ∈ (0, 1] satisfying that f (t⋆(λ1,λ2)) > 0. In fact, by (3.6), we have

f ′(t) = max{p, q}M(λ1,λ2)tmax{p,q}−1 − (α + β)M2tα+β−1,

f ′′(t) = max{p, q}(max{p, q} − 1)M(λ1,λ2)tmax{p,q}−2 − (α + β)(α + β − 1)M2tα+β−2.

Let f ′(t⋆(λ1,λ2)) = 0. We obtain that

t⋆(λ1,λ2) =

(
max{p, q}M(λ1,λ2)

(α + β)M2

) 1
α+β−max{p,q}

.

Since λ1 and λ2 satisfy (1.11), we have that 0 < t⋆(λ1,λ2) ≤ 1. Moreover,

f ′′(t⋆(λ1,λ2)) = max{p, q}(max{p, q} − 1)M(λ1,λ2)

(
max{p, q}M(λ1,λ2)

(α + β)M2

)max{p,q}−2

−(α + β)(α + β − 1)M2

(
max{p, q}M(λ1,λ2)

(α + β)M2

)α+β−2

= (max{p, q} − α − β)M2

(
max{p, q}M(λ1,λ2)

(α + β)M2

)α+β−2

< 0.

Hence, by (1.11), we have

max
t∈[0,1]

f (t) = f (t⋆(λ1,λ2))

= M(λ1,λ2)

(
max{p, q}M(λ1,λ2)

(α + β)M2

) max{p,q}
α+β−max{p,q}

− M2

(
max{p, q}M(λ1,λ2)

(α + β)M2

) α+β
α+β−max{p,q}

−
λ1(p − γ1)

pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)
−
λ2(q − γ2)

qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)

=
α + β −max{p, q}

α + β
M

α+β
α+β−max{p,q}

(λ1,λ2)

(
max{p, q}
(α + β)M2

) max{p,q}
α+β−max{p,q}
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−
λ1(p − γ1)

pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (Ω)
−
λ2(q − γ2)

qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (Ω)

> 0.

Let r(λ1,λ2) = t⋆(λ1,λ2). Hence, we have come to the conclusion.

Lemma 3.2. For each (λ1, λ2) satisfying (1.11), there exists (u(λ1,λ2), v(λ1,λ2)) ∈ W with
∥(u(λ1,λ2), v(λ1,λ2))∥W > r(λ1,λ2) such that ψ(u(λ1,λ2), v(λ1,λ2)) < 0.

Proof. For any given (u, v) ∈ W with
∫
Ω

c(x)|u|α|v|βdµ , 0 and any z ∈ R+, we have

ψ(zu, zv) =
1
p

zp∥u∥p
Wm1 ,p

0 (Ω)
−
λ1

γ1
zγ1

∫
Ω

h1(x)|u|γ1dµ

+
1
q

zq∥v∥q
Wm2 ,q

0 (Ω)
−
λ2

γ2
zγ2

∫
Ω

h2(x)|v|γ2dµ −
1

α + β
zα+β

∫
Ω

c(x)|u|α|v|βdµ

≤
1
p

zp∥u∥p
Wm1 ,p

0 (Ω)
−
λ1h⋆1
γ1

zγ1

∫
Ω

|u|γ1dµ

+
1
q

zq∥v∥q
Wm2 ,q

0 (Ω)
−
λ2h⋆2
γ2

zγ2

∫
Ω

|v|γ2dµ −
1

α + β
zα+β

∫
Ω

c(x)|u|α|v|βdµ. (3.7)

Note that α+β > max{p, q}. So, there exists z(λ1,λ2) large enough such that ∥(z(λ1,λ2)u, z(λ1,λ2)v)∥W > r(λ1,λ2)

and ψ(z(λ1,λ2)u, z(λ1,λ2)v) < 0. Let u(λ1,λ2) = z(λ1,λ2)u and v(λ1,λ2) = z(λ1,λ2)v. Then, the proof is finished.

Lemma 3.3. For each (λ1, λ2) satisfying (1.11), ψ satisfies the Palais-Smale condition.

Proof. For any Palais-Smale sequence (uk, vk) ⊆ W, there exists a constant c with c > 0 such that

|ψ(uk, vk)| ≤ c and ψ′(uk, vk)→ 0 as k → ∞, for all k ∈ N.

Hence, the following holds:

c + ∥uk∥Wm1 ,p
0 (Ω) + ∥vk∥Wm2 ,q

0 (Ω)

≥ ψ(uk, vk) −
1

α + β
⟨ψ′(uk, vk), (uk, vk)⟩

=

(
1
p
−

1
α + β

)
∥uk∥

p
Wm1 ,p

0 (Ω)
+

(
1
q
−

1
α + β

)
∥vk∥

q
Wm2 ,q

0 (Ω)

−λ1

(
1
γ1
−

1
α + β

) ∫
Ω

h1(x)|uk|
γ1dµ − λ2

(
1
γ2
−

1
α + β

) ∫
Ω

h2(x)|vk|
γ2dµ

≥

(
1
p
−

1
α + β

)
∥uk∥

p
Wm1 ,p

0 (Ω)
+

(
1
q
−

1
α + β

)
∥vk∥

q
Wm2 ,q

0 (Ω)

−λ1

(
1
γ1
−

1
α + β

)
H1Cγ1

m1,p(Ω)∥uk∥
γ1

Wm1 ,p
0 (Ω)

−λ2

(
1
γ2
−

1
α + β

)
H2Cγ2

m2,q(Ω)∥vk∥
γ2

Wm2 ,q
0 (Ω)

. (3.8)
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We claim that ∥(uk, vk)∥W is bounded. In fact, if

∥uk∥Wm1 ,p
0 (Ω) → ∞ and ∥vk∥Wm2 ,q

0 (Ω) → ∞ as k → ∞, (3.9)

then it follows from (3.8) that

c + ∥(uk, vk)∥W

≥ min
{

1
p
−

1
α + β

,
1
q
−

1
α + β

} (
∥uk∥

p
Wm1 ,p

0 (Ω)
+ ∥vk∥

q
Wm2 ,q

0 (Ω)

)
−max

{
λ1

(
1
γ1
−

1
α + β

)
H1Cγ1

m1,p(Ω), λ2

(
1
γ2
−

1
α + β

)
H2Cγ2

m2,q(Ω)
} (
∥uk∥

γ1

Wm1 ,p
0 (Ω)

+ ∥vk∥
γ2

Wm2 ,q
0 (Ω)

)
≥ 21−min{p,q}min

{
1
p
−

1
α + β

,
1
q
−

1
α + β

}
∥(uk, vk)∥

min{p,q}
W

−max
{
λ1

(
1
γ1
−

1
α + β

)
H1Cγ1

m1,p(Ω), λ2

(
1
γ2
−

1
α + β

)
H2Cγ2

m2,q(Ω)
}
∥(uk, vk)∥

max{γ1,γ2}

W ,

which contradicts (3.9). If

∥uk∥Wm1 ,p
0 (Ω) → ∞ as k → ∞, (3.10)

and ∥vk∥Wm2 ,q
0 (Ω) is bounded, then (3.8) implies that there exists a constant c1 with c1 > 0 such that

c1 + ∥uk∥Wm1 ,p
0 (Ω) ≥

(
1
p
−

1
α + β

)
∥uk∥

p
Wm1 ,p

0 (Ω)
− λ1

(
1
γ1
−

1
α + β

)
H1Cγ1

m1,p(Ω)∥uk∥
γ1

Wm1 ,p
0 (Ω)

,

which contradicts (3.10). Similarly, if

∥vk∥Wm2 ,q
0 (Ω) → ∞ as k → ∞,

and ∥uk∥Wm1 ,p
0 (Ω) is bounded, we can also obtain a contradiction. Hence, ∥uk∥Wm1 ,p

0 (Ω) and ∥vk∥Wm2 ,q
0 (Ω) are

bounded. Then, there exist subsequences {ukn} ⊂ {uk} and {vkn} ⊂ {vk} such that ukn ⇀ u0 and vkn ⇀ v0

for some u0 ∈ Wm1,p
0 (Ω) and v0 ∈ Wm2,q

0 (Ω) as n→ ∞. Moreover, Lemma 2.1 implies that

ukn → u0 in Wm1,p
0 (Ω) and vkn → v0 in Wm2,q

0 (Ω) as n→ ∞.

The proof is complete.

Proof of Theorem 1.1. Applying Lemmas 3.1–3.3 and Lemma 2.3, we obtain that for each (λ1, λ2)
satisfying (1.11), system (1.9) admits one nontrivial solution (u0, v0) which has positive energy. Next,
similar to the proof of Theorem 3.3 in [20] and Theorem 1.3 in [21], we prove that system (1.9) admits
one nontrivial solution of negative energy. Note that γ1 < p and γ2 < q. Then, it follows from (3.7)
that there exists z small enough such that

ψ(zu, zv) < 0.

So,
−∞ < inf{ψ(u, v) : (u, v) ∈ B̄r(λ1 ,λ2)} < 0,
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where r(λ1,λ2) is given in Lemma 3.1 and B̄r(λ1 ,λ2) = {(u, v) ∈ W
∣∣∣∥(u, v)∥W ≤ r(λ1,λ2)}. Moreover, by Lemma

3.1, for each (λ1, λ2) satisfying (1.11), the following holds:

−∞ < inf
B̄r(λ1 ,λ2)

ψ(u, v) < 0 < inf
∂Br(λ1 ,λ2)

ψ(u, v).

Set

1
n
∈

0, inf
∂Br(λ1 ,λ2)

ψ(u, v) − inf
B̄r(λ1 ,λ2)

ψ(u, v)

 , n ∈ N. (3.11)

By the definition of an infimum, we obtain that there is a point (un, vn) ∈ B̄r(λ1 ,λ2) satisfying

ψ(un, vn) ≤ inf
B̄r(λ1 ,λ2)

ψ(u, v) +
1
n
. (3.12)

Since ψ(u, v) ∈ C1(W,R), ψ(u, v) is lower semicontinuous. Hence, using Lemma 2.4, we get

ψ(un, vn) ≤ ψ(u, v) +
1
n
∥(u, v) − (un, vn)∥W , ∀(u, v) ∈ B̄r(λ1 ,λ2) .

Moreover, (3.11) and (3.12) imply that

ψ(un, vn) ≤ inf
B̄r(λ1 ,λ2)

ψ(u, v) +
1
n
< inf

∂Br(λ1 ,λ2)

ψ(u, v);

thus, (un, vn) ∈ Br(λ1 ,λ2) . Set Mn : W → R as

Mn(u, v) = ψ(u, v) +
1
n
∥(u, v) − (un, vn)∥W .

Then, (un, vn) ∈ Br(λ1 ,λ2) is the minimum point of Mn on B̄r(λ1 ,λ2) . Hence, for some (u, v) ∈ W satisfying
that ∥(u, v)∥W = 1, assume that t > 0 is small enough such that (un + tu, vn + tv) ∈ B̄r(λ1 ,λ2) . Then

Mn(un + tu, vn + tv) − Mn(un, vn)
t

≥ 0. (3.13)

By (3.13) and the definition of Mn, the following holds:

⟨ψ′(un, vn), (u, v)⟩ ≥ −
1
n
.

Similarly, if t < 0 and |t| is small enough, then

⟨ψ′(un, vn), (u, v)⟩ ≤
1
n
.

Therefore,

∥ψ′(un, vn)∥ = sup
∥(u,v)∥W=1

|⟨ψ′(un, vn), (u, v)⟩| ≤
1
n
. (3.14)
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Thus, (3.12) and (3.14) imply that

ψ(un, vn)→ inf
B̄r(λ1 ,λ2)

ψ(u, v) and ∥ψ′(un, vn)∥ → 0 as n→ ∞.

Hence, by using Lemma 3.3, we know that there exists a subsequence {(unk , vnk)} ⊂ {(un, vn)} satisfying
that (unk , vnk)→ (u⋆0 , v

⋆
0 ) ∈ B̄r(λ1 ,λ2) as k → ∞, and that

ψ(u⋆0 , v
⋆
0 ) = inf

B̄r(λ1 ,λ2)

ψ(u, v) < 0 and ψ′(u⋆0 , v
⋆
0 ) = 0.

Hence, system (1.9) admits a nontrivial solution (u⋆0 , v
⋆
0 ) which has negative energy.

Proof of Theorem 1.2. For each λ1 > 0, assume that (u, 0) is a semi-trivial solution of system (1.9).
Then, we have∫

Ω∪∂Ω

|∇m1u|pdµ = λ1

∫
Ω

h1(x)|u|γ1dµ ≤ λ1H1

∫
Ω

|u|γ1dµ ≤ λ1H1Cγ1
m1,p(Ω)∥u∥γ1

Wm1 ,p
0 (Ω)

.

Hence,

∥u∥Wm1 ,p
0 (Ω) ≤

(
λ1H1Cγ1

m1,p(Ω)
) 1

p−γ1 .

Similarly, for each λ2 > 0, if (0, v) is a semi-trivial solution of system (1.9), we can also obtain

∥v∥Wm2 ,q
0 (Ω) ≤

(
λ2H2Cγ2

m2,q(Ω)
) 1

q−γ2 .

4. Proofs for Theorem 1.3

In this section, we discuss the existence of a ground-state solution for (1.12) by using Lemma 2.5
and Theorem 3.3 in [4]. In [4], Brown and Wu researched the following operator equation basd on the
fibering maps and the Nehari manifold:

A(u) − B(u) −C(u) = 0, u ∈ S , (4.1)

where S is a reflexive Banach space, A, B,C : S → S ∗ are homogeneous operators of degree p−1, α−1
and γ − 1 with 1 < γ < p < α. The energy functional of (4.1) is

J(u) =
1
p
⟨A(u), u⟩ −

1
α
⟨B(u), u⟩ −

1
γ
⟨C(u), u⟩, (4.2)

the fibering map is

Gu(t) =
1
p
⟨A(u), u⟩tp −

1
α
⟨B(u), u⟩tα −

1
γ
⟨C(u), u⟩tγ, (4.3)

for all t > 0, and the Nehari manifold is

N = {u ∈ S \ {0}
∣∣∣⟨J′(u), u⟩ = 0}.
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Define
ϕ(u) = ⟨J′(u), u⟩.

Then, N can be divided into the following three parts:

N+ = {u ∈ N
∣∣∣⟨ϕ′(u), u⟩ > 0},

N0 = {u ∈ N
∣∣∣⟨ϕ′(u), u⟩ = 0},

N− = {u ∈ N
∣∣∣⟨ϕ′(u), u⟩ < 0}.

In [4], Brown and Wu obtained the following results.

Lemma 4.1. ( [4], Lemma 2.5) For any u ∈ S , when ⟨B(u), u⟩ > 0 and ⟨C(u), u⟩ > 0, there exist t+u and
t−u with 0 < t+u < t−u such that Gu(t) is increasing on the interval (t+u , t

−
u ) and decreasing on the interval

(0, t+u ) and interval (t−u ,+∞).

Lemma 4.2. ( [4], Theorem 3.3) If the following conditions hold:
(H1) u→ ⟨A(u), u⟩ is a weakly lower semicontinuous function on S and there is a continuous function
κ : [0,+∞) → [0,+∞) with κ(s) > 0 on (0,+∞) and lims→∞ κ(s) = ∞ such that for all u ∈ S ,
⟨A(u), u⟩ ≥ κ(∥u∥)∥u∥;
(H2) there exist ui ∈ S , i = 1, 2 such that

⟨B(u1), u1⟩ > 0, ⟨C(u2), u2⟩ > 0;

(H3) B,C are strongly continuous;
(H4) there exist two positive constants d1, d2 with

dα−p
1 dp−γ

2 ≤ (p − γ)p−γ(α − p)α−p(α − γ)γ−α,

such that

⟨B(u), u⟩ ≤ d1[⟨A(u), u⟩]
γ
p , (4.4)

⟨C(u), u⟩ ≤ d2[⟨A(u), u⟩]
α
p , (4.5)

then (4.1) admits at least two nontrivial solutions u+0 and u−0 , where

u+0 ∈ N
+, J(u+0 ) = inf

u∈N+
J(u),

u−0 ∈ N
−, J(u−0 ) = inf

u∈N−
J(u),

and N0 = ∅.

In the locally finite graph G = (V, E) setting, let S = Wm,p
0 (Ω) and

⟨A(u), u⟩ = ∥u∥p
Wm,p

0 (Ω)
, (4.6)

⟨B(u), u⟩ =
∫
Ω

c(x)|u|αdµ, (4.7)

⟨C(u), u⟩ = λ

∫
Ω

h(x)|u|γdµ. (4.8)
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Similar to the arguments in [4], (H1)–(H3) hold with A, B and C respectively defined by (4.6)–(4.8).
Note that

C0 = max
x∈Ω

c(x), H0 = max
x∈Ω

h(x).

Lemma 2.1 implies that the following holds:∫
Ω

c(x)|u|αdµ ≤ C0Cα
m,p(Ω)∥u∥αWm,p

0 (Ω) (4.9)

and

λ

∫
Ω

h(x)|u|γdµ ≤ λH0Cγ
m,p(Ω)∥u∥γ

Wm,p
0 (Ω)

. (4.10)

Let

d1 = C0Cα
m,p(Ω), d2 = λH0Cγ

m,p(Ω).

Then (4.4) and (4.5) hold. Moreover, note that

λ0 =
p − γ
H0

C−γm,p(Ω)
((

C0Cα
m,p(Ω)

)p−α
(α − p)α−p(α − γ)γ−α

) 1
p−γ
.

Then, it is easy to see that (H4) holds if λ ∈ (0, λ0). Thus, by Lemma 4.2, (1.12) admits at least two
nontrivial solutions u+0 ∈ N

+ and u−0 ∈ N
−, and one of them must be a ground-state solution. Next, we

discuss which is the ground-state solution. Note that the energy functional of (1.12) is

J(u) =
1
p
∥u∥p

Wm,p
0 (Ω)

−
λ

γ

∫
Ω

h(x)|u|γdµ −
1
α

∫
Ω

c(x)|u|αdµ, ∀u ∈ Wm,p
0 (Ω), (4.11)

and for each u ∈ Wm,p
0 (Ω)\{0}, the corresponding fibering map is

Gu(t) =
tp

p
∥u∥p

Wm,p
0 (Ω)

−
λ

γ
tγ

∫
Ω

h(x)|u|γdµ −
tα

α

∫
Ω

c(x)|u|αdµ, ∀t ∈ (0,+∞). (4.12)

We can obtain that Gu(t) has positive values if λ ∈ (0, λ⋆) where λ⋆ is defined by (1.13). In fact, we
define

Fu(t) =
tp

p
∥u∥p

Wm,p
0 (Ω)

−
tα

α

∫
Ω

c(x)|u|αdµ.

By (4.9), we have

max
t>0

Fu(t) = Fu(t0u) (4.13)

=
1
p
∥u∥p

Wm,p
0 (Ω)

 ∥u∥
p
Wm,p

0 (Ω)∫
Ω

c(x)|u|αdµ


p

α−p

−
1
α

∫
Ω

c(x)|u|αdµ

 ∥u∥
p
Wm,p

0 (Ω)∫
Ω

c(x)|u|αdµ


α
α−p

=

(
1
p
−

1
α

)  ∥u∥
α
Wm,p

0 (Ω)∫
Ω

c(x)|u|αdµ


p

α−p
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≥
α − p

pα

(
C0Cα

m,p(Ω)
) p

p−α (4.14)

with

t0u =

 ∥u∥
p
Wm,p

0 (Ω)∫
Ω

c(x)|u|αdµ


1

α−p

.

Furthermore,

λ

γ
tγ0u

∫
Ω

h(x)|u|γdµ

≤
λH0

γ
Cγ

m,p(Ω)∥u∥γ
Wm,p

0 (Ω)
tγ0u

=
λH0

γ
Cγ

m,p(Ω)∥u∥γ
Wm,p

0 (Ω)

 ∥u∥
p
Wm,p

0 (Ω)∫
Ω

c(x)|u|αdµ


γ

α−p

=
λH0

γ
Cγ

m,p(Ω)

 ∥u∥
α
Wm,p

0 (Ω)∫
Ω

c(x)|u|αdµ


γ

α−p

=
λH0

γ
Cγ

m,p(Ω)
(

pα
α − p

Fu(t0u)
) γ

p

. (4.15)

It follows that

Gu(t0u) = Fu(t0u) −
λ

γ
tγ0u

∫
Ω

h(x)|u|γdµ

≥ F
γ
p

u (t0u)

F
p−γ

p
u (t0u) − λ

H0

γ
Cγ

m,p(Ω)
(

pα
α − p

) γ
p
 . (4.16)

Note that
λ⋆ =

γ(α − p)
pαH0C

γ
m,p(Ω)

(
C0Cα

m,p(Ω)
) p−γ

p−α
.

Then, for all u ∈ Wm,p
0 (Ω)\{0}, if λ ∈ (0, λ⋆), it follows that

Gu(t0u) > 0. (4.17)

Moreover, for all u ∈ N−, the following holds:

G′u(1) = ∥u∥p
Wm,p

0 (Ω)
−

∫
Ω

h(x)|u|γdµ −
∫
Ω

c(x)|u|αdµ = ⟨J′(u), u⟩ = 0,

and

G′′u (1) = (p − 1)∥u∥p
Wm,p

0 (Ω)
− (γ − 1)

∫
Ω

h(x)|u|γdµ − (α − 1)
∫
Ω

c(x)|u|αdµ

= p∥u∥p
Wm,p

0 (Ω)
− γ

∫
Ω

h(x)|u|γdµ − α
∫
Ω

c(x)|u|αdµ −
(
∥u∥p

Wm,p
0 (Ω)

−

∫
Ω

h(x)|u|γdµ −
∫
Ω

c(x)|u|αdµ
)

Electronic Research Archive Volume 31, Issue 12, 7473–7495.



7491

= ⟨ϕ′(u), u⟩ − ⟨J′(u), u⟩
< 0.

Then Gu(1) is a local maximum value of Gu(t) on (0,+∞). It is easy to see that for any u ∈ Wm,p
0 (Ω)\{0},

we have

⟨B(u), u⟩ =
∫
Ω

c(x)|u|αdµ > 0,

⟨C(u), u⟩ = λ

∫
Ω

h(x)|u|γdµ > 0.

Then, by Lemma 4.1, for all u ∈ N−, there exist t+u and t−u with 0 < t+u < t−u such that Gu(t) is
increasing on the interval (t+u , t

−
u ) and decreasing on the interval (0, t+u ) and interval (t−u ,+∞), together

with Gu(0) = 0 and (4.17), which implies that both the local maximum point tu = 1 and t0u belong to
the interval (t+u ,+∞). Thus, for each u ∈ N−, we have

J(u) = Gu(1) ≥ Gu(t0u) > 0.

Similarly, for each u ∈ N+, we know that Gu(1) is a local minimum value of Gu(t) on (0,+∞), which
is located at (0, t−u ) by Lemma 4.1. Hence, for each u ∈ N+, we have

J(u) = Gu(1) < Gu(0) = 0.

Therefore, we conclude that (1.12) admits a nontrivial ground-state solution u+0 ∈ N
+ if λ ∈ (0, λ⋆⋆)

where λ⋆⋆ = min{λ0, λ⋆}.

5. Some results on the finite graph

Assume that G = (V, E) is a finite graph. Using similar arguments as for Theorems 1.1 and 1.2, we
can obtain similar results for the following poly-Laplacian system on finite graph G:£m1,pu + a(x)|u|p−2u = λ1h1(x)|u|γ1−2u + α

α+β
c(x)|u|α−2u|v|β, x ∈ V,

£m2,qv + b(x)|v|q−2v = λ2h2(x)|v|γ2−2v + β

α+β
c(x)|u|α|v|β−2v, x ∈ V,

(5.1)

where mi, i = 1, 2 are positive integers, p, q, γ1, γ2 > 1, λ1, λ2, α, β > 0, max{γ1, γ2} < min{p, q} ≤
max{p, q} < α+ β, a, b, h1, h2, c : V → R+. Moreover, similar to the arguments in Theorem 1.3, we can
also obtain a similar result for the following equation:

£m,pu + a(x)|u|p−2u = λh(x)|u|γ−2u + c(x)|u|α−2u, x ∈ V, (5.2)

where m is a positive integer, p, γ > 1, λ, α > 0, γ < p < α, a, h, c : V → R+. For any given m and
s with m ∈ N+ and s > 1, the definition of Wm,s(V) is similar to that of Wm,s(Ω), which changed the
region from Ω to V; the norm is defined as follows:

∥ψ∥Wm,s(V) =

(∫
V

(|∇mψ(x)|s + h(x)|ψ(x)|s)dµ
) 1

s

.
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Similarly, for any given 1 ≤ r < +∞, the definition of Lr(V) is also similar to that of Lr(Ω), and the
norm is defined as follows:

∥u∥Lr(V) =

(∫
V
|u(x)|rdµ

) 1
r

.

For system (5.1), we work in the space of W(V) = Wm1,p(V) ×Wm2,q(V), and for (5.2), we work in the
space of Wm,p(V). Both W(V) and Wm,p(V) are of finite dimension. See [15] for more details.

Denote

M(λ1,λ2)(V) = 21−max{p,q}min
{

1 − λ1C
p
p(V)

p
,

1 − λ2C
q
q(V)

q

}
,

M2(V) =
C0(V)

(α + β)2

(
αCα+β

p (V) + βCα+β
q (V)

)
,

where C0(V) = maxx∈V c(x) and Cp(V) and Cq(V) are embedding constants from Wm1,p(V) and Wm2,q(V)
into Lp(V) and Lq(V), respectively, which have been obtained in [22] with

Cp(V) =
(∑

x∈V µ(x)
) 1

p

µ
1
p

minh
1
p

min

and Cq(V) =
(∑

x∈V µ(x)
) 1

q

µ
1
q

minh
1
q

min

.

Next, we state the results similar to Theorems 1.1–1.3. Suppose that λ1 and λ2 satisfy the following
inequalities:

0 < λ1 < C−p
p (V),

0 < λ2 < C−q
q (V),

M(λ1,λ2)(V) ≤ α+β

max{p,q}M2(V),
λ1(p−γ1)

pγ1
∥h1∥

p
p−γ1

L
p

p−γ1 (V)
+

λ2(q−γ2)
qγ2
∥h2∥

q
q−γ2

L
q

q−γ2 (V)
< α+β−max{p,q}

α+β
M

α+β
α+β−max{p,q}

1

(
max{p,q}
(α+β)M2

) max{p,q}
α+β−max{p,q}

.

(5.3)

Theorem 5.1. Assume that G = (V, E) is a finite graph. If (λ1, λ2) satisfies (5.3), then system (5.1)
admits at least one nontrivial solution of positive energy and one nontrivial solution of negative energy.

Theorem 5.2. Assume that G = (V, E) is a finite graph. For each λ1 > 0, suppose that (u, 0) is a
semi-trivial solution of system (5.1). Then

∥u∥Wm1 ,p(V) ≤
(
λ1H1(V)Cγ1

p (V)
) 1

p−γ1 ,

where H1(V) = maxx∈V h1(x). Similarly, for each λ2 > 0, suppose that (0, v) is a semi-trivial solution
of system (5.1). It follows that

∥v∥Wm2 ,q(V) ≤
(
λ2H2(V)Cγ2

q (V)
) 1

q−γ2 ,

where H2(V) = maxx∈V h2(x).

Denote

λ0(V) =
p − γ
H0(V)

C−γp (V)
((

C0(V)Cα
p(V)

)p−α
(α − p)α−p(α − γ)γ−α

) 1
p−γ
,
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λ⋆(V) =
γ(α − p)

pαH0C
γ
p(V)

(
C0(V)Cα

p(V)
) p−γ

p−α
, λ⋆⋆(V) = min{λ0(V), λ⋆(V)},

where H0(V) = maxx∈V h(x) and C0(V) = maxx∈V c(x).

Theorem 5.3. Assume that G = (V, E) is a finite graph. If λ ∈ (0, λ0(V)), then (5.2) admits at least one
nontrivial solution of positive energy and one nontrivial solution of negative energy. Furthermore, if
λ ∈ (0, λ⋆⋆(V)), the negative energy solution is the ground-state solution of (5.2).
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