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Abstract: Deep learning, particularly generative models, has inspired controllable image synthesis
methods and applications. These approaches aim to generate specific visual content using latent
prompts. To explore low-level controllable image synthesis for precise rendering and editing tasks,
we present a survey of recent works in this field using deep learning. We begin by discussing data
sets and evaluation indicators for low-level controllable image synthesis. Then, we review the state-
of-the-art research on geometrically controllable image synthesis, focusing on viewpoint/pose and
structure/shape controllability. Additionally, we cover photometrically controllable image synthesis
methods for 3D re-lighting studies. While our focus is on algorithms, we also provide a brief overview
of related applications, products and resources for practitioners.
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1. Introduction

Artificial Intelligence Generated Content (AIGC) is the term for digital media produced by machine
learning methods, such as ChatGPT and stable diffusion [1], which are currently popular [2]. AIGC has
various applications in domains such as entertainment, education, marketing and research [3]. Image
synthesis is a subcategory of AIGC that involves generating realistic or stylized images from textual
inputs, sketches or other images [4]. Image synthesis can also perform various tasks such as inpainting,
semantic scene synthesis, super-resolution and unconditional image generation [1, 5–7].

Currently, deep learning methods can be categorized into two types: Generative and
discriminative [8]. The goal of a discriminative model is to directly predict or classify based on input
data, without involving the process of data generation. Discriminative methods have various
applications, such as image classification [9, 10], image segmentation [11] and sequence
prediction [12]. On the other hand, generative models learn the distribution characteristics of the data
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in order to generate new samples that are similar to the original data. Generative models also have
many typical applications, such as image synthesis [13] and text synthesis [14].

Image synthesis can be classified into two types based on controllability: Unconditional and
conditional [15]. Conditional image synthesis can be further divided into three levels of control:
High, medium and low. High-level control refers to the image content such as category, medium-level
control refers to the image background and other aspects and low-level control refers to manipulating
the image based on the underlying principles of traditional computer vision [16–18].

Conventional 3D image synthesis techniques face challenges in handling intricate deFiguretails and
patterns that vary across different objects [19]. Deep learning methods can better model the variations
in shape, texture and illumination of 3D objects [20]. The field of deep learning-based image synthesis
has made remarkable progress in recent years, aided by the availability of more open source data
sets [21–23]. Various image synthesis methods have emerged, such as generative adversarial network
(GAN) [7], diffusion model (DM) [6] and neural radiance field (NeRF) [24]. These methods differ in
their levels of controllability: GAN and DM are suitable for high-level or medium-level controllable
image synthesis, while NeRF is suitable for low-level controllable image synthesis.

Low-level controllable image synthesis can be categorized into geometric and illumination control.
Geometric control involves manipulating the pose and structure of the scene, where the pose can refer
to either the camera or the object, while the structure can refer to either the global shape (using depth
maps, point clouds or other 3D representations) or the local attributes (such as size, shape, color, etc.)
of the object. Illumination control involves manipulating the light source and the material properties
of the object.

Several surveys have attempted to cover the state-of-the-art techniques and applications in image
synthesis. However, most of these surveys have become obsolete due to the rapid development of
the field [15] or have focused on the high-level and medium-level aspects of image synthesis, while
ignoring the low-level aspects [25]. Furthermore, most of these surveys have adopted a methodological
perspective, which is useful for researchers who want to understand the underlying principles and
algorithms of image synthesis, but not for practitioners who want to apply image synthesis techniques
to solve specific problems in various domains [25,26]. In this paper, we provide a task-oriented review
of low-level controllable image synthesis, excluding human subjects [27–30].

This review offers a comprehensive overview of the state-of-the-art deep learning methods for
low-level controllable image synthesis. The overview of the surveyed low-level controllable image
synthesis is shown in Figure 1. In Section 2, we begin by introducing the common data sets and
evaluation indicators for this task. For the data set section, we divide it by its content. In Sections 3
to 5, we survey the control methods based on pose (see Figure 2), structure (see Figure 3) and
illumination (see Figure 4) and divide each section into global and local controls. In Section 6, we
discuss some current applications of low-level controllable image synthesis based on deep learning.
Finally, Section 7 concludes this paper. In the following sections, we will review common data sets
and evaluation indicators in detail.
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Figure 1. The structure diagram of this paper.

(a) Original
image

(b) Image
after changing
viewpoint

(c) Original
image

(d) Image after
rotating object

Figure 2. Pose manipulation example. Subfigures (a) and (b) correspond to the content
of Global Pose realization in Section 3, which come from [31]. Subfigures (c) and (d)
correspond to the content of Local Pose realization in Section 3, which come from [32].

(a) Original
image

(b) Image after
changing the
depth of car

(c) Original
image

(d) Image after
changing the
color of car

Figure 3. Structure manipulation example. Subfigures (a) and (b) correspond to the content
of Global Structure realization in Section 4, which come from [33]. Subfigures (c) and (d)
correspond to the content of Local Structure realization in Section 4, which come from [34].
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(a) Original
image

(b) Image after
changing light
source

(c) Original
image

(d) Image
after changing
roughness

Figure 4. Illumination manipulation example. Subfigures (a) and (b) correspond to the
content of Global Illumination realization in Section 5, which come from [35]. Subfigures
(c) and (d) correspond to the content of Local Illumination realization in Section 5, which
come from [36].

2. Data sets and evaluation indicators for low-level controllable image synthesis

One of the key challenges in low-level controllable image synthesis is to evaluate the quality and
diversity of the generated images. Different data sets and metrics have been proposed to measure
various aspects of low-level controllable image synthesis, such as realism, consistency, fidelity and
controllability. In this section, we will introduce some commonly used data sets and metrics for low-
level controllable image synthesis and discuss their advantages and limitations.

2.1. Data sets

3D image synthesis is the task of generating realistic images of 3D objects from different
viewpoints. This task requires a large amount of training data that can capture the shape, texture,
lighting and pose variations of 3D objects. Several data sets have been proposed for this purpose, each
with its own advantages and limitations. Table 1 shows all the data sets covered in this section, as well
as the relationships between the data sets and each section in the survey. The details of these data sets
are as follows:

• ABO is a synthetic data set that contains 3D shapes generated by assembling basic objects (ABOs)
such as cubes, spheres, cylinders and cones. It has 10 categories and 1000 shapes per category.
ABO is useful for tasks such as shape abstraction, decomposition and generation. However, ABO
is also limited by its synthetic nature, its small number of categories and instances and its lack of
realistic lighting and occlusion [31].
• Clevr3D is a synthetic data set that contains 3D scenes composed of simple geometric shapes

with various attributes such as color, size and material. It also provides natural language
descriptions and questions for each scene. Clevr3D is useful for tasks such as scene
understanding, reasoning and captioning. However, Clevr3D is also limited by its synthetic
nature, its simple scene composition and its lack of realistic textures and backgrounds [37].
• ScanNet is an RGB-D video data set that contains 2.5 million views in more than 1500 scans of

indoor scenes. It provides annotations such as camera poses, surface reconstructions and instance-
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level semantic segmentations. ScanNet is useful for tasks such as semantic segmentation, object
detection and pose estimation. ScanNet is also limited by its incomplete coverage (due to scanning
difficulties), its inconsistent labeling (due to human errors) and its lack of fine-grained details
(such as object parts) [38].
• RealEstate10K is a data set for view synthesis that contains camera poses corresponding to 10

million frames derived from about 80,000 video clips gathered from YouTube videos. The data
set also provides links to download the original videos. RealEstate10K is a large-scale and diverse
data set that covers various types of scenes, such as houses, apartments, offices and landscapes.
RealEstate10K is useful for tasks such as stereo magnification, light field rendering and novel
view synthesis. However, RealEstate10K also has some challenges, such as the low quality of the
videos, the inconsistency of the camera poses and the lack of depth information [39].

Table 1. The types of data sets listed in this survey and the sections utilized for data set in
the survey.

type data sets the section used

viewpoint

ABO [31]

Section 3
Clevr3D [37]
ScanNet [38]
RealEstate10K [39]

point
cloud

ShapeNet [40]

Section 4

KITTI [41]
nuScenes [42]
Matterport3D [43]

depth
map

Middlebury Stereo [44–48]
NYU Depth [49]
KITTI [41]

illumination
Multi-PIE [35]

Section 5
Relightables [50]

Point cloud data sets are collections of points that represent the shape and appearance of a 3D object
or scene. They are often obtained from sensors such as lidars, radars or cameras. Some of the data
sets are:

• ShapeNet is a large-scale repository of 3D CAD models that covers 55 common object categories
and 4 million models. It provides rich annotations such as category labels, part labels, alignments
and correspondences. ShapeNet is useful for tasks such as shape classification, segmentation,
retrieval and completion. Some of the limitations of ShapeNet are that it does not contain realistic
textures or materials, it does not capture the variability and diversity of natural scenes and it does
not provide ground truth poses or camera parameters for rendering [40].
• KITTI is a data set for autonomous driving that contains 3D point clouds captured by a Velodyne

HDL-64E LIDAR sensor, along with RGB images, GPS/IMU data, object annotations and
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semantic labels. KITTI is one of the most popular and challenging data sets for 3D object
detection and semantic segmentation, as it covers various scenarios, weather conditions and
occlusions. However, KITTI also has some limitations, such as the limited number of frames per
sequence (around 200), the fixed sensor configuration and the lack of dynamic objects [41].
• nuScenes is another data set for autonomous driving that contains 3D point clouds captured by

a 32-beam LIDAR sensor, along with RGB images, radar data, GPS/IMU data, object
annotations and semantic labels. nuScenes is more comprehensive and diverse than KITTI, as it
covers 1000 scenes from six cities in different countries, with varying traffic rules and driving
behaviors. nuScenes also provides more temporal information, with 20 seconds of continuous
data per scene. However, nuScenes also has some challenges, such as the lower resolution of the
point clouds, the higher complexity of the scenes and the need for sensor fusion [42].
• Matterport3D is a data set for indoor scene understanding that contains 3D point clouds

reconstructed from RGB-D images captured by a Matterport camera. The data set also provides
surface reconstructions, camera poses and 2D and 3D semantic segmentations. Matterport3D is
a large-scale and high-quality data set that covers 10,800 panoramic views from 194,400 RGB-D
images in 90 building types. Matterport3D is useful for tasks such as keypoint matching, view
overlap prediction and scene completion. However, Matterport3D also has some limitations,
such as the lack of dynamic objects, the dependence on RGB-D sensors and the difficulty of
obtaining ground truth annotations [43].

Depth map data sets are collections of images and their corresponding depth values, which can be
used for various computer vision tasks such as depth estimation, 3D reconstruction, scene
understanding, etc. The commonly used depth map data sets are as follows:

• Middlebury Stereo is a data set of stereo images with ground truth disparity maps obtained using
structured light or a robot arm. It contains several versions of data sets collected from 2001
to 2021, with different scenes, resolutions and levels of difficulty. The data set is widely used for
evaluating stereo matching algorithms and provides online benchmarks and leaderboards. The
strengths of this data set are its high accuracy, diversity and availability. The limitations are its
relatively small size, indoor scenes only and lack of semantic labels [44–48].
• NYU Depth Data set V2 is a data set of RGB-D images captured by Microsoft Kinect in various

indoor scenes. It contains 1449 densely labeled pairs of aligned RGB and depth images, as well
as 407,024 unlabeled frames. The data set also provides surface normals, 3D point clouds and
semantic labels for each pixel. The data set is widely used for evaluating monocular depth
estimation algorithms and provides online tools for data processing and visualization. The
strengths of this data set are its large size, rich annotations and realistic scenes. The limitations
are its low resolution, noisy depth values and indoor scenes only [49].
• KITTI also includes depth maps, but its depth maps are limited by sparse and noisy LiDAR

depth maps. There is also a lack of real depth maps on the ground for certain scenes, as well as
limitations on city Settings [41].

Illumination data sets are collections of information about the intensity, distribution and
characteristics of artificial or natural light sources. Some examples of common illumination data
sets are:
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• Multi-PIE is a large-scale data set that contains over 750,000 images of 337 subjects, captured
in 15 view angles and 19 illumination conditions. Each subject also performed different facial
expressions, such as neutral, smile, surprise and squint. The data set is useful for studying face
recognition, face alignment, face synthesis and face editing under varying conditions. However,
Multi-PIE only contains images of Caucasian subjects, which limits its diversity and
generalization [35].
• Relightables is a collection of high-quality 3D scans of human subjects under varying lighting

conditions. This data set allows for realistic rendering of human performances with any lighting
and viewpoint, which can be integrated into any CG scene. Nevertheless, this data set has some
drawbacks, such as the low diversity of subjects, poses and expressions and the high
computational expense of processing the data [50].

In conclusion, data sets are essential for low-level controllable image synthesis based on deep
learning, as they provide the necessary information for training and evaluating deep generative
models. These data sets provide rich annotations and variations for different type of control, such as
viewpoint, lighting, poses, point clouds and depth. However, each data set has its own strengths and
weaknesses, and there is room for improvement and innovation in this field.

2.2. Evaluation indicators

To evaluate the quality and diversity of the synthesized images, several performance indicators are
commonly used. Some of them are:

- Peak signal-to-noise ratio (PSNR) [51]: This measures the similarity between the synthesized
image and a reference image in terms of pixel values. It is defined as the ratio of the maximum
possible power of a signal to the power of noise that affects the fidelity of its representation. A higher
PSNR indicates a better image quality.

- Structural similarity index (SSIM) [52]: This measures the similarity between the synthesized
image and a reference image in terms of luminance, contrast and structure. It is based on the assumption
that the human visual system is highly adapted to extract structural information from images. A higher
SSIM indicates a better image quality.

- Learned perceptual image patch similarity (LPIPS) [53]: This measures the similarity between
the synthesized image and a reference image in terms of deep features. It is defined as the distance
between the activations of two image patches for a pre-trained network. A lower LPIPS indicates a
better image quality.

- Inception score (IS) [54]: This measures the quality and diversity of the synthesized images using
a pre-trained classifier, such as Inception-v3. It is based on the idea that good images should have high
class diversity (i.e., they can be classified into different categories) and low class ambiguity (i.e., they
can be classified with high confidence). A higher IS indicates a better image synthesis.

- Fréchet inception distance (FID) [55]: This measures the distance between the feature distributions
of the synthesized images and the real images using a pre-trained classifier, such as Inception-v3. It is
based on the idea that good images should have similar feature statistics to real images. A lower FID
indicates a better image synthesis.

- Kernel inception distance (KID) [56]: This measures the squared maximum mean discrepancy
between the feature distributions of the synthesized images and the real images using a pre-trained
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classifier, such as Inception-v3. It is based on the idea that good images should have similar feature
statistics to real images. A lower KID indicates a better image synthesis.

3. Pose manipulation

3.1. Global pose

3.1.1. GAN

 

G(𝐳) 𝒛 𝐱’ 

𝐱 

D(𝐱) 0/1
 Generator

 Discriminator

 

G(𝐳) 𝒛 𝐱’ 

𝐱 

D(𝐱) 0/1
 Generator

 Discriminator

Figure 5. Schematic of GAN, which comes from [57].

GAN [7] can generate realistic and diverse data from a latent space. GAN consists of two neural
networks: A generator and a discriminator. The generator tries to produce data that can fool the
discriminator, while the discriminator tries to distinguish between real and fake data. Its network
structure is shown in Figure 5. The loss function of GAN measures how well the generator and the
discriminator perform their tasks. The loss function is usually composed of two terms: One for the
generator (LG) and one for the discriminator (LD). LG is based on how often the discriminator
classifies the generated data as real, while LD is based on how often it correctly classifies the real and
fake data. The goal of GAN is to minimize LG and maximize LD. As shown in Eq (3.1).

LD = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1 − D(G(z))))]
LG = −Ez∼pz(z)[log(D(G(z))))]
LGAN = LD +LG

(3.1)

where x is the sample obtained from the real data distribution pdata, and z is the sample obtained from
a specific distribution pz(z).

a) Crossview image synthesis. Viewpoint manipulation refers to the ability to manipulate the
perspective or orientation of the objects or scenes in the synthetic images. The earliest view composites
were usually only able to composite a specific view, such as a bird’s eye view, a frontal view of a
person’s face, etc. Huang et al. introduced TP-GAN, a method that integrates global structure and
local details to generate realistic frontal views of faces [58]. Similarly, Zhao et al. proposed VariGAN,
which combines variational inference and GANs for the progressive refinement of synthesized target
images [59]. To address the challenge of generating scenes from different viewpoints and resolutions,
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Regmi and Borji developed two methods: Crossview Fork (X-Fork) and Crossview Sequential (X-
Seq) [60]. These methods employ semantic segmentation graphs to aid conditional GANs (cGANs) in
producing sharper images. Furthermore, Regmi and Borji utilized geometry-guided cGANs for image
synthesis, converting ground images to aerial views [61]. Mokhayeri et al. proposed a cross-domain
face synthesis approach using a Controllable GAN (C-GAN). This method generates realistic face
images under various poses by refining simulated images from a 3D face model through an adversarial
game [62]. Zhu et al. developed BridgeGAN, a technique for synthesizing bird’s eye view images from
single frontal view images. They employed a homography view as an intermediate representation to
accomplish this task [63]. Ding et al. addressed the problem of cross-view image synthesis by utilizing
GANs based on deformable convolution and attention mechanisms [64]. Lastly, Ren et al. proposed
MLP-Mixer GANs for cross-view image conversion. This method comprises two stages to alleviate
severe deformation when generating entirely different views [65].

b) Free viewpoint image synthesis. By adding conditional inputs, such as a camera pose or
camera manifold to the GAN network, they can output images from any viewpoint. Zhu et al.
introduced CycleGAN, a method capable of recovering the front face from a single profile postural
facial image, even when the source domain does not match the target domain [66]. This approach is
based on a conditional variational autoencoder and GAN (cVAE-GAN) framework, which does not
require paired data, making it a versatile method for view translation [67]. Shen et al. proposed
Pairwise-GAN, employing two parallel U-Nets as generators and PatchGAN as a discriminator to
synthesize frontal face images [68]. Similarly, Chan et al. presented pi-GAN, a method utilizing
periodic implicit GANs for high-quality 3D-aware image synthesis [69]. Cai et al. further extended
this approach with Pix2NeRF, an unsupervised method leveraging pi-GAN to train on single images
without relying on 3D or multi-view supervision [70]. Leimkuhler et al. introduced FreeStyleGAN,
which integrates a pre-trained StyleGAN into standard 3D rendering pipelines, enabling stereo
rendering or consistent insertion of faces in synthetic 3D environments [71]. Medin et al. proposed
MOST GAN, explicitly incorporating physical facial attributes as prior knowledge to achieve realistic
portrait image manipulation [72]. On the other hand, Or-El et al. developed StyleSDF, a novel method
generating images based on StyleGAN2 by utilizing Signed Distance Fields (SDFs) to accurately
model 3D surfaces, enabling volumetric rendering with consistent results [73]. Additionally, Zheng et
al. presented SDF-StyleGAN, a deep learning method for generating 3D shapes based on StyleGAN2,
employing two new shape discriminators operating on global and local levels to compare real and
synthetic SDF values and gradients, significantly enhancing shape geometry and visual quality [74].
Moreover, Deng et al. proposed GRAM, a novel approach regulating point sampling and radiance
field learning on 2D manifolds, embodied as a set of learned implicit surfaces in the 3D volume,
leading to improved synthesis results [75]. Xiang et al. built upon this work with GRAM-HD, capable
of generating high-resolution images with strict 3D consistency, up to a resolution of 1024
x 1024 [76]. In another line of research, Chan et al. developed an efficient framework for generating
realistic 3D shapes from 2D images using GANs, comprising a geometry-aware module predicting
the 3D shape and its projection parameters from the input image, and a refinement module
enhancing shape quality and details [77]. Similarly, Zhao et al. proposed a method for generating
high-quality 3D images from 2D inputs using GAN, achieving consistency across different viewpoints
and offering rendering with novel lighting effects [78]. Lastly, Alhaija et al. introduced XDGAN, a
method for synthesizing realistic and diverse 3D shapes from 2D images, converting 3D shapes into
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compact 1-channel geometry images and utilizing StyleGAN3 and image-to-image translation
networks to generate 3D objects in a 2D space [79]. These advancements in image synthesis
techniques have significantly enriched the field of 3D image generation from 2D inputs.

3.1.2. NeRF

NeRF [24] is a novel representation for complex 3D scenes that can be rendered photo realistically
from any viewpoint. NeRF models a scene as a continuous function that maps 5D coordinates (3D
location and 2D viewing direction, expressed as (x, y, z, θ, φ)) to a 4D output (RGB color and opacity).
Its schematic diagram is shown in Figure 6. This function is learned from a set of posed images of the
scene using a deep neural network. Before the NeRF passes the (x, y, z, θ, φ) input to the network,
it maps the input to a higher dimensional space using high-frequency functions to better fit the data
containing high-frequency variations. The high-frequency coding function is:

γ(p) =
(
sin
(
20πp
)
, cos
(
20πp
)
, . . . , sin

(
2L−1πp

)
, cos
(
2L−1πp

))
(3.2)

where p is the input (x, y, z, θ, φ).

Figure 6. Schematic of NeRF, which comes from [24].

Zhang et al. introduced NeRF++ as a framework that enhances NeRF through adaptive sampling,
hierarchical volume rendering and multiscale feature encoding techniques [80]. This approach enables
high-quality rendering for both static and dynamic scenes while improving efficiency and robustness.
Rebain et al. proposed a method to enhance the efficiency and quality of neural rendering by employing
spatial decomposition [81]. Park et al. developed a novel technique for capturing and rendering high-
quality 3D selfies using a single RGB camera. Their method utilizes a deformable NeRF model capable
of representing both the geometry and appearance of dynamic scenes [82]. Li et al. introduced MINE,
a method for novel view synthesis and depth estimation from a single image. This approach generalizes
Multiplane Images (MPI) with continuous depth using NeRF [83]. Park et al. proposed HyperNeRF, a
method for representing and rendering complex 3D scenes with varying topology using neural radiance
fields (NeRFs). Unlike previous NeRF-based approaches that rely on a fixed 3D coordinate system,
HyperNeRF employs a higher-dimensional continuous embedding space to capture arbitrary scene
changes [84]. Chen et al. presented Aug-NeRF, a novel method for training NeRFs with physically-
grounded augmentations at different levels: Scene, camera and pixel [85]. Kaneko proposed AR-NeRF,
a method for learning 3D representations of natural images without supervision. The approach utilizes
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a NeRF model to render images with various viewpoints and aperture sizes, capturing both depth and
defocus effects [86]. Li et al. introduced SymmNeRF, a framework that utilizes NeRFs to synthesize
novel views of objects from a single image. This method leverages symmetry priors to recover fine
appearance details, particularly in self-occluded areas [87]. Zhou et al. proposed NeRFLiX, a novel
framework for improving the quality of novel view synthesis using NeRF. This approach addresses
rendering artifacts such as noise and blur by employing an inter-viewpoint aggregation framework that
fuses high-quality training images to generate more realistic synthetic views [88].

Besides, a number of researchers have proposed enhancements to the original NeRF model,
addressing its limitations in scenarios such as no camera pose, sparse data, noisy data, large-scale
image synthesis and image synthesis speed. See Table 2.

Table 2. Enhancements to NeRF.
Feature Method Publication Image resolution Data set

No camera pose

NeRF– [89] arXiv2022 756 x 1008/1080 x 1920/520 x 780 [90]/ [39]/ [89]
GNeRF [91] ICCV2021 400 x 400/500 x 400 [24]/ [92]
SCNeRF [93] ICCV2021 756 x 1008/648 x 484 [90]/ [94]
NoPe-NeRF [95] CVPR2023 960 x 540/648 x 484 [94]/ [38]
SPARF [96] CVPR2023 - [92]/ [90]/ [97]

Sparse data

NeRS [98] NIPS2021 600 x 450 [98]
MixNeRF [99] CVPR2023 - [92]/ [90]/ [24]
SceneRF [100] ICCV2023 1220 x 370 [101]
GM-NeRF [102] CVPR2023 224 x 224 [103]/ [104]/ [105]/ [106]
SPARF [96] CVPR2023 960 x 540/648 x 484 [94]/ [38]

Noisy data

RawNeRF [107] CVPR2022 - [107]
Deblur-NeRF [108] CVPR2022 512 x 512 [108]
HDR-NeRF [109] CVPR2022 400 x 400/804 x 534 [109]
NAN [110] CVPR2022 - [110]

Large-scale image synthesis

Mip-NeRF 360 [111] CVPR2022 960 x 540 [94]
BungeeNeRF [112] ECCV2022 - [113]
Block-NeRF [114] CVPR2022 - [114]
GridNeRF [115] CVPR2023 2048 x 2048/4096 x 4096 [116]/ [115]
EgoNeRF [117] CVPR2023 600 x 600 [117]

Image synthesis speed

PlenOctrees [118] ICCV2021 800 x 800/1920 x 1080 [24]/ [94]
DirectVoxGO [119] CVPR2022 800 x 800/800 x 800/768 x 576/1920 x 1080/512 x 512 [24]/ [120]/ [121]/ [94]/ [122]
R2L [123] ECCV2022 800 x 800 [24]/ [124]
SqueezeNeRF [125] CVPR2022 - [24]/ [90]
MobileNeRF [126] CVPR2023 800 x 800/756 x 1008/1256 x 828 [24]/ [90]/ [111]
L2G-NeRF [127] CVPR2023 756 x 1008 [90]

3.1.3. Diffusion model

One of the most widely used models in deep learning is the diffusion model, which is a generative
model that can produce realistic and diverse images from random noise. The diffusion model is based
on the idea of reversing the process of adding Gaussian noise to an image until it becomes completely
corrupted. The diffusion process starts from a data sample and gradually adds noise until it reaches
a predefined noise level. If we use xt to represent the image information at time t, then the process
(q (xt | xt−1)) can be expressed as Eq (3.3). The generative model then learns to reverse this process by
denoising the samples at each step, i.e., pθ (xt−1 | xt) in Figure 7, where θ represents the parameters of
the neural network.
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q (xt | xt−1) = N
(
xt;
√

1 − βtxt−1, βtI
)

(3.3)

where βt is the constant that changes with time t.

𝒙0 𝒙t-1 𝒙t 𝒙T 
𝑞 𝒙𝒕 𝒙𝒕−1  

𝑝𝜃 𝒙𝒕 𝒙𝒕−1  

Figure 7. Schematic of diffusion model, which comes from [57].

Sbrolli et al. introduced IC3D, a novel approach addressing various challenges in shape
generation. This method is capable of reconstructing a 3D shape from a single view, synthesizing
a 3D shape from multiple views and completing a 3D shape from partial inputs [128]. Another
significant contribution in this area is the work by Gu et al., who developed Control3Diff, a generative
model with 3D-awareness and controllability. By combining diffusion models and 3D GANs,
Control3Diff can synthesize diverse and realistic images without relying on 3D ground truth data and
can be trained solely on single-view image data sets [129]. Additionally, Anciukevicius et al.
proposed RenderDiffusion, an innovative diffusion model for 3D generation and inference.
Remarkably, this model can be trained using only monocular 2D supervision and incorporates an
intermediate three-dimensional representation of the scene during each denoising step, effectively
integrating a robust inductive structure into the diffusion process [130]. Xiang et al. presented a novel
method for generating 3D-aware images using 2D diffusion models. Their approach involves a
sequential process of generating multi-view 2D images from different perspectives, ultimately
achieving the synthesis of 3D-aware images [131]. Furthermore, Liu et al. proposed a framework for
changing the camera viewpoint of an object using only a single RGB image. Leveraging the
geometric priors learned by large-scale diffusion models about natural images, their framework
employs a synthetic data set to learn the controls for adjusting the relative camera viewpoint [132].
Lastly, Chan et al. developed a method for generating diverse and realistic novel views of a scene
based on a single input image. Their approach utilizes a diffusion-based model that incorporates 3D
geometry priors through a latent feature volume. This feature volume captures the distribution of
potential scene representations and enables the rendering of view-consistent images [133].

3.1.4. Transformer

Transformers are a type of neural network architecture that have been widely used in natural
language processing. They are based on the idea of self-attention, which allows the network to learn
the relationships between different parts of the input and output sequences. Transformers is
introduced into the field of computer vision in the paper ViT [134]. Its core is the Attention section in
Figure 8 and its formula is as follows:

Attention(Q,K,V) = so f tmax(
QKT

√
dk

)V (3.4)

where dk is a dimensional constant, Q represents the vector used to calculate the similarity between
the current position (or token) and other positions (or tokens) in the sequence, K represents the vector

Electronic Research Archive Volume 31, Issue 12, 7385–7426.



7397

associated with each position (or token) in the sequence and V represents the vector that contains the
information or content associated with each position (or token) in the sequence.

 

Mulit-Head 
Attention

Add
&

Norm

Feed 
Forward

Add
&

Norm
Feature

Figure 8. Schematic of Transformer, we have made some modifications based on the
reference [135].

Leveraging the Transformer architecture for vision applications, several studies have explored its
potential for synthesizing 3D views. Nguyen-Ha and colleagues presented a pioneering approach to
synthesizing new views of a scene using a given set of input views. Their method employs a
transformer-based architecture that effectively captures the long-range dependencies among the input
views. Using a sequential process, the method generates high-quality novel views. This research
contribution is documented in [136]. Similarly, Yang and colleagues proposed an innovative method
for generating viewpoint-invariant 3D shapes from a single image. Their approach is based on
disentangling learning and parametric NURBS surface generation. The method employs an
encoder-decoder network augmented with a disentangled transformer module. This configuration
enables the independent learning of shape semantics and camera viewpoints. The output of this
comprehensive network includes the geometric parameters of the NURBS surface representing the 3D
shape, as well as the camera-viewpoint parameters involving rotation, translation and scaling. Further
details of this method can be found in [137]. Additionally, Kulhánek and colleagues proposed
ViewFormer, an impressive neural rendering method that does not rely on NeRF and instead
capitalizes on the power of transformers. ViewFormer is designed to learn a latent representation of a
scene using only a few images, and this learned representation enables the synthesis of novel views.
Notably, ViewFormer can handle complex scenes with varying illumination and geometry without
requiring any 3D information or ray marching. The specific approach and findings of ViewFormer are
detailed in [138].

3.1.5. Hybrid NeRF

a) GAN-based NeRF. NeRF is a novel method for rendering images from arbitrary viewpoints,
but it suffers from high computational cost due to its pixel-wise optimization. GANs can synthesize
realistic images in a single forward pass, but they may not preserve the view consistency across
different viewpoints. Hence, there is a growing interest in exploring the integration of NeRF and
GAN for efficient and consistent image synthesis. Meng et al. presented the GNeRF framework,
which combines GANs and NeRF reconstruction to generate scenes with unknown or random camera
poses [91]. Similarly, Zhou et al. introduced CIPS-3D, a generative model that utilizes style transfer,
shallow NeRF networks and deep INR networks to represent 3D scenes and provide precise control
over camera poses [139]. Another approach by Xu et al. is GRAF, a generative model for radiance
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fields that enables high-resolution image synthesis while being aware of the 3D shape. GRAF
disentangles camera and scene properties from unposed 2D images, allowing for the synthesis of
novel views and modifications to shape and appearance [140]. Lan et al. proposed a self-supervised
geometry-aware encoder for style-based 3D GAN inversion. Their encoder recovers the latent code of
a given 3D shape and enables manipulation of its style and geometry attributes [141]. Li et al.
developed a two-step approach for 3D-aware multi-class image-to-image translation using NeRFs.
They trained a multi-class 3D-aware GAN with a conditional architecture and innovative training
strategy. Based on this GAN, they constructed a 3D-aware image-to-image translation system [142].
Shahbazi et al. focused on knowledge distillation, proposing a method to transfer the knowledge of a
GAN trained on NeRF representation to a convolutional neural network (CNN). This enables
efficient 3D-aware image synthesis [143]. Kania et al. introduced a generative model for 3D objects
based on NeRFs, which are rendered into 2D novel views using a hypernetwork. The model is trained
adversarially with a 2D discriminator [144]. Lastly, Bhattarai et al. proposed TriPlaneNet, an encoder
specifically designed for EG3D inversion. The task of EG3D inversion involves reconstructing 3D
shapes from 2D edge images [145].

b) Diffusion model-based NeRF. Likewise, the diffusion model alone fails to produce images that
are consistent across different viewpoints. Therefore, many researchers integrate it with NeRF to
synthesize high-quality and view-consistent images. Muller et al. proposed DiffRF, which directly
generates volumetric radiance fields from a set of posed images using a 3D denoising model and
a rendering loss [146]. Similarly, Xu et al. proposed NeuralLift-360, a framework that generates
a 3D object with 360° views from a single 2D photo using a depth-aware NeRF and a denoising
diffusion model [147]. Chen et al. proposed a 3D-aware image synthesis framework using NeRF and
diffusion models, which jointly optimizes a NeRF auto-decoder and a latent diffusion model to enable
simultaneous 3D reconstruction and prior learning from multi-view images of diverse objects [148].
Lastly, Gu et al. proposed NeRFDiff, a method for generating realistic and 3D-consistent novel views
from a single input image. This method distills the knowledge of the conditional diffusion model
(CDM) into the NeRF by synthesizing and refining a set of virtual views at test time, using a NeRF-
guided distillation algorithm [149]. These approaches demonstrate the potential of using NeRF and
diffusion models for 3D scene synthesis, and further research in this area is expected to yield even
more exciting results.

c) Transformer-based NeRF. Building on the previous work of integrating GANs and NeRFs,
some researchers have explored the possibility of using Transformer models and NeRFs to generate 3D
images that are consistent across different viewpoints. Wang et al. proposed a method that can handle
complex scenes with dynamic objects and occlusions, and can generalize to unseen scenes without fine-
tuning. The key idea is to use a transformer to learn a global latent representation of the scene, which
is then used to condition a NeRF model that renders novel views [150]. Similarly, Lin et al. proposed
a method for novel view synthesis from a single unposed image using NeRF and a vision transformer
(ViT). The method leverages both global and local image features to form a 3D representation of the
scene, which is then used to render novel views by a multi-layer perceptron (MLP) network [151].
Finally, Liu et al. proposed a method for visual localization using a conditional NeRF model. The
method can estimate the 6-DoF pose of a query image given a sparse set of reference images and
their poses [152]. These methods demonstrate the potential of NeRFs and transformers in addressing
challenging problems in computer vision.
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3.2. Local pose

3.2.1. GAN

Liao et al. proposed a novel framework consisting of two components for learning generative
models that can achieve this goal. The first component is a 3D generator that learns to reconstruct
the 3D shape and appearance of an object from a single image, while the second component is a 2D
generator that learns to render the 3D object into a 2D image. This framework can generate
high-quality images with controllable factors such as pose, shape and appearance [153].
Nguyen-Phuoc et al. proposed BlockGAN, a novel image generative model that can create realistic
images of scenes composed of multiple objects. BlockGAN learns to generate 3D features for each
object and combine them into a 3D scene representation. The model then renders the 3D scene into
a 2D image, taking into account the occlusion and interaction between objects, such as shadows and
lighting. BlockGAN can manipulate the pose and identity of each object independently while
preserving image quality [154]. Pan et al. proposed a novel framework that can reconstruct 3D shapes
from 2D image GANs without any supervision or prior knowledge. The method can generate realistic
and diverse 3D shapes for various object categories, and the reconstructed shapes are consistent with
the 2D images generated by the GANs. The recovered 3D shapes allow high-quality image editing
such as relighting and object rotation [155]. Tewari et al. proposed a novel 3D generative model that
can learn to separate the geometry and appearance factors of objects from a data set of monocular
images. The model uses a non-rigid deformable scene formulation, where each object instance is
represented by a deformed canonical 3D volume. The model can also compute dense correspondences
between images and embed real images into its latent space, enabling editing of real images [156].

3.2.2. NeRF

Niemeyer and Geiger introduced GIRAFFE, a deep generative model that can synthesize realistic
and controllable images of 3D scenes. The model represents scenes as compositional neural feature
fields that encode the shape and appearance of individual objects as well as the background. The
model can disentangle these factors from unstructured and unposed image collections without any
additional supervision. With GIRAFFE, individual objects in the scene can be manipulated by
translating, rotating, or changing their appearance, as well as changing the camera pose [33]. Yang et
al. proposed a neural scene rendering system called OC-NeRF that learns an object-compositional
NeRF for editable scene rendering. OC-NeRF consists of a scene branch and an object branch, which
encode the scene and object geometry and appearance, respectively. The object branch is conditioned
on learnable object activation codes that enable object-level editing such as moving, adding or
rotating objects [32]. Kobayashi et al. proposed a method to enable semantic editing of 3D scenes
represented by NeRFs. The authors introduced distilled feature fields (DFFs), which are 3D feature
descriptors learned by transferring the knowledge of pre-trained 2D image feature extractors such as
CLIP-LSeg or DINO. DFFs allow users to query and select specific regions or objects in the 3D space
using text, image patches or point-and-click inputs. The selected regions can then be edited in various
ways, such as rotation, translation, scaling, warping, colorization or deletion [157]. Zhang et al.
introduced NeRFlets, a new approach to represent 3D scenes from 2D images using local radiance
fields. Unlike prior approaches that rely on global implicit functions, NeRFlets partition the scene
into a collection of local coordinate frames that encode the structure and appearance of the scene.
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This enables efficient rendering and editing of complex scenes with high fidelity and detail. NeRFlets
can manipulate the object’s orientation, position and size, among other operations [158]. Finally,
Zheng et al. proposed EditableNeRF, a method that allows users to edit dynamic scenes modeled by
NeRF with key points. The method can handle topological changes and generate novel views from a
single camera input. The key points are detected and optimized automatically by the network, and
users can drag them to modify the scene. These approaches provide various means for 3D scene
synthesis and editing, including manipulating objects, changing camera pose, selecting and editing
specific regions or objects and handling topological changes [159].

4. Structure manipulation

4.1. Global structure

4.1.1. Editing point cloud

A depth map is a representation of the distance between a scene and a reference point, such as a
camera. It can be used to create realistic effects such as depth of field, occlusion and parallax [160].
Liang et al. proposed a novel method called SPIDR for representing and manipulating 3D objects
using neural point fields (NPFs) and signed distance functions (SDFs) [161]. The method combines
explicit point cloud and implicit neural representations to enable high-quality mesh and surface
reconstruction for object deformation and lighting estimation. With the trained SPIDR model, various
geometric edits can be applied to the point cloud representation, which can be used for image editing.
Zhang et al. introduced a new method for rendering point clouds with frequency modulation, which
enables easy editing of shape and appearance [162]. The method converts point clouds into a set of
frequency-modulated signals that can be rendered efficiently using Fourier analysis. The signals can
also be manipulated in the frequency domain to achieve various editing effects, such as deformation,
smoothing, sharpening and color adjustment. Chen et al. also proposed NeuralEditor, a novel method
for editing NeRFs for shape editing tasks [163]. The method uses point clouds as the underlying
structure to construct NeRFs and renders them with a new scheme based on K-D tree-guided voxels.
NeuralEditor can perform shape deformation and scene morphing by mapping points between
point clouds.

4.1.2. Editing depth map

Zhu et al. introduced the Visual Object Networks (VON) framework, which enables the
disentangled learning of 3D object representations from 2D images. This framework comprises three
modules, namely a shape generator, an appearance generator and a rendering network. By
manipulating the generators, VON can perform a range of tasks, including shape manipulation,
appearance transfer and novel view synthesis [164]. Mirzaei et al. proposed a reference-guided
controllable inpainting method for NeRFs, which allows for the synthesis of novel views of a scene
with missing regions. The method employs a reference image to guide the inpainting process and a
user interface that enables the user to adjust the degree of blending between the reference and the
original NeRF [165]. Yin et al. introduced OR-NeRF, a novel pipeline that can remove objects
from 3D scenes using point or text prompts on a single view. This pipeline leverages a points
projection strategy, a 2D segmentation model, 2D inpainting methods and depth supervision and
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perceptual loss to achieve better editing quality and efficiency than previous works [166]. Kim et al.
proposed a visual comfort aware-reinforcement learning (VCARL) method for depth adjustment of
stereoscopic 3D images. This method aims to improve the visual quality and comfort of 3D images
by learning a depth adjustment policy from human feedback [167]. These advancements offer various
means of manipulating objects, adjusting depth and generating novel views, ultimately enhancing the
quality and realism of 3D scene synthesis and editing.

4.2. Local structure

4.2.1. GAN

In recent years, there have been significant advancements in the field of 3D scene inpainting and
editing using GANs. Jheng et al. proposed a dual-stream GAN for free-form 3D scene inpainting. The
network comprises two streams, namely a depth stream and a color stream, which are jointly trained
to inpaint the missing regions of a 3D scene. The depth stream predicts the depth map of the scene,
while the color stream synthesizes the color image. This approach enables the removal of objects
using existing 3D editing tools [168]. Another recent development in GAN training is the introduction
of LinkGAN, a regularizer proposed by Zhu et al. that links some latent axes to image regions or
semantic categories. By resampling partial latent codes, this approach enables local control of GAN
generation [34]. Wang et al. proposed a novel method for synthesizing realistic images of indoor
scenes with explicit camera pose control and object-level editing capabilities. This method builds
on BlobGAN, a 2D GAN that disentangles individual objects in the scene using 2D blobs as latent
codes. To extend this approach to 3D scenes, the authors introduced 3D blobs, which capture the 3D
nature of objects and allow for flexible manipulation of their location and appearance [169]. These
recent advancements in GAN-based 3D scene inpainting and editing have the potential to significantly
improve the quality and realism of synthesized scenes.

4.2.2. NeRF

Liu et al. [120] introduced Neural Sparse Voxel Fields (NSVF), which combines neural implicit
functions with sparse voxel octrees to enable high-quality novel view synthesis from a sparse set of
input images, without requiring explicit geometry reconstruction or meshing. Gu et al. [170]
introduced StyleNeRF, a method that enables camera pose manipulation for synthesizing
high-resolution images with strong multi-view coherence and photo realism. Wang et al. [171]
introduced CLIP-NeRF, a method for manipulating 3D objects represented by NeRF using text or
image inputs. Kania et al. [172] proposed a novel method for manipulating neural 3D representations
of scenes beyond novel view rendering by allowing the user to specify which part of the scene they
want to control with mask annotations in the training images. Lazova et al. [173] proposed a novel
method for performing flexible, 3D-aware image content manipulation while enabling high-quality
novel view synthesis by combining scene-specific feature volumes with a general neural rendering
network. Yuan et al. [174] proposed a method for user-controlled shape deformation of scenes
represented by implicit neural rendering, especially NeRF. Sun et al. [175] proposed NeRFEditor, a
learning framework for 3D scene editing that uses a pre-trained StyleGAN model and a NeRF model
to generate stylized images from a 360-degree video input. Wang et al. [176] proposed a novel
method for image synthesis of topology-varying objects using generative deformable radiance fields
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(GDRFs). Tertikas et al. [177] proposed PartNeRF, a novel part-aware generative model for
editable 3D shape synthesis that does not require any explicit 3D supervision. Bao et al. [178]
proposed SINE, a novel approach for editing a NeRF with a single image or text prompts. Cohen-Bar
et al. [179] proposed a novel framework for synthesizing and manipulating 3D scenes from text
prompts and object proxies. Finally, Mirzaei et al. [180] proposed a novel method for
reconstructing 3D scenes from multi-view images by leveraging NeRF to model the geometry and
appearance of the scene, and introducing a segmentation network and a perceptual inpainting network
to handle occlusions and missing regions. These methods represent significant progress towards the
goal of enabling high-quality, user-driven 3D scene synthesis and editing.

4.2.3. Diffusion model

Avrahami et al. [181] introduced a method for local image editing based on natural language
descriptions and region-of-interest masks. The method uses a pre-trained language-image model
(CLIP) and a denoising diffusion probabilistic model (DDPM) to produce realistic outcomes that
conform to the text input. It can perform various editing tasks, such as object addition, removal,
replacement or modification, background replacement and image extrapolation. Nichol et al. [182]
proposed GLIDE, a diffusion-based model for text-conditional image synthesis and editing. This
method uses a guidance technique to trade off diversity for fidelity and produces photorealistic images
that match the text prompts. Couairon et al. [183] proposed DiffEdit, a method that uses
text-conditioned diffusion models to edit images based on text queries. It can automatically generate a
mask that highlights the regions of the image that need to be changed according to the text query. It
also uses latent inference to preserve the content in those regions. DiffEdit can produce realistic and
diverse semantic image edits for various text prompts and image sources. Sella et al. [184] proposed
Vox-E, a novel framework that uses latent diffusion models to edit 3D objects based on text prompts.
It takes 2D images of a 3D object as input and learns a voxel grid representation of it. It then
optimizes a score distillation loss to align the voxel grid with the text prompt while regularizing it
in 3D space to preserve the global structure of the original object. Vox-E can create diverse and
realistic edits. Haque et al. [185] proposed a novel method for editing 3D scenes with natural
language instructions. The method leverages a NeRF representation of the scene and a
transformer-based model that can parse the instructions and modify the NeRF accordingly. The
method can perform various editing tasks, such as changing the color, shape, position and orientation
of objects, as well as adding and removing objects, with high fidelity and realism. Lin et al. [186]
proposed CompoNeRF, a novel method for text-guided multi-object compositional NeRF with
editable 3D scene layout. CompoNeRF can synthesize photorealistic images of complex scenes from
natural language descriptions and user-specified camera poses. It can also edit the 3D layout of the
scene by manipulating the objects’ positions, orientations and scales. These methods have shown
promising results in advancing the field of image and 3D object editing using natural language
descriptions and they have the potential to be applied in various applications.

5. Illumination manipulation

Controllable image generation refers to the use of technology to generate images and to constrain
and adjust the generation process so that the generated images meet specific requirements. By guiding
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external conditions or manipulating and adjusting the code, it is possible to trim a certain area or
attribute of the image while leaving other areas or attributes unchanged. To solve the low-level image
generation problem, we analyze the image generation for different conditions, lighting being one of
them, and summarize the algorithms for each solution under different lighting conditions.

Inverse rendering. Currently, neural rendering is applied to scene restruction. One approach is
to capture photometric appearance variations in in-the-wild data, decomposing the scene into image-
dependent shared components [187].

Another very important type of rendering is inverse rendering. The inverse rendering of objects
under completely unknown capture conditions is a fundamental challenge in computer vision and
graphics. This challenge is especially acute when the input image is captured in a complex and
changing environment. Without using the NeRF method, Boss et al. proposed a join optimization
framework to estimate the shape, BRDF, per-image camera pose and illumination [188].

Choi et al. proposed IBL-NeRF also based on rendering. This method’s inverse rendering extends
the original NeRF formulation to capture the spatial variation of lighting within the scene volume,
in addition to surface properties. Specifically, the scenes of diverse materials are decomposed into
intrinsic components for image-based rendering, namely, albedo, roughness, surface normal, irradiance
and pre-filtered radiance. All the components are inferred as neural images from MLP and model large-
scale general scenes [189].

However, NeRF-based methods encode shape, reflectance and illumination implicitly and this
makes it challenging for users to manipulate these properties in the rendered images explicitly. So a
new hybrid SDF-based 3D neural representation is generated, capable of rendering scene
deformations and lighting more accurately. This neural representation also adds a new SDF
regularization. The disadvantage of this approach is that it sacrifices rendering quality. In reverse
rendering, high render quality is often at odds with accurate lighting decomposition, as shadows and
lighting can easily be misinterpreted as textures. Therefore, rendering quality requires a concerted
effort of surface reconstruction and reverse rendering [161]. While dynamic NeRF is a powerful
algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a
dynamic scene. However, dynamic NeRF does not model the change of the reflected color during the
warping. This is one of its drawbacks. To address this problem in rendering, Yan et al. allowed
specularly reflective surfaces of different poses to maintain different reflective colors when mapped to
the common canonical space by reformulating the neural radiation field function as conditional on the
position and orientation of the surface in the observation space. This method more accurately
reconstructs and renders dynamic specular scenes [190].

The inverse rendering objective function of this method is as follows:

L = Lrender +Lpref +Lprior + λI, regLI, reg (5.1)

Lrender and Lpref are rendering losses to match the rendered images with the input images.
Next, we will explain each of these parameters.

Lrender =
∥∥∥Lo(r) − L̂o(r)

∥∥∥2
2
, (5.2)

This is for each pixel of the camera light. r represents a single piexl. Where Lo is our estimated
radiance and L̂o is ground truth radiance.
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Lpref =
∑

j

∥∥∥∥L j
pref (r) − L j

G(r)
∥∥∥∥2

2
. (5.3)

This is the rendering loss of pre-filtered radiation.L j
pref (r) is inferred prefiltered radiance of jth level

and L j
G(r) is the radiance convolved with jth level Gaussian convolution, where L0

G = L.

Lprior = ∥a(r) − â(r)∥22. (5.4)

The equation encourages our inferred albedo a to match the pseudo albedo.

LI, reg = ∥I(r) − E[Î]∥22, (5.5)

This is the irradiance regularization loss, where E[Î] is the mean of irradiance (shading) values in
training set images.

5.1. Global illumination

The absence of ideal light and the fact that the studied objects are in an unfavorable environment
such as deflection, movement, darkness and high interference can lead to under-illuminated, single
irradiated light source and complex illumination of the acquired images, all of which can degrade
the performance of the final image generation. Next, we will review the various ways to deal with
these aspects.

5.1.1. Brightness level

The use of illumination normalization GAN-IN-GAN can be well generalized to images with less
illumination variations. The method combines deep convolutional neural networks and GANs to
normalize the illumination of color or grayscale face images, then train feature extractors and
classifiers, and process both frontal and non-frontal face images illumination. The method can be
extended to other areas, not only for face image generation. However, it cannot preserve more texture
details and has some limitations. Moreover, the training model is conducted with well-controlled
illumination variations, which can deal with poorly controlled illumination variation to a certain
extent, but there are limitations to the study of other features and geometric structures in realistic and
complex environments, etc. It can be further investigated whether the model can work better if the
model is trained under complex lighting changes [191].

When the data set is insufficient, an unsupervised approach can be used for this. For example, for
low-light scenes, the unsupervised Aleth-NeRF method is used to learn directly from dark images. The
algorithm is mainly a multi-view synthesis method that takes a low-light scene as input and renders a
normally illuminated scene. However, a model needs to be trained specifically for different scenes and
does not handle non-uniform lighting conditions well [192].

Furthermore, as far as the results are concerned, images taken in low-light scenes are affected by
distracting factors such as blur and noise. For this type of problem, a hybrid architecture based on
Retinex theory and GAN can be used to deal with it. For image vision tasks in the dark or under low
light conditions, the image is first decomposed into a light image and a reflection image, and then the
enhancement part is used to generate a high quality clear image, starting from minimizing the effect of
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blurring or noise generation. The method introduces structural similarity loss to avoid the side effect of
blur. However, real-life eligible low level and high level images may not be easily acquired and have
the shortage of input. Additionally, to maximize the performance of the algorithm, a sufficient size of
data set is required. The data obtained after training also has the problem of real-time, which is not
enough to meet real-life needs. In general, the algorithm is only from the perspective of solving image
blurring and noise, making the impact of these two minimal, other aspects of the problem still exists
more, need to further optimize the network structure [193]. This class of problems can also be explored
by exploring multiple diffusion spaces to estimate the light component, which is used as bright pixels
to enhance the shimmering image based on the maximum diffusion value. Generates high-fidelity
images without significant distortion, minimizing the problem of noise amplification [194]. Later, the
conditional diffusion implicit model is utilized in DiFaReli’s method (DDIM) to decode the coding
of decomposed light. Ponglertnapakorn et al. proposed a novel conditioning technique that eases the
modeling of the complex interaction between light and geometry using a rendered shading reference
to spatially modulate the DDIM. This method allows for single-view face reillumination in the wild.
However, this method has limitations in eliminating shadows cast by external objects and is susceptible
to image ambiguity [195].

In summary, the full objectives of this method are as follows:

L(G,D) = Ladversarial (G,D) + λ1 × Lcontent (G) + λ2 × Ll1(G) (5.6)

where λ1, λ2 are weight parameters respectively.
Ladversarial , Lcontent and Ll1 are as follows:

Ladversarial (G,D) = Ex[log D(x)] + EG(x)[log(1 − D(G(x)))]
Lcontent (G) = ∥F(y) − F(G(x))∥1
Ll1(G) = ∥y −G(x)∥1

(5.7)

where x denotes input image, whereas y is the target image, F means feature extractor.

5.1.2. Light source movement

A method of generating scenes with a sense of reality from captured object images can be used
when the light is moving. On the basis of NeRFs, the bulk density of the scene and the radiance of the
directional emission are simulated. A representation of each object light transmission is implicitly
simulated using illumination and view-related neural networks. This approach can cope with the
problem of light movement without retraining the model [196].

5.1.3. Uneven illumination

For the characteristics of light inhomogeneity in the environment, it is possible to use the light
correction network framework, UDoc-GAN, to solve it. The main thing is to convert uncertain normal
to abnormal image panning to deterministic image panning with different levels of ambient light for
learning guidance. In contrast, Aleth-NeRF cannot handle non-uniform illumination or shadow images.
Meanwhile, UDoc-GAN algorithm is more computationally efficient in the inference stage and closer
to realistic requirements [197].
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5.1.4. Shadow ray

Ling et al. monitored the camera illumination between the scene and multi-view image planes and
noticed shadow rays, which led to a new shadow ray supervision scheme. This scheme optimizes the
samples and ray positions along the rays. By supervising the shadow rays to achieve controllable
illumination, a neural SDF network for single-view scene reproduction under multi-illumination
conditions is finally constructed. However, the method is applicable only to point and parallel light
sources and has obvious requirements for the position of the light source. The implementation of the
method is also based on a simple environment where the scene is not illuminate [198].

5.1.5. Complex light variation

Also, for uncontrolled complex environment settings from which images are acquired, the
NeRF-OSR algorithm enables the generation of new views and new illumination. This is a solution
for image generation in complex environments. Solving some fuzzy performance from the
perspective of optimizing this algorithm can be an interesting future research direction. For example,
resolving inaccuracies in geometric estimation, incorporating more priori knowledge of the outdoor
scenes, etc., [199]. Later, for this problem, Higuera et al. proposed a solution to the complex problem
of light variation by reducing the perceptual differences in vision and using a probabilistic diffusion
model to capture light. The method is implemented based on simulated data and can address the
limitations of large-scale data. Of course, the method suffers from the problem of computation time,
especially in the denoising process which consumes more time [200]. This is especially true for
reflections in complex environments, for example, with glass and mirrors. Guo et al. introduced
NeRFReN for simulating scenes with reflections, mainly by dividing the scene into transmission and
reflection components and modeling these two components with independent neural radiation fields.
This approach has far-reaching implications for further research in scene understanding and neural
editing. However, this method does not consider modeling curved reflective surfaces and multiple
non-coplanar reflective surfaces [201].

5.2. Local illumination

5.2.1. Reflectance

Generally speaking, reflected light can be divided into three components, namely ambient
reflection, diffuse reflection and specular reflection. The different media materials that cause the
reflected light will show different lighting cues in the exposure. An omnidirectional illumination
method trains deep neural networks on videos with automatic exposure and white balance to match
real images with predicted illumination based on image reillumination and then regression from the
background [202].

The method focuses on minimizing the reconstructed illumination loss function and adding an
adversarial loss. And the reconstructed illumination loss and the adversarial loss are as follows:

Lrec =

2∑
b=0

λb

∥∥∥∥∥M̂ ⊙ (Λ (Îb

) 1
γ
− Λ (Ib)

)∥∥∥∥∥
1
. (5.8)

In this formulation, the linear rendering of the shear is γ-encoded with γ to match I.M̂ represents a
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binary mask.λb represents an optional weight.

Ladv = log D (Λ (Ic)) + log

1 − D

Λ
∑
θ,ϕ

R(θ, ϕ)eG(x;θ,ϕ)


1
γ


 (5.9)

In this formulation, the D represents an auxiliary discriminator network, the G represents the
generator, the x represents input image.

Therefore, combining the two yields the following common objectives:

G∗ = arg min
G

max
D

(1 − λrec) E [Ladv] + λrecE [Lrec] (5.10)

Of course, there are certainly real-life situations where the reflectance is similar.
In illumination variation, there is also a cluster optimization method based on neural reflection field

using reflection iteration to solve the problem of similar reflectance of different instances from the
perspective of hierarchical clustering. However, there exists the challenge of facing complex scenarios
that do not conform to the unsupervised intrinsic prior, and solutions to such problems need to be
proposed [203].

5.2.2. Radiance

Different mediums have different radiance to light, using a web-based query light integration
network on which reflection decomposition is performed. The algorithm captures changing
illumination, enabling more accurate new view compositing and reillumination. Finally, fast and
practical distinguishable rendering areas are implemented. The algorithm can also estimate the shape
and BRDF of the objects in the image, which is a point of superiority over other algorithms. However,
this method has some limitations in the study of mutual reflection. In particular, an effective treatment
of the interactions between all effects could be a future research direction [204].

5.3. Proportion of the models

The proportion of different neural network models utilized in the survey within Sections 3–5 of
this review is visually presented through a Figure 9. These models can be classified into seven
distinct types: NeRF, GAN, Hybrid NeRF, Transformer, DM and others. The chart reveals that NeRF
stands out as the most prevalent model, accounting for 45% of the survey. Following closely behind is
GAN, which represents 25% of the survey. Hybrid NeRF secures the third position with a
representation of 13%, while DM follows closely at 12%. Transformer is the fifth most popular
model, appearing in 2.5% of the survey. Lastly, a similar percentage of 2.5% is attributed to the
utilization of other models.

This proportion of neural network models highlights the dominance of NeRF in the survey,
indicating its widespread usage and recognition in the field. GAN also holds a significant share,
reflecting its popularity for various applications. Hybrid NeRF, DM and Transformer, although
not as prevalent as NeRF and GAN, demonstrate notable representation in the survey. The
remaining 2.5% is distributed among other models, indicating a diverse landscape of neural network
approaches explored in the reviewed survey.
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Figure 9. The proportion of different neural network models used in the survey in Sections
3–5 of this review.

6. Applications

Low-level controllable image synthesis has many potential applications in various domains, such as
entertainment, industry and security.

6.1. Entertainment application

a) Video games. 3D image synthesis can create immersive and interactive virtual worlds for
gamers to explore and enjoy. It can also enhance the realism and variety of characters, objects and
environments in the game [205, 206].

b) Movies and TV shows. 3D image synthesis can produce stunning visual effects and animations
for movies and TV shows. It can also enable the creation of digital actors, creatures and scenarios that
would be impossible or impractical to film in real life [207, 208].

c) Virtual reality and augmented reality. 3D image synthesis can generate realistic and immersive
virtual experiences for users who wear VR or AR devices. It can also augment the real world with
digital information and graphics that enhance the user’s perception and interaction [209].

d) Art and design. 3D image synthesis can enable artists and designers to express their creativity
and vision in new ways. It can also facilitate the creation and presentation of 3D artworks, models and
prototypes [210].

6.2. Industry application

a) Product design and prototyping. Using 3D image synthesis, designers can visualize and test
different aspects of their products, such as shape, color, texture, functionality and performance, before
manufacturing them. This can save time and money, as well as improve the quality and innovation of
the products [211].

b) Training and simulation. Using 3D image synthesis, trainers can create realistic and
immersive scenarios for workers to practice their skills and learn new procedures. For example, 3D
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image synthesis can be used to simulate hazardous environments, such as oil rigs, mines or nuclear
plants, where workers can train safely and effectively.

c) Inspection and quality control. Using 3D image synthesis, inspectors can detect and analyze
defects and errors in products or processes, such as cracks, leaks or misalignments. For example, 3D
image synthesis can be used to inspect complex structures, such as bridges, pipelines or aircrafts, where
human inspection may be difficult or dangerous [212, 213].

6.3. Security application

a) Biometric authentication. 3D image synthesis can be used to generate realistic face images
from 3D face scans or facial landmarks, which can be used for identity verification or access control.
For example, Face ID on iPhone uses 3D image synthesis to project infrared dots on the user’s face
and match them with the stored 3D face model [214, 215].

b) Forensic analysis. 3D image synthesis can be used to reconstruct crime scenes or evidence from
partial or noisy data, such as surveillance videos, witness sketches or DNA samples. For example,
Snapshot DNA Phenotyping uses 3D image synthesis to predict the facial appearance of a person from
their DNA [216].

c) Counter-terrorism. 3D image synthesis can be used to detect and prevent potential threats by
generating realistic scenarios or simulations based on intelligence data or risk assessment. For example,
the US Department of Defense uses 3D image synthesis to create virtual environments for training and
testing purposes.

d) Cybersecurity. 3D image synthesis can be used to protect sensitive data or systems from
unauthorized access or manipulation by generating fake or distorted images that can fool attackers or
malware. For example, Adversarial Robustness Toolbox uses 3D image synthesis to generate
adversarial examples that can evade or mislead deep learning models [217].

7. Conclusions

In this paper, we have given a comprehensive survey of the emerging progress on low-level
controllable image synthesis. We discussed a variety of low-level controllable image synthesis aspects
according to their low-level vision cues. The survey reviewed important progress made on 3D data
sets, geometrically controllable image synthesis, photometrically controllable image synthesis and
related applications. Moreover, the global and local synthesis approaches are separately summarized
in each controllable mode to further distinguish diverse synthesis tasks. Our goal is to provide a
useful guide for the researchers and developers who would be interested to synthesizing and editing
the image from the low-level 3D prompts. We categorize literatures mainly according to controllable
3D cues since they directly decide our synthesis tasks and abilities. However, there are still other
non-rigid 3D cues such as body kinematic joints and elastic shape deformation which are not covered
by this survey.

3D controlled image synthesis is a challenging task that aims to generate realistic and diverse
images of 3D objects with user-specified attributes, such as pose, shape, appearance and viewpoint. In
our view, some of the difficulties facing this task are: Data scarcity and diversity, as 3D controlled
image synthesis requires large-scale and high-quality data sets of 3D objects with various attributes
and annotations. However, such data sets are scarce and expensive to obtain, especially for complex
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scenes and fine-grained categories. Moreover, the data distribution may not cover all possible attribute
combinations, leading to mode collapse or unrealistic synthesis. Model complexity and efficiency: 3D
controlled image synthesis involves modeling both the 3D structure and the 2D appearance of the
objects, which requires sophisticated and computationally intensive models. Controllability and
interpretability: 3D controlled image synthesis aims to provide users with intuitive and flexible
control over the synthesis process. However, existing methods often use latent codes or predefined
attributes as control inputs, which may not reflect the user’s intention or expectation. Moreover, the
relationship between the control inputs and the synthesis outputs may not be clear or consistent,
making it difficult to interpret and manipulate the results.

In response to the above-mentioned tasks, we recommend readers to utilize large-scale models
judiciously, as the training of such models incorporates a vast amount of data, which can overcome
certain challenges arising from data limitations. Furthermore, we suggest conducting further research
on potential decomposition or inverse rendering techniques. In the future, we expect that more
explainable controllable cues can be explored from current diffusion and NeRFs models by advanced
latent decomposition or inverse rendering techniques. Together with the semantic-level controllable
image synthesis, the low-level low-level controllable image synthesis and editing can generate more
incredible and reliable images in our lives.
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