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Abstract: In the current paper, the Cauchy problem for the inhomogeneous nonlinear Schrödinger
equation including inverse-square potential is considered. First, some criteria of global existence
and finite-time blow-up in the mass-critical and mass-supercritical settings with 0 < c ≤ c∗ are
obtained. Then, by utilizing the potential well method and the sharp Sobolev constant, the sharp
condition of blow-up is derived in the energy-critical case with 0 < c < N2+4N

(N+2)2 c∗. Finally, we
establish the mass concentration property of explosive solutions, as well as the dynamic behaviors of
the minimal-mass blow-up solutions in the L2-critical setting for 0 < c < c∗, by means of the variational
characterization of the ground-state solution to the elliptic equation, scaling techniques and a suitable
refined compactness lemma. Our results generalize and supplement the ones of some previous works.
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1. Introduction

This article discusses the Cauchy problem for the following inhomogeneous nonlinear Schrödinger
equation (NLS) with inverse-square potential:iφt = (−∆ − c|x|−2)φ − K(x)|φ|p−2φ, t > 0, x ∈ RN ,

φ(0, x) = φ0 ∈ H1(RN), x ∈ RN ,
(1.1)

where N ≥ 3, 0 < T ≤ ∞, φ : [0,T ) × RN → C, K(x) ∈ C1(RN ,R), 2 < p ≤ p∗ = 2N
N−2 and 0 < c ≤ c∗,

where c∗ = (N−2)2

4 represents the sharp constant of the following Hardy’s inequality:

c∗
∫
RN
|x|−2|φ|2dx ≤

∫
RN
|∇φ|2dx, φ ∈ H1(RN).
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The model of inhomogeneous NLS (1.1) with inverse-square potential can be applied to a variety of
physical environments, such as black hole solutions of Einstein’s equations or quantum field equations
(see e.g., [1–3]) and quantum gas theory (see e.g., [4–6]).

In the present work, our interest focuses on the optimal criteria of global existence and finite-time
blow-up, as well as the L2-concentration property and the dynamics of blow-up solutions for Eq (1.1),
which are pursued in both mathematics and physics.

Before going further, we recall some existing results. When c = 0, Eq (1.1) becomes the following
common inhomogeneous NLS:

iφ = −∆φ − K(x)|φ|p−2φ, (1.2)

which is widely used in fields such as quantum mechanics, nonlinear optics and Bose-Einstein
condensation. In the past several decades, this kind of NLS has garnered a great deal of interest.
Under the condition of K(x) = 1 in Eq (1.2), Weinstein [7] not only applied the ground-state solution
to the scalar equation

∆φ − φ + |φ|
4
N = 0 (1.3)

to establish the sharp criterion of global and blow-up solutions, he also showed the existence of the
unstable standing wave solutions in the L2-critical case (p = 2 + 4

N ). Merle, in [8], proved the mass
concentration of explosive solutions and classified the minimal-mass blow-up solutions on non-radial
data in the L2-critical setting by utilizing the concentration lemma and pseudo-conformal
transformation, together with the variational characterization of the ground-state solution to Eq (1.3).
In [9], Hmidi and Keraani proposed a refined compactness lemma by applying the profile
decomposition to bounded sequences in H1(RN). In view of the obtained compactness result, they
also gave the simpler proofs to the concentration property of solutions blowing up in finite time,
the limiting profile and determination of the minimal blow-up solutions to the homogeneous
L2-critical NLS.

Under the condition that K(x) , constant and satisfies some appropriate assumptions, Merle [10]
explored, in detail, the existence or nonexistence for the minimal-mass blow-up solutions, as well
as the blow-up dynamical properties of solutions to Eq (1.2). Shu and Zhang [11] derived a sharp
condition for the existence of a global solution to Eq (1.2) with the mass critical exponent p = 2 + 4

N
by constructing some cross-invariant manifolds and variational problems. It is also worth noting that,
for p = 2 + 4

N−2 and K(x) , constant satisfying (A1) – (A2) (see Section 2), Liu [12] established a new
sharp criterion for the explosive solutions to the H1-critical inhomogeneous Eq (1.2) with p = 2 + 4

N−2
for the non-radial case by using the potential well method. These studies are strongly dependent on
the hypotheses imposed on the inhomogeneous coefficient K(x). Then, a natural problem arises: Are
these results valid for the inhomogeneous NLS (1.1) with inverse-square potential (c , 0) and variable
coefficient K(x) , constant? It is one of our starting points to study problem (1.1) in the current article.

For the case that c , 0 and K(x) = 1, Eq (1.1) corresponds to the homogeneous NLS with inverse-
square potential, which has been extensively discussed due to the singular property of inverse-square
potential c|x|−2. In [13, 14], the authors researched the global scattering and blow-up problems for the
focusing and defocusing NLS in the intercritical and energy-critical settings, respectively. By making
full use of the ground state to the elliptic equation

−∆φ − c|x|−2φ − |φ|p−2φ + φ = 0, φ ∈ H1(RN), (1.4)
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Dinh [15] showed the finite-time blow-up and global existence of radially symmetric and non-radial
solutions of Eq (1.1) in the mass-critical and mass-supercritical settings with c < 0 or 0 < c < c∗, as
well as the criterion of blow-up solutions for the energy-critical case with c , 0 and c < N2+4N

(N+2)2 c∗,
respectively. By replacing the power-type nonlinearity by −(Iα ∗ |φ|p)|φ|p−2φ in Eq (1.1), in light
of Dinh [15], Li [16] investigated the criteria of global existence versus blow-up for non-radial
and radial solutions to the L2-critical and L2-supercritical Choquard equation in the cases of
0 < c < c∗ and c < 0, respectively. Under the condition that N ≥ 3, p = 2 + 4

N and 0 < c < c∗ in
Eq (1.1), Csobo and Genoud [17] showed that the ground-state solution to the mass critical Eq (1.4)
exists, and they obtained an optimal condition for global existence. In addition, the ground-state
solution of Eq (1.4) and pseudo-conformal transformation were applied to classify the explosive
solutions with minimal-mass for Eq (1.1) in [17], and a detailed characterization of minimal blow-up
solutions was given via the variational characteristic of the ground-state solution to Eq (1.4) and the
concentration compactness principle related to the Hardy functional. For the critical case of c = c∗ in
Eq (1.1), Mukherjee et al. [18] was the first to verify the existence and uniqueness of the ground-state
solution to Eq (1.4) for 2 < p < p∗, which was applied to establish the criteria of blow-up versus
global existence dichotomy for the homogeneous Eq (1.1). Moreover, by taking advantage of the
variational characterization to the ground-state solution of Eq (1.4) and the corresponding
concentration compactness principle, they studied the mass concentration phenomenon of explosive
solutions and gave a complete characterization of the minimal-mass blow-up solutions. Regarding the
case that p = 2 + 4

N and 0 < c < c∗, Bensouilah [19] proposed a refined compactness lemma related to
the Hardy functional by using the profile decomposition technique in H1(RN), and they applied it to
investigate the L2-concentration property of solutions blowing up at time 0 < T < ∞. Based on [17]
and [19], Pan and Zhang [20] demonstrated the accurate L2-concentration property for the explosive
solutions with a minimal mass by using the variational characterization to the ground state of Eq (1.4)
and the compactness lemma proposed by [19]. For 0 < c < c∗ or c < 0 in Eq (1.1), the authors
of [21, 22] studied the stability and strong instability of standing waves for different values of p. For
the homogeneous NLS including combined nonlinearities and inverse-square potential, Xia [23],
Cao [24] and Li and Zou [25] researched the global existence and scattering, the existence of stable
standing waves or the existence and properties of normalized solutions, respectively. Regarding the
standing waves, Goubet and Manoubi [26] researched the existence and orbital stability of standing
waves for a class of NLS involving a discontinuous dispersion. Zuo et al. [27] applied a variational
approach based on the scaling function method to investigate the existence of normalized solutions for
a kind of fractional NLS with bounded parametric potential; the solutions have attracted widespread
attention due to their important applications in many settings, such as physics.

For K(x) = λ|x|−b with λ = ±1, 0 < b < 2 and 0 < c < c∗, Campos and Guzmán [28] and An
et al. [29] considered the blow-up and global solutions to Eq (1.1). Pan and Zhang [30] studied the
existence of a ground-state solution to the corresponding L2-critical inhomogeneous elliptic equation
with K(x) = |x|−b, and they proved the uniqueness of the minimal-mass blow-up solutions by using
the concentration compactness principle, with respect to the Hardy functional and inhomogeneous
nonlinearity, as well as variational characterization to the ground state. To the best of our knowledge,
there is no literature concerning the inhomogeneous Eq (1.1) that includes inverse-square potential and
the general C1 variable coefficient K(x), which has significant differences with the cases of [15,17–20].
Therefore, it is particularly meaningful for us to study Eq (1.1).
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Motivated by the works mentioned above, the aims of this paper are to gain the criteria for the
existence of global or finite-time blow-up solutions to Eq (1.1) in the L2-critical, L2-supercritical cases
and the sharp criterion of blow-up in the energy-critical case, as well as the blow-up dynamics of
solutions in finite time. The main difficulty stems from the presence of inverse-square potential c|x|−2

and variable coefficient K(x), leading to the loss of pseudo-conformal symmetry and scaling invariance,
which play a vital role in the research on the blow-up dynamics; see [9, 18] for example. To overcome
the difficulty, we utilize the unique ground-state solution of Eq (3.1) to establish the global existence
and blow-up results to the mass-critical and mass-supercritical inhomogeneous NLS and apply the
ground state to characterize the blow-up dynamic behavior of solutions to Eq (1.1). To be more precise,
enlightened by [15,18], we first obtain some sharp thresholds for global existence and finite-time blow-
up in the L2-critical and L2-supercritical cases for 0 < c ≤ c∗ in terms of the ground state for Eq (3.1).
It is worth mentioning that, in this work, for 0 < c < c∗ and p = 2 + 4

N , the argument regarding
the existence of explosive solutions is established through scaling techniques, which differs from the
methods of [15, 18]. Then, under the assumptions (A1) – (A2) on the inhomogeneous coefficient K(x)
(see Section 2), following the ideas of [12] and [15], we derive the sharp criterion of blow-up in the
energy-critical case with 0 < c < N2+4N

(N+2)2 c∗ by utilizing the potential well method and the sharp Sobolev
constant. Finally, in light of [10, 19, 20], we establish the mass concentration property of explosive
solutions, as well as the dynamic behaviors of the minimal-mass blow-up solutions in the L2-critical
setting for 0 < c < c∗. The main ingredients we use in the proofs of the dynamics are the variational
characterization of the ground state for Eq (3.1), scaling techniques and a refined compactness lemma
proposed by Bensouilah [19]. Our results generalize and supplement the results of [12, 15, 18–20].

The remaining parts of the present article is structured as follows. Section 2 gives some notations
and important hypotheses, as well as some useful lemmas. Section 3 considers the criteria for the
global existence and finite-time blow-up of Eq (1.1) in the L2-critical and L2-supercritical cases, as
well as the sharp blow-up criterion in the energy-critical case, respectively. The last section focuses on
the blow-up dynamics of solutions in the L2-critical setting with 0 < c < c∗.

2. Notations and preliminaries

To simplify the symbols, we use the abbreviation
∫
· dx to represent

∫
RN · dx, and we denote || ·

||Lp (1 ≤ p < ∞) by || · ||p. C represents a positive constant, which may vary from line to line.
Hereafter, we assume that the inhomogeneous coefficient K(x) satisfies some of the following

hypotheses: there exist K2 ≥ K1 > 0 such that

(A1) ∀x ∈ RN , K1 = in fx∈RN K(x) ≤ K(x) ≤ supx∈RN K(x) = K2 < ∞;

(A2) ∀x ∈ RN , x · ∇K(x) ≤ 0 and |x · ∇K(x)| ≤ C;

(A3) there is x0 ∈ R
N satis f ying that K(x0) = K2.

In accordance with Dinh [15] and Okazawa et al. [31], we have the following argument regarding
the local well-posedness of solutions to Eq (1.1).

Proposition 2.1. Let φ0 ∈ H1(RN), 2 < p < p∗ and 0 < c ≤ c∗ or p = p∗ and 0 < c < N2+4N
(N+2)2 c∗, and

assume that (A1) holds ; then, for T ∈ (0,∞] (maximal existence time), the unique solution φ(t, x) ∈
C([0,T ),H1(RN)) for Eq (1.1) exists. Meanwhile, one has the alternative T = ∞ (global existence),
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or else T < ∞ and limt→T ||φ(t, x)||H1(RN ) = ∞ (blow-up). Furthermore, for all t ∈ [0,T ), the solution
φ(t, x) possesses the conserved quantities of mass and energy as shown below:∫

|φ(t, x)|2dx =
∫
|φ0|

2dx, (2.1)

E(φ0) = E(φ(t, x)) =
1
2

∫
|∇φ|2dx −

c
2

∫
|x|−2|φ|2dx −

1
p

∫
K(x)|φ|pdx. (2.2)

Define the Hardy functional as below:

H(φ) =
∫
|∇φ|2dx − c

∫
|x|−2|φ|2dx,

which is of great importance in analyzing the dynamical properties for blow-up solutions. Taking
account of the hypothesis on c, the semi-norm defined by H(φ) on H1(RN) is equivalent to ||∇φ||22.
Thus, the solution φ(t, x) to Eq (1.1) blows up at T > 0 if and only if limt→T H(φ) = ∞.

To go further, we review some useful lemmas.

Lemma 2.2. (Hardy-Gagliardo-Nirenberg inequality ( [18, 32])) Let N ≥ 3, 0 < c ≤ c∗ and 2 < p <
p∗. Then, we obtain

∥φ∥p ≤
1

CHGN
H(φ)

θ
2 ∥φ∥1−θ2 , θ =

N
2
−

N
p
, (2.3)

for all φ ∈ H1(RN), with the sharp constant

CHGN = ∥Q(x)∥
p−2

p

2 (1 − θ)
1
p (
θ

1 − θ
)

N(p−2)
4p ,

where Q(x) is the unique radial positive solution to the elliptic equation (1.4).

Lemma 2.3. ( [7]) Assume that φ ∈ H1(RN); then, we get∫
|φ|2dx ≤

2
N

( ∫
|∇φ|2dx

) 1
2
( ∫
|x|2|φ|2dx

) 1
2

.

Lemma 2.4. (Sharp Sobolev embedding ( [33])) Let N ≥ 3 and 0 < c < c∗; then, we have

|| f ||p∗ ≤ CS E(c)H( f )
1
2 ,

where the sharp Sobolev constant CS E(c) is as follows:

CS E(c) = sup{|| f ||p∗ ÷ H( f )
1
2 : f ∈ H1(RN)}. (2.4)

3. Global existence and blow-up of the solutions to Eq (1.1)

In the current section, we are devoted to researching the criteria for the global existence and finite-
time blow-up to Eq (1.1) in the L2-critical and L2-supercritical settings, as well as the sharp threshold of
blow-up in the energy-critical case, respectively. As we know, the ground state has a crucial role in the
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criteria for blow-up versus global existence, and it is the unique positive radially symmetric solution
of the following elliptic equation with power nonlinearity and inverse-square potential:

−∆φ − c|x|−2φ − K2|φ|
p−2φ + φ = 0, φ ∈ H1(RN), (3.1)

where K2 is same as the hypotheses (A1) – (A3). Furthermore, we will apply the ground-state solution
of Eq (3.1) to characterize the dynamical properties of explosive solutions in the next section.

Assume that Q(x) is the unique radial positive solution to Eq (1.4); by the scaling transformation

QK2(x) = K
− 1

p−2

2 Q(x), it is easy to obtain that QK2(x) is the positive ground state of Eq (3.1). Combining
Eqs (1.4) and (3.1), we immediately get the scaling identity and Pohoz̆aev identities as follows:

||QK2 ||
2
2 = K

− 2
p−2

2 ||Q||22, (3.2)

||QK2 ||
2
2 =

4 − (N − 2)(p − 2)
N(p − 2)

H(QK2), ||QK2 ||
p
p =

2p
NK2(p − 2)

H(QK2). (3.3)

Define the following functionals:

EK2(φ) =
1
2

H(φ) −
K2

p
||φ||pp,

L(c) = EK2(QK2)||QK2 ||
2σ
2 , G(c) = H(QK2)

1
2 ||QK2 ||

σ
2 , (3.4)

where σ = 2N+2p−N p
N p−2N−4 when 2 + 4

N < p < 2 + 4
N−2 . From Eqs (2.3), (3.2) and (3.3), one has

Cp
HGN =

2p − N p + 2N
2p

K2||QK2 ||
p−2
2

( N p − 2N
2p − N p + 2N

) N(p−2)
4

(3.5)

=
N(p − 2)

2p
K2H(QK2)

p−2
2

[4 − (N − 2)(p − 2)
N(p − 2)

] 2p+2N−N p
4

= K
p
2

2 ||QK2 ||
p(p−2)

2
p

[4 − (N − 2)(p − 2)]
2p+2N−N p

4 [N(p − 2)]
N p−2N

4

(2p)
p
2

and
EK2(QK2) =

N p − 2N − 4
2[4 − (N − 2)(p − 2)]

||QK2 ||
2
2 =

N p − 2N − 4
2N(p − 2)

H(QK2). (3.6)

It follows from Eqs (3.2)–(3.6) that

L(c) =
N p − 2N − 4
2(N p − 2N)

[ 2pCp
HGN

(N p − 2N)K2

] 4
N p−2N−4

and

G(c) =
[ 2pCp

HGN

(N p − 2N)K2

] 2
N p−2N−4

. (3.7)

In particular, we have

L(c) =
N p − 2N − 4
2(N p − 2N)

G2(c). (3.8)
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Now, we consider the virial-type identities, which play a key role in the research of the existence of
explosive solutions to Eq (1.1). Let

Σ = {φ ∈ H1(RN) : xφ ∈ L2(RN)},

and for φ(t, x) ∈ Σ, we introduce the variance functional

V(t) =
∫
|x|2|φ(t, x)|2dx.

Then, we are able to derive the following conclusion.

Proposition 3.1. Assume that 2 < p < p∗ and 0 < c ≤ c∗ or p = p∗ and 0 < c < N2+4N
(N+2)2 c∗, and let

φ(t, x) be a solution of problem (1.1) on t ∈ [0,T ). If φ0 ∈ H1(RN) and |x|φ0 ∈ L2(RN), then φ(t, x) ∈ Σ
for any t ∈ [0,T ) and V(t) satisfies the following identities:

V ′(t) = 4Im
∫

x∇φφdx

and

V ′′(t) = 8H(φ) +
8N − 4N p

p

∫
K(x)|φ|pdx +

8
p

∫
|φ|p · x · ∇K(x)dx

= 16E(φ0) +
4(4 + 2N − N p)

p

∫
K(x)|φ|pdx +

8
p

∫
|φ|p · x · ∇K(x)dx. (3.9)

Proof. Based on the work of Csobo and Genoud [17] (see also Cazenave [34]), by a formal
computation, it is easy to obtain that

V ′(t) = 2Re
∫
|x|2φ̄φtdx

= 2Re(−i)
∫
|x|2φ̄(−∆φ − c|x|−2φ − K(x)|φ|p−2φ)dx

= 4Im
∫

x∇φφ̄dx

and

V ′′(t) = 4Im
d
dt

∫
x∇φφ̄dx

= 4(−Im
∫

Nφtφ̄dx + 2Im
∫

x∇φφ̄tdx) = 4(I1 + I2), (3.10)

where

I1 = −Im
∫

Nφ̄φtdx = NRe
∫
φ̄(−∆φ − c|x|−2φ − K(x)|φ|p−2φ)dx

= N
∫

(|∇φ|2 − c|x|−2|φ|2 − K(x)|φ|p)dx, (3.11)
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I2 = 2Im
∫

x∇φφ̄tdx = −2Im
∫

x∇φ̄φtdx

= 2Re
∫

x∇φ̄(−∆φ − c|x|−2φ − K(x)|φ|p−2φ)dx

= −(N − 2)
∫
|∇φ|2dx − (2 − N)

∫
c|x|−2|φ|2dx

+
2N
p

∫
K(x)|φ|pdx +

2
p

∫
|φ|p · x · ∇K(x)dx. (3.12)

From Eqs (3.10)–(3.12), we claim that Eq (3.9) holds.

From Proposition 3.1 and Lemma 2.3, we get the following sufficient conditions for blow-up.

Corollary 3.2. Assume that 2 + 4
N ≤ p ≤ p∗ and (A1) and (A2) hold; if φ0 ∈ Σ and φ0 meets one of the

three conditions below:
Case 1): E(φ0) < 0;
Case 2): E(φ0) = 0 and Im

∫
x∇φ0φ̄0dx < 0;

Case 3): E(φ0) > 0 and Im
∫

x∇φ0φ̄0dx + (2V(0)E(φ0))
1
2 ≤ 0,

then blow-up of the solution φ(t, x) to Eq (1.1) occurs in finite time.

Proof. Since K(x) satisfies (A1) and (A2), using Proposition 3.1, we have

V ′′(t) ≤ 16E(φ0).

Thus

0 ≤ V(t) = V(0) + V ′(0)t +
∫ t

0
(t − s)V ′′(s)ds

≤ V(0) + V ′(0)t + 8E(φ0)t2.

Then, for each of the cases 1, 2 or 3, one can deduce that 0 < T < +∞ must exist and satisfy

lim
t→T−

V(t) = lim
t→T−

∫
|x|2|φ(t)|2dx = 0.

This, together with Lemma 2.3, implies that

lim
t→T−
∥∇φ(t)∥2 = +∞.

Therefore, the explosion of the solution φ(t, x) to Eq (1.1) happens in the time period of 0 < T < +∞.

3.1. L2-critical case

The first argument of our work is about the global existence and blow-up of Eq (1.1) in the L2-
critical setting (i.e., p = 2 + 4

N ).

Electronic Research Archive Volume 31, Issue 12, 7427–7451.



7435

Theorem 3.3. Assume that p = 2 + 4
N and φ0 ∈ H1(RN). Let QK2(x) be the positive ground state of

Eq (3.1).
(i) Global existence: Assume that (A1) holds true. If 0 < c ≤ c∗ and ∥φ0∥2 < ∥QK2∥2, then the solution
φ(t, x) of Eq (1.1) exists globally in t ∈ [0,+∞).
(ii) Blow-up: Assume that (A1) and (A2) hold.

(a) Then, for 0 < c < c∗, any λ > 0 and any real constant C1 satisfying that |C1| ≥ ( K2
K1

)
N
4 ≥ 1,

there exists φ0 = C1λ
N
2 QK2(λx) ∈ Σ such that

||φ0||
2
2 ≥ ||QK2 ||

2
2,

and blow-up of the corresponding solution φ(t, x) to problem (1.1) occurs in 0 < T < +∞.
(b) For c = c∗, if E(φ0) < 0 and |x|φ0 ∈ L2(RN), then the blow-up of the solution φ(t, x) for Eq (1.1)
happens in the time period of 0 < T < +∞.

Proof. (i) Since p = 2 + 4
N , we have that pθ = 2 and pCp

HGN = 2∥Q∥
4
N
2 . Thus, from Eq (2.2), (A1),

Eqs (2.3) and (2.1), we have the following estimate:

E(φ0) = E(φ) ≥
1
2

H(φ) −
K2

2∥Q∥
4
N
2

H(φ)
pθ
2 ∥φ0∥

p(1−θ)
2

=
1
2

H(φ) −
K2

2
H(φ)(

∥φ0∥2

∥Q∥2
)

4
N

=
1
2

H(φ) −
1
2

H(φ)(
∥φ0∥2

∥QK2∥2
)

4
N

=
1
2

(1 −
∥φ0∥2

∥QK2∥2
)

4
N H(φ).

Since ∥φ0∥2 < ∥QK2∥2, H(φ) is bounded uniformly for t ∈ [0,+∞). From Proposition 2.1, we claim that
φ(t, x) must be a global solution.

Next, we prove part (ii) of Theorem 3.3. For 0 < c < c∗, let

φ0 = C1λ
N
2 QK2(λx)

for any λ > 0, and C1 ∈ R will be determined later. Based on the scaling arguments, one has that∫
|φ0|

2dx = |C1|
2
∫

Q2
K2

dx; (3.13)∫
|∇φ0|

2dx = |C1|
2λ2
∫
|∇QK2 |

2dx; (3.14)∫
|φ0|

pdx = |C1|
pλ

N(p−2)
2

∫
Qp

K2
dx; (3.15)∫

|x|−2|φ0|
2dx = |C1|

2λ2
∫
|x|−2Q2

K2
dx. (3.16)

Take

|C1| ≥

(K2

K1

) N
4

≥ 1;
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then, we have that φ0 ∈ H1(RN) and |x|φ0 ∈ L2(RN). Indeed, according to Bensouilah-Dinh-Zhu’s
conclusion in [21], one has that Q(x) ∈ H1(RN) and |x|Q(x) ∈ L2(RN). Thus, we obtain that QK2(x) ∈
H1(RN) and |x|QK2(x) ∈ L2(RN), which yields that φ0 = C1λ

N
2 QK2(λx) ∈ Σ. Moreover, it follows from

Eq (3.13) that

||φ0||
2
2 = |C1|

2||QK2 ||
2
2 ≥

(K2

K1

) N
2

||QK2 ||
2
2 ≥ ||QK2 ||

2
2.

From Eq (2.2), (A1), Eqs (3.14)–(3.16) and the Pohoz̆aev identities given by Eq (3.3), we have

E(φ0) =
1
2

H(φ0) −
1
p

∫
K(x)|φ0|

pdx

≤
1
2

H(φ0) −
K1

p

∫
|φ0|

pdx

=
1
2
|C1|

2λ2H(QK2) −
K1

p
Cp

1λ
N(p−2)

2

∫
Qp

K2
dx

=
1
2
|C1|

2λ2
(
1 −

K1

K2
Cp−2

1 λ
N(p−2)

2 −2
)
H(QK2)

< 0,

where the last inequality is based on the fact that p = 2 + 4
N and |C1| ≥ ( K2

K1
)

N
4 ≥ 1. Thus, we infer from

Corollary 3.2 that blow-up of the corresponding solution φ(t, x) to problem (1.1) occurs in 0 < T < +∞.
For c = c∗, if E(φ0) < 0 and |x|φ0 ∈ L2(RN), then, by Corollary 3.2, it is easy to derive that blow-up

of the solution φ(t, x) for Eq (1.1) happens in the time period of 0 < T < +∞.

3.2. L2-supercritical case

Then, we analyze the L2-supercritical case (i.e., 2+ 4
N < p < p∗ = 2+ 4

N−2 ). For this case, we obtain
the threshold for global existence as shown below.

Theorem 3.4. Suppose that N ≥ 3, 0 < c ≤ c∗ and 2+ 4
N < p < p∗. Let φ0 ∈ H1(RN) and φ(t, x) be the

corresponding solution of Eq (1.1). Suppose that

E(φ0)||φ0||
2σ
2 < L(c). (3.17)

(i) Global existence: Assume that (A1) holds. If

H(φ0)
1
2 ||φ0||

σ
2 < G(c), (3.18)

then the global solution φ(t, x) to Eq (1.1) exists. In addition,

H(φ)
1
2 ||φ||σ2 < G(c) f or any t > 0.

(ii) Blow-up: Assume that (A1) – (A2) hold. If

H(φ0)
1
2 ||φ0||

σ
2 > G(c) (3.19)

and |x|φ0 ∈ L2(RN), then the finite-time blow-up solution φ(t, x) of Eq (1.1) exists and

H(φ)
1
2 ||φ||σ2 > G(c) (3.20)

for any t ∈ [0,T ). Furthermore, the finite-time blow-up result still holds true if we assume that
E(φ0) < 0, in place of Eqs (3.17) and (3.19).
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Proof. (i) From Eq (2.2), (A1) and Eq (2.3), one has

E(φ0)||φ0||
2σ
2 = E(φ)||φ||2σ2

≥
1
2

(H(φ)
1
2 ||φ||σ2 )2 −

K2

p
||φ||pp||φ||

2σ
2

≥
1
2

(H(φ)
1
2 ||φ||σ2 )2 −

K2

pCp
HGN

H(φ)
N p−2N

4 ||φ||
2p+2N−N p

2
2 ||φ||2σ2

=
1
2

(H(φ)
1
2 ||φ||σ2 )2 −

K2

pCp
HGN

(H(φ)
1
2 ||φ||σ2 )

N p−2N
2

= f (H(φ)
1
2 ||φ||σ2 ),

where
f (x) =

1
2

x2 −
K2

pCp
HGN

x
N p−2N

2 . (3.21)

Enlightened by the idea of [35] (the function f in [35] differs from ours; however, this change does not
make a significant difference), we will utilize an important fact that f strictly increases in [0,G(c)] and
strictly decreases in [G(c),∞). Moreover, from Eqs (3.21), (3.7) and (3.8), we get

f (G(c)) =
1
2

G2(c) −
K2

pCp
HGN

G
N p−2N

2 (c) = (
1
2
−

2
N p − 2N

)G2(c) = L(c). (3.22)

Thus, combining this with Eqs (3.17), (3.21) and (3.22), we have

f (H(φ)
1
2 ||φ||σ2 ) ≤ E(φ0)||φ0||

2σ
2 < L(c) = f (G(c)). (3.23)

From the above inequality, Eq (3.18) and the continuity argument, we deduce that

H(φ)
1
2 ||φ||σ2 < G(c) f or any t > 0.

From Eq (2.1), we obtain the boundedness of H(φ)
1
2 , which implies that the solution φ(t, x) of Eq (1.1)

exists globally.
We next treat part (ii) of Theorem 3.4. For the case that E(φ0) ≥ 0, we claim that Eq (3.20) holds.

Indeed, from Eqs (3.23) and (3.19) and the continuity argument, one has

H(φ)
1
2 ||φ||σ2 > G(c) f or any t < T,

which means that Eq (3.20) holds true.
On the other hand, from Eq (3.17) and the continuity argument, we can take δ > 0 small enough

such that
E(φ0)||φ0||

2σ
2 ≤ (1 − δ)L(c), (3.24)

which yields that
f (H(φ)

1
2 ||φ||σ2 ) ≤ (1 − δ)L(c). (3.25)

Applying Eqs (3.21), (3.7) and (3.8) to Eq (3.25), one has that

N p − 2N
N p − 2N − 4

(H(φ)
1
2 ||φ||σ2

G(c)

)2
−

4
N p − 2N − 4

(H(φ)
1
2 ||φ||σ2

G(c)

) N p−2N
2

≤ 1 − δ.
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By making use of the continuity argument again, we deduce from Eq (3.19) that there exists δ
′

> 0 that
relies upon δ satisfying

H(φ)
1
2 ||φ||σ2 ≥ (1 + δ

′

)G(c). (3.26)

Moreover, taking

LHS = 8H(φ) +
8N − 4N p

p

∫
K(x)|φ|pdx + ε,

then, for any t ∈ [0,T ), we claim that
LHS < −C < 0

for ε > 0 small enough. In fact, multiplying LHS by ||φ||2σ2 , we obtain

LHS × ||φ||2σ2 = (4pN − 8N)E(φ)||φ||2σ2 + (8 + 4N − 2N p + ε)H(φ)||φ||2σ2 .

Utilizing Eqs (2.1), (2.2), (3.24), (3.26) and (3.8), one has

LHS × ||φ0||
2σ
2 ≤ (4pN − 8N)(1 − δ)L(c) + (8 + 4N − 2N p + ε)(1 + δ

′

)2G2(c)
= [2(N p − 2N − 4)(1 − δ) + (8 + 4N − 2N p + ε)(1 + δ

′

)2]G2(c)
= [2(N p − 2N − 4)(1 − δ − (1 + δ

′

)2) + ε(1 + δ
′

)2]G2(c).

We readily obtain LHS ≤ −C < 0 by taking ε > 0 small enough. Then, it follows from the virial
identity (3.9) and (A2) that

V ′′(t) = 8H(φ) +
8N − 4N p

p

∫
K(x)|φ|pdx +

8
p

∫
|φ|p · x · ∇K(x)dx < −C < 0.

This yields that blow-up of the solution φ(t, x) must occur in the time period of 0 < T < +∞.
The case that E(φ0) < 0 is easy. By Corollary 3.2, we conclude that the finite-time blow-up solution

φ(t, x) of Eq (1.1) exists.

3.3. Energy-critical setting

Finally, the energy-critical setting (i.e., p = p∗ = 2 + 4
N−2 ) for problem (1.1) is considered in this

subsection. According to Dinh [15], taking account the sharp constant (see also Eq (2.4))

S =
1

C2
S E(c)

= inf
φ∈H1(RN )\{0}

H(φ)

(
∫
|φ|

2N
N−2 dx)

N−2
N

,

then we are able to get the optimal blow-up criterion.

Theorem 3.5. Assume that p = p∗, 0 < c < N2+4N
(N+2)2 c∗, φ0 ∈ H1(RN) and E(φ0) < S

N
2

NK
N−2

2
2

. Let φ(t, x) be

the corresponding solution of Eq (1.1), defined on [0,T ) × RN , 0 < T ≤ ∞.

(i) Uniform boundedness: Assume that K(x) satisfies (A1). If H(φ0) < S
N
2

K
N−2

2
2

, then the solution φ(t, x) of

Eq (1.1) is bounded in H1(RN) for t ∈ [0,T ) and H(φ(t)) < S
N
2

K
N−2

2
2

.

(ii) Blow-up: Assume that K(x) satisfies (A1) – (A2). If H(φ0) > S
N
2

K
N−2

2
2

and |x|φ0 ∈ L2(RN), then there

exists 0 < T < ∞ such that the solution φ(t, x) of Eq (1.1) blows up at T .
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Proof. (i) Assume that φ0 ∈ H1(RN) satisfies that E(φ0) < S
N
2

NK
N−2

2
2

and H(φ0) < S
N
2

K
N−2

2
2

. We claim that

H(φ) <
S

N
2

K
N−2

2
2

f or any t ∈ [0,T ). (3.27)

We demonstrate Eq (3.27) by contradiction. Suppose that there exists t1 ∈ (0,T ) such that

H(φ(t1)) = S
N
2

K
N−2

2
2

by using the continuity of the solution φ(t, x) in H1(RN) at time t. By Eq (2.2), (A1)

and Lemma 2.4, we found that

S
N
2

NK
N−2

2
2

> E(φ0) = E(φ(t1))

≥
1
2

H(φ(t1)) −
1
p∗

∫
K2|φ(t1)|p∗dx

≥
1
2

H(φ(t1)) −
K2

p∗
S −

N
N−2 H(φ(t1))

N
N−2

=
1
2

S
N
2

K
N−2

2
2

−
K2

p∗
S −

N
N−2

( S
N
2

K
N−2

2
2

) N
N−2

=
S

N
2

NK
N−2

2
2

,

which contradicts the fact that H(φ(t1)) = S
N
2

K
N−2

2
2

. Therefore, Eq (3.27) holds. This means that the

solution φ(t, x) is bounded in H1(RN) for t ∈ [0,T ).

Now, we prove part (ii) of Theorem 3.5. Since φ0 ∈ H1(RN) satisfies that E(φ0) < S
N
2

NK
N−2

2
2

and

H(φ0) > S
N
2

K
N−2

2
2

. It remains to be proven that

H(φ) >
S

N
2

K
N−2

2
2

f or any t ∈ [0,T ). (3.28)

If otherwise, since φ(t, x) is continuous with respect to time t in H1(RN), we deduce that there exists

t2 ∈ (0,T ) satisfying that H(φ(t2)) = S
N
2

K
N−2

2
2

. Combining Eq (2.2) with (A1), and by Lemma 2.4, one has

the following estimate:

S
N
2

NK
N−2

2
2

> E(φ0) = E(φ(t2))

≥
1
2

H(φ(t2)) −
1
p∗

∫
K2|φ(t2)|p∗dx

≥
1
2

H(φ(t2)) −
K2

p∗
S −

N
N−2 H(φ(t2))

N
N−2

=
1
2

S
N
2

K
N−2

2
2

−
K2

p∗
S −

N
N−2

( S
N
2

K
N−2

2
2

) N
N−2

=
S

N
2

NK
N−2

2
2

,
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which gives a contradiction. Thus, Eq (3.28) holds. Keeping in mind that p∗ = 2+ 4
N−2 and φ0 ∈ H1(RN)

with |x|φ0 ∈ L2(RN), we have

V ′′(t) = 16E(φ0) −
16
N

∫
K(x)|φ|

2N
N−2 dx +

4(N − 2)
N

∫
x · ∇K(x)|φ|

2N
N−2 dx.

Then, we infer from Eqs (3.28) and (2.2) that

−

∫
K(x)|φ0|

2N
N−2 dx =

2N
N − 2

(E(φ0) −
1
2

H(φ0))

<
2N

N − 2

( S
N
2

NK
N−2

2
2

−
S

N
2

2K
N−2

2
2

)
= −

S
N
2

K
N−2

2
2

. (3.29)

Inserting Eq (3.29) into V ′′(t), and then from (A2), one has the estimate

V ′′(t) ≤ 16E(φ0) −
16S

N
2

NK
N−2

2
2

= 16
(
E(φ0) −

S
N
2

NK
N−2

2
2

)
< 0,

from which we know that explosion of the solution φ(t, x) to Eq (1.1) must happen within the time
period of 0 < T < ∞.

Remark 3.6. (i) Under the conditions that K(x) = 1, c = c∗ and 2 < p < p∗ in Eq (1.1), Mukherjee et
al. [18] studied the criterion of blow-up versus global existence in the L2-critical and L2-supercritical
cases (see [18], Theorem 3); Dinh [15] obtained the blow-up and global existence results for Eq (1.1)
for non-radial data in the mass-critical and mass-supercritical cases with 0 < c < c∗, as well as the
sharp blow-up criterion in the energy-critical case with 0 < c < N2+4N

(N+2)2 c∗ (see [15], Theorems 1.3,
1.6 and 1.12). Our results (Theorems 3.3–3.5) generalize the results of [15, 18] to the case of the
inhomogeneous NLS involving inverse-square potential and a bounded positive variable coefficient.
(ii) Given c = 0, Liu [12] verified the sharp existence of non-radial finite-time blow-up solutions to the
inhomogeneous Eq (1.2) in the energy-critical case p = 2N

N−2 (see [12], Theorem 1.2). We extend this
conclusion to the case of the inhomogeneous NLS with inverse-square potential for 0 < c < N2+4N

(N+2)2 c∗

(see Theorem 3.5).
(iii) For 0 < c < N2+4N

(N+2)2 c∗ and p = p∗, we can derive that the global solution of Eq (1.1) exists for some
initial value small enough.

4. Dynamics of blow-up solutions in the L2-critical setting

In the present part, we investigate the dynamics of blow-up solutions in the L2-critical setting
(p = 2 + 4

N ) with 0 < c < c∗, including the mass concentration phenomenon of blow-up solutions and
the dynamical properties of blow-up solutions with a minimal mass for Eq (1.1). To achieve these
goals, we first recall a key compactness lemma established by Bensouilah [19].

Lemma 4.1. Assume that {vn}
∞
n=1 is a bounded sequence in H1(RN) satisfying

lim sup
n→∞

H(vn) ≤ M, lim sup
n→∞

∥vn∥p ≥ m.
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Then, there exists {xn}
∞
n=1 ⊂ R

N such that, up to a subsequence,

vn(x + xn)⇀ U weakly in H1(RN),

with ∥U∥2 ≥ ( N
N+2 )

N
4 m

N
2 +1

M
N
4
∥Q(x)∥2, where Q(x) is the ground-state solution to Eq (1.4).

With Lemma 4.1 in hand, we are able to obtain the following concentration property of the explosive
solutions to Eq (1.1).

Theorem 4.2. (L2-concentration) Assume that K(x) satisfies (A1) and (A2). Suppose that φ(t, x) is a
solution to Eq (1.1) blowing up at finite time T , and that s(t) is a nonnegative real-valued function
on [0,T ) such that s(t)∥∇φ(t)∥2 → +∞ as t → T. Then, there exists a function x(t) ∈ RN for t < T
satisfying

lim inf
t→T

∫
|x−x(t)|≤s(t)

|φ(t, x)|2dx ≥
∫

Q2
K2

dx, (4.1)

where QK2(x) denotes the ground state for Eq (3.1).

Proof. Take

ρ(t) =
[H(QK2)

H(φ)

] 1
2

and v(t, x) = ρ(t)
N
2 φ(t, ρ(t)x). (4.2)

Suppose that {tn}
∞
n=1 is an arbitrary time sequence satisfying that tn → T as n → ∞, and denote

ρn = ρ(tn) and vn(x) = v(tn, x). It follows from Eq (2.1) and the definition of vn that

∥vn∥2 = ∥φ(tn)∥2 = ∥φ0∥2, H(vn) = ρ2
nH(φ) = H(QK2). (4.3)

For v(x) ∈ H1(RN), we define the functional

F(v) = H(v) −
2K2

p
||v||pp.

From (A1) and Eqs (4.3), (2.2) and (4.2), we find that

1
2

F(vn) =
1
2

H(vn) −
K2

p
||vn||

p
p

≤
1
2

H(vn) −
1
p

∫
K(x)|vn|

pdx

= ρ2
n(

1
2

H(φ) −
1
p

∫
K(x)|φ|pdx)

= ρ2
nE(φ0)→ 0 since ρn → 0 as n→ ∞.

Thus,

lim
n→∞

∫
|vn|

pdx ≥
p

2K2
H(QK2) as n→ ∞. (4.4)

Take M = H(QK2) and m2+ 4
N =

p
2K2

H(QK2). Thanks to Lemma 4.1, it is sufficient to demonstrate
that there exist U(x) ∈ H1(RN) and {xn}

∞
n=1 ⊂ R

N such that, up to a subsequence,

vn(· + xn) = ρ
N
2
n φ(tn, ρn · +xn)⇀ U weakly in H1(RN), (4.5)
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with

||U ||2 ≥ (
N

N + 2
)

N
4

m
N
2 +1

M
N
4

||Q||2 = (
N

N + 2
)

N
4

[
( N+2

NK2
)H(QK2)

] N
4

H(QK2)
N
4

||Q||2 = ||QK2 ||2, (4.6)

which leads to
vn(· + xn)⇀ U weakly in L2(RN).

This, together with the lower semi-continuity of the L2-norm, yields

lim inf
n→∞

∫
|x|≤A
ρN

n |φ(tn, ρnx + xn)|2dx ≥
∫
|x|≤A
|U |2dx f or any A > 0. (4.7)

Since

lim
n→∞

s(tn)
ρn
= lim

n→∞

s(tn)H(φ)
1
2

H(QK2)
1
2

= ∞,

there exists n0 > 0 such that for any n > n0, we obtain that Aρn < s(tn). Combining this result and
Eq (4.7), one has

lim inf
n→∞

sup
y∈RN

∫
|x−y|≤s(tn)

|φ(tn, x)|2dx ≥ lim inf
n→∞

∫
|x−xn |≤Aρn

|φ(tn, x)|2dx

= lim inf
n→∞

∫
|x|≤A
ρN

n |φ(tn, ρnx + xn)|2dx

≥

∫
|x|≤A
|U |2dx, f or any A > 0,

which means that

lim inf
n→∞

sup
y∈RN

∫
|x−y|≤s(tn)

|φ(tn, x)|2dx ≥
∫
|U |2dx = ∥U∥22.

According to the arbitrariness of the sequence {tn}
∞
n=1, using the fact that ∥U∥2 ≥ ∥QK2∥2, we obtain

lim inf
t→T

sup
y∈RN

∫
|x−y|≤s(t)

|φ(t, x)|2dx ≥ ∥QK2∥
2
2. (4.8)

For any fixed t ∈ [0,T ), it is simple to infer that the function g(y) :=
∫
|x−y|≤s(t)

|φ(t, x)|2dx is continuous
on y ∈ RN and lim|y|→∞ g(y) = 0. Thus, for any 0 ≤ t < T , there exists a function x(t) ∈ RN that satisfies

sup
y∈RN

∫
|x−y|≤s(t)

|φ(t, x)|2dx =
∫
|x−x(t)|≤s(t)

|φ(t, x)|2dx. (4.9)

Therefore, from Eqs (4.8) and (4.9) we infer that Eq (4.1) holds true.

Corollary 4.3. Suppose that φ(t, x) is a solution of Eq (1.1) blowing up within the time period of
0 < T < ∞. Then, for any l > 0, there exists x(t) ∈ RN for 0 < t < T satisfying that
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lim inf
t→T

∫
B(x(t),l)

|φ(t, x)|2dx ≥
∫

Q2
K2

dx,

where QK2(x) denotes the ground state for Eq (3.1) and B(x(t), l) = {x ∈ RN ||x − x(t)| ≤ l}.
Now, in terms of Theorem 4.2 and Corollary 4.3, we are concerned with the dynamics of blow-up

solutions with the mass ||φ0||2 = ||QK2 ||2.

Theorem 4.4. (Limiting profile) Let K(x) satisfy (A1) – (A2) and assume that ||φ0||2 = ||QK2 ||2. Assume
that φ(t, x) is a corresponding solution to problem (1.1) blowing up within the time period of 0 < T <
∞; then, there exist two functions θ(t) ∈ [0, 2π) and x(t) ∈ RN that satisfy

ρ(t)
N
2 eiθ(t)φ(t, ρ(t)x + x(t))→ QK2 strongly in H1(RN) when t → T,

where QK2(x) denotes the ground state for Eq (3.1) and ρ(t) =
[

H(QK2 )
H(φ)

] 1
2

.

Proof. From Theorem 4.2, we have that ∥U∥2 ≥ ∥QK2∥2 (see Eq (4.6)). Then, by using the assumption
that ∥φ0∥2 = ∥QK2∥2 and Eq (2.1), we obtain

∥QK2∥
2
2 ≤ ∥U∥

2
2 ≤ lim inf

n→∞
∥vn∥

2
2 = lim inf

n→∞
∥φ(tn)∥22 = ∥φ0∥

2
2 = ∥QK2∥

2
2,

which implies that
lim
n→∞
∥vn∥

2
2 = ∥U∥

2
2 = ∥QK2∥

2
2. (4.10)

It follows from Eqs (4.1) and (4.10) that

vn(· + xn) = ρ
N
2
n φ(tn, ρn · +xn)→ U strongly in L2(RN) as n→ ∞. (4.11)

From Eq (2.3), one has

∥vn(x + xn) − U∥2+
4
N

2+ 4
N
≤

1
Cp

HGN

H(vn(x + xn) − U)
θp
2 ||vn(x + xn) − U ||(1−θ)p

2

=
p

2||Q||
4
N
2

H(vn(x + xn) − U)||vn(x + xn) − U ||
4
N
2

≤ C||vn(x + xn) − U ||
4
N
2 (||∇vn(x + xn)||22 + ||∇U ||22)

≤ C∥vn(x + xn) − U∥
4
N
2 , (4.12)

where the last inequality is based on the boundedness of vn(x + xn) in H1(RN). Thus, Eqs (4.11)
and (4.12) give us that

vn(· + xn)→ U in L2+ 4
N (RN) as n→ ∞. (4.13)

Now, we claim that

vn(· + xn)→ U strongly in H1(RN) when n→ ∞. (4.14)

Indeed, we deduce from Eqs (4.3) and (4.4) that

lim
n→∞

∫
|vn|

pdx ≥
p

2K2
H(QK2) =

p
2K2

lim
n→∞

H(vn). (4.15)
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Then, from Eqs (4.5), (4.15), (4.13), (2.3) and (4.10), one has

H(U) ≤ lim inf
n→∞

H(vn) = H(QK2)

≤
2K2

p
lim
n→∞

∫
|vn|

pdx =
2K2

p

∫
|U |pdx

≤
K2

||Q||
4
N
2

H(U)||U ||
4
N
2

=
1

||QK2 ||
4
N
2

H(U)||U ||
4
N
2 = H(U),

which implies that

lim inf
n→∞

H(vn(x + xn)) = H(U) = H(QK2) =
2K2

p

∫
|U |pdx.

From this and Eq (4.5), we get Eq (4.14) and

F(U) = H(U) −
2K2

p

∫
|U |pdx = 0.

In summary, we identify the properties of the profile U as below:

∥U∥22 = ∥QK2∥
2
2, H(U) = H(QK2), F(U) = 0,

from which we deduce that there exist θ ∈ [0, 2π) and x0 ∈ R
N such that

U(x) = eiθQK2(x + x0)

and
ρ

N
2
n φ(tn, ρn · +x0)→ eiθQK2(· + x0) strongly in H1(RN) as n→ ∞,

where we utilize the variational characterization to the ground state QK2 . Since the sequence {tn}
∞
n=1

is arbitrary and tends to T as n → ∞, one can infer that there exist two functions θ(t) ∈ [0, 2π) and
x(t) ∈ RN such that

λ(t)
N
2 eiθ(t)φ(t, λ(t)x + x(t))→ QK2 strongly in H1(RN) when t → T,

with ρ(t) =
[

H(QK2 )
H(φ)

] 1
2

→ 0 as t → T .

Theorem 4.5. Assume that K(x) satisfies (A1) – (A3) and that ∥φ0∥2 = ∥QK2∥2. Denote W = {x ∈
RN |K(x) = K2}. Let φ(t, x) be the corresponding solution to Eq (1.1) blowing up within the time period
of 0 < T < ∞; then the following holds true:
(i) (Location of L2-concentration point) There exists x0 ∈ W such that

lim
t→T

x(t) = x0 and |φ(t, x)|2 → ∥QK2∥
2
2δx=x0 in the distribution sense as t → T, (4.16)

where QK2 is the ground state for Eq (3.1).
(ii) (Blow-up rate) There is a positive constant C > 0 that satisfies

∥∇φ(t)∥2 ≥
C

T − t
f or all t ∈ [0,T ). (4.17)
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Proof. (i) From Eq (2.1) and ∥φ0∥2 = ∥QK2∥2, we deduce that

∥φ∥2 = ∥φ0∥2 = ∥QK2∥2 f or t < T. (4.18)

On the other side, according to Theorem 4.2 and Corollary 4.3, for any l > 0, one has that

∥QK2∥
2
2 ≤ lim inf

t→T

∫
|x−x(t)|≤l

|φ(t, x)|2dx ≤ lim inf
t→T

∫
|φ(t, x)|2dx ≤ ∥φ0∥

2
2. (4.19)

From Eqs (4.18) and (4.19), we have

lim inf
t→T

∫
|x−x(t)|<l

|φ(t, x)|2dx = ∥QK2∥
2
2,

which shows that

|φ(t, x + x(t))|2 → ∥QK2∥
2
2δx=0 in the distribution sense as t → T. (4.20)

We shall demonstrate in what follows that there exists x0 ∈ W satisfying that

|φ(t, x)|2 → ∥QK2∥
2
2δx=x0 in the sense o f distribution as t → T,

which implies that

lim
t→T

∫
w(x)|φ(t, x)|2dx = w(x0)||QK2 ||

2
2, f or any w(x) ∈ C∞0 (RN).

As a matter of fact, for any real-valued function θ(x) ∈ RN and any β ∈ R, from (A1) and Eq (2.3), one
has the following estimate

E(eiβθ(x)φ) =
1
2

H(eiβθ(x)φ) −
1
p

∫
K(x)|eiβθ(x)φ|pdx

≥
1
2

H(eiβθ(x)φ) −
K2

p
||eiβθ(x)φ||pp

≥
1
2

H(eiβθ(x)φ) −
K2

p
1

Cp
HGN

H(eiβθ(x)φ)
θp
2 ||eiβθ(x)φ||

(1−θ)p
2

=
1
2

H(eiβθ(x)φ) −
K2

2

(
||φ0||2

||Q||2

) 4
N

H(eiβθ(x)φ)

=
1
2

H(eiβθ(x)φ) −
K2

2

(
||QK2 ||2

||Q||2

) 4
N

H(eiβθ(x)φ)

= 0,

where θ is defined in Lemma 2.2. Here in the last equality, we have used the fact that ||QK2 ||2 =

K−
N
4

2 ||Q||2. Therefore, from Eqs (2.1) and (2.2), for any β ∈ R, we obtain

0 ≤ E(eiβθ(x)φ) =
1
2

H(eiβθ(x)φ) −
1
p

∫
K(x)|eiβθ(x)φ|pdx
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=
1
2

[ ∫
β2|∇θ(x) · φ|2dx + 2βIm

∫
∇θ(x)∇φφdx +

∫
|∇φ|2dx

]
−

1
2

∫
c|x|−2|eiβθ(x)φ|2dx −

1
p

∫
K(x)|eiβθ(x)φ|pdx

=
1
2
β2
∫
|∇θ(x)|2|φ|2dx + βIm

∫
∇θ(x) · ∇φ · φdx + E(φ0),

which implies that ∣∣∣∣∣Im
∫
∇θ(x) · ∇φ · φdx

∣∣∣∣∣ ≤ [2E(φ0)
∫
|∇θ(x)|2|φ|2dx

] 1
2

. (4.21)

Then, choosing θ j(x) = x j for j = 1, 2, · · ·,N in Eq (4.21), it follows from Eqs (1.1), (2.1) and (2.2) that∣∣∣∣∣ ddt

∫
|φ(t, x)|2x jdx

∣∣∣∣∣ = ∣∣∣∣∣2Im
∫

iφt · φ · x jdx
∣∣∣∣∣

=

∣∣∣∣∣2Im
∫

[(−∆ − |x|−2)φ − K(x)|φ|p−2φ]φ · x jdx
∣∣∣∣∣

=

∣∣∣∣∣2Im
∫
∇φ · φ · ∇x jdx

∣∣∣∣∣
≤ 2
(
2E(φ0)

∫
|φ0|

2dx
) 1

2

= C. (4.22)

Take any two sequences {tn}
∞
n=1, {tm}

∞
m=1 ⊂ [0,T ) such that lim

n→∞
tn = lim

m→∞
tm = T . Thus, for all j =

1, 2, · · ·,N, from Eq (4.22), we have∣∣∣∣∣ ∫ |φ(tn, x)|2x jdx −
∫
|φ(tm, x)|2x jdx

∣∣∣∣∣ ≤ ∫ tn

tm

∣∣∣∣∣ ddt

∫
|φ(t, x)|2x jdx

∣∣∣∣∣dt

≤ C|tn − tm| → 0 as n, m→ ∞,

which means that
lim
t→T

∫
|φ(t, x)|2x jdx exists f or any j = 1, 2, · · ·,N.

Thus,

lim
t→T

∫
|φ(t, x)|2xdx exists.

Let x0 =
lim
t→T

∫
|φ(t,x)|2 xdx

∥QK2 ∥
2
2

; then, one has that x0 ∈ R
N and

lim
t→T

∫
|φ(t, x)|2xdx = x0∥QK2∥

2
2. (4.23)

On the other hand, notice that p = 2 + 4
N ; then, from Proposition 3.1 and (A2), we have

V ′′(t) = 16E(φ0) +
4(4 + 2N − N p)

p

∫
K(x)|φ|pdx +

8
p

∫
|φ|p · x · ∇K(x)dx ≤ 16E(φ0).

Therefore, there is a positive constant c0 > 0 satisfying that

V(t) ≤ c0 f or each t ∈ [0,T ).
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Thus, one has the following estimate:∫
|x|2|φ(t, x + x(t))|2dx ≤ 2

∫
|x + x(t)|2|φ(t, x + x(t))|2dx

+ 2
∫
|x(t)|2|φ(t, x + x(t))|2dx

≤ 2c0 + 2∥φ0∥
2
2|x(t)|2

= 2c0 + 2∥QK2∥
2
2|x(t)|2. (4.24)

From Eq (4.20), one has

lim sup
t→T

|x(t)|2∥QK2∥
2
2 = lim sup

t→T

∫
|x|<1
|x + x(t)|2|φ(t, x + x(t))|2dx

≤

∫
|x|2|φ(t, x)|2dx ≤ c0. (4.25)

We derive from Eq (4.25) that

lim sup
t→T

|x(t)| ≤
√

c0

∥QK2∥2
. (4.26)

Combining Eq (4.24) with Eq (4.26), one has

lim sup
t→T

∫
|x|2|φ(t, x + x(t))|2dx ≤ C.

Thus, we have the following for any l0 > 0:

lim sup
t→T

∫
|x|≥l0

l0|x||φ(t, x + x(t))|2dx ≤ lim sup
t→T

∫
|x|≥l0
|x|2|φ(t, x + x(t))|2dx ≤ C.

Therefore, for any ε > 0, there exists a large enough l0 = l0(ε) > 0 satisfying that

lim sup
t→T

∣∣∣∣∣ ∫
|x|≥l0

x|φ(t, x + x(t))|2dx
∣∣∣∣∣ ≤ C

l0
< ε. (4.27)

Then, using Eqs (4.27) and (4.20), we infer that, for any ε > 0,

lim sup
t→T

∣∣∣∣∣ ∫ x|φ(t, x)|2dx − x(t)∥QK2∥
2
2

∣∣∣∣∣ = lim sup
t→T

∣∣∣∣∣ ∫ x|φ(t, x)|2dx − x(t)
∫
|φ(t, x)|2dx

∣∣∣∣∣
= lim sup

t→T

∣∣∣∣∣ ∫ |φ(t, x)|2(x − x(t))dx
∣∣∣∣∣

≤ lim sup
t→T

∣∣∣∣∣ ∫
|x|≤l0
|φ(t, x + x(t))|2xdx

∣∣∣∣∣ + ε
= ε. (4.28)

Combining Eqs (4.23) and (4.28), we immediately get

lim
t→T

x(t) = x0 and lim sup
t→T

∫
x|φ(t, x)|2dx = x0∥QK2∥

2
2. (4.29)
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Thus, there exists x0 ∈ R
N (see Eq (4.23)) such that

|φ(t, x)|2 → ∥QK2∥
2
2δx=x0 in the sense o f distribution when t → T.

Now, we claim that x0 ∈ W = {x ∈ RN |K(x) = K2}. Namely, x0 is a global maximal point of K(x).
Indeed, since K(x) ∈ C1, we deduce from Corollary 4.3 and Eq (4.29) that

1 ≤ lim inf
t→T

∥φ(t, x)∥2L2(B(x(t),l))

∥QK(x(t))∥
2
2

≤ lim inf
t→T

K−
N
2

2 ∥φ0∥
2
2

[K(x(t))]−
N
2 ∥QK2∥

2
2

= lim inf
t→T

[K(x(t))
K2

] N
2

=

[K(x0)
K2

] N
2

≤ 1,

where QK(x(t)) = K(x(t))−
N
4 Q(x(t)). This implies that K(x0) = K2. Thus,

x0 ∈ W = {x ∈ RN |K(x) = K2}.

Therefore, it is clear that Eq (4.16) holds true.
(ii) Choosing θ(x) = |x − x0|

2 in Eq (4.21), we get∣∣∣∣∣ ddt

∫
|φ(t, x)|2|x − x0|

2dx
∣∣∣∣∣ = ∣∣∣∣∣2Im

∫
−∆φ · φ · |x − x0|

2dx
∣∣∣∣∣

≤ 4
(
2E(φ0)

∫
|φ(t, x)|2|x − x0|

2dx
) 1

2

≤ C
( ∫
|φ(t, x)|2|x − x0|

2dx
) 1

2

,

which indicates that ∣∣∣∣∣ ddt

( ∫
|φ(t, x)|2|x − x0|

2dx
) 1

2
∣∣∣∣∣ ≤ C.

Therefore, for any t ∈ [0,T ), by integrating on both sides of this inequality from t to T , we derive( ∫
|φ(t, x)|2|x − x0|

2dx
) 1

2

≤ C(T − t).

Based on the uncertainty principle and Hölder’s inequality, we obtain

∥φ0∥
2
2 =

∫
|φ(t, x)|2dx = −

2
N

Re
∫
∇φ · φ · (x − x0)dx

≤ C
( ∫
|φ(t, x)|2|x − x0|

2dx
) 1

2
( ∫
|∇φ|2dx

) 1
2

≤ C(T − t)∥∇φ(t)∥2,

which means that
∥∇φ(t)∥2 ≥

C
T − t

f or ∀ t ∈ [0,T ).

Therefore, the conclusion Eq (4.17) holds.
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Remark 4.6. (i) Given K(x) = 1 and 0 < c < c∗, Bensouilah [19] verified the L2-concentration
of explosive solutions to Eq (1.1) in the L2-critical case (see [19], Theorem 1). Furthermore, Pan
and Zhang [20] obtained the precise concentration behavior for blow-up solutions with a critical
mass (see [20], Theorem 1.1). Our conclusions generalize and supplement the corresponding results
of [19, 20] for the inhomogeneous NLS with inverse-square potential and the coefficient 0 < K(x) ,
constant (see Theorems 4.2, 4.4 and 4.5).
(ii) For the case that c = 0, K(x) , constant and (A1) – (A3) and other proper conditions are satisfied,
the mass concentration property of blow-up solutions and the dynamical behaviors of the L2-minimal
blow-up solutions have been derived (see [10], Theorems 1 and 2). Our results extend the results
of [10] to the inhomogeneous NLS involving inverse-square potential for 0 < c < c∗ (see Theorems 4.2
and 4.5).

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Acknowledgments

This work was partially supported by the Jiangxi Provincial Natural Science Foundation (Grant
Nos. 20212BAB211006 and 20224BAB201005) and National Natural Science Foundation of China
(Grant No. 11761032). The authors are also greatly thankful to the referees and editors for their helpful
comments and advice leading to the improvement of this manuscript.

Conflict of interest

The authors make the declaration that there are no competing interests existing.

References

1. H. E. Camblong, L. N. Epele, H. Fanchiotti, C. A. G. Canal, Quantum anomaly in molecular
physics, Phys. Rev. Lett., 87 (2001), 220402. https://doi.org/10.1103/PhysRevLett.87.220402

2. K. M. Case, Singular potentials, Phys. Rev., 80 (1950), 797–806.
https://doi.org/10.1103/PhysRev.80.797
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