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Abstract: This paper studied the incompressible Navier-Stokes (NS) equations with nonlocal diffu-
sion on Td(d ≥ 2). Driven by a time quasi-periodic force, the existence of time quasi-periodic solutions
in the Sobolev space was established. The proof was based on the decomposition of the unknowns into
the spatial average part and spatial oscillating one. The former were sought under the Diophantine non-
resonance assumption, and the latter by the contraction mapping principle. Moreover, by constructing
suitable time weighted function space and using the Banach fixed point theorem, the asymptotic sta-
bility of quasi-periodic solutions and the exponential decay of perturbation were proved.
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1. Introduction

Consider the following incompressible Navier-Stokes (NS) system with nonlocal diffusion∂tu + (−∆)αu + ∇p = −u · ∇u + ε f (ωt, x),

∇ · u = 0,
(1.1)

where the variables x ∈ Td = Rd/(2πZ)d(d ≥ 2), t ∈ R. The field u(x, t) and scalar p(x, t) represent the
velocity and pressure of fluid at point (x, t), respectively. The nonlocal operator (−∆)α with α ∈ (0, 1)
is defined by the Fourier transform on the torus

(−∆)αu =
∑
k∈Zd

|k|2αû(k)eik·x.

The parameter ε is a small positive constant, and the time-dependent external force f (Tν,Td) is
quasi-periodic with frequency ω = (ω1, · · · , ων) ∈ Rν.
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The incompressible NS system with nonlocal diffusion describes the fluid motion with internal fric-
tion interaction [1], and corresponds a stochastic representation given in terms of stochastic differential
equations driven by Lévy processes [2,3]. It has received increasing attention over the past few decades,
and many interesting results have been established in several works [2, 4–10]. For instance, see [4, 5]
for the global well-posedness, [6] for the regularity theory of Caffarelli-Kohn-Nirenberg and [8, 9] for
the ill-posedness of weak solutions.

Concerning the time periodic solutions of system (1.1) with α = 1, we refer the readers to [11–15]
for the bounded domain cases, and to [16–22] for the unbounded domain cases. Serrin [11] proved
the existence of time periodic solutions based on the solvability and stability of an initial value prob-
lem. Kozono and Nakao [16] converted the original time periodic problem into a mild formulation,
and then established the existence and uniqueness of solutions by the Lp-Lq estimates of an associ-
ated semigroup and Kato iteration. Based on the decomposition of unknowns into a steady part and
a purely periodic part, Kyed [17, 18] derived the maximal regularity of the linearized problem and
then established the unique existence of solutions for the nonlinear problem. Galdi, jointly with his
collaborators [19–21], handled the scenario of flow around a rigid body, which moved or rotated in a
prescribed periodic manner.

Recently, Montalto [23] obtained the existence and stability of quasi-periodic solutions for incom-
pressible NS equations on Td(d ≥ 2). Some authors have applied the normal form method and cel-
ebrated the Kolmogorov-Arnold-Moser (KAM) theory to the NS and Euler equations (α = 0), and
obtained several intriguing results [24–26]. Baldi and Montalto [24] proved the existence of quasi-
periodic solutions for Euler equations on T3. Montalto [25] considered the inviscid limit problem for
the quasi-periodic solutions to the NS equations on T2. Berti, Hassainia and Masmoudi [26] proved
the existence of vortex patches close to the Kirchhoff ellipses. In addition, Crouseilles and Faou [27]
constructed an explicit quasi-periodic solution with compact support on T2, and a generalized version
of the higher dimension was established in [28].

However, regarding the time periodic problem for the general case of α ∈ (0, 1), to the best of our
knowledge there are few results available in the literature. Motivated by the works above, we would
like to extend the results in [23] to system (1.1) and obtain the existence of quasi-periodic solutions
near zero for α ∈ [1/2, 1). It is worth mentioning that the remained case of solutions near zero for
α ∈ (0, 1/2) is hard to handle, which is due to the lack of the sufficient smoothing effect to control the
nonlinear convection type term u · ∇u. Nevertheless, the issues considered in the present paper do not
involve the small divisor problem due to the presence of dissipation.

On one hand, to seek the quasi-periodic solutions uω(t) := U(ωt, x), pω(t) := P(ωt, x) of system
(1.1), it suffices to solve the following equations:ω · ∂φU + (−∆)αU + U · ∇U + ∇P = ε f (φ, x),

∇ · U = 0,
(1.2)

then one can decompose system (1.2) as a spatial averaged part and an oscillating one,

ω · ∂φU0(φ) = ε f0(φ) (1.3)

and
ω · ∂φUp + (−∆)αUp = P(−(Up · ∇Up) + ε fp). (1.4)
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Here, the terms independent of x appear in the nonlinear term vanishes due to ∇ · U = 0. The first
equation (1.3) could be solved under the assumption that the frequency ω is Diophantine, i.e., for some
γ ∈ (0, 1),

|ω · ℓ| ≥
γ

|ℓ|ν
, ∀ ℓ ∈ Zν\{0}. (1.5)

The existence for the second equation (1.4) is obtained by means of the contraction mapping prin-
ciple, provided that ε is suitably small. The main results are stated as follows.

Theorem 1.1 (Existence). Let ν ≥ 1, d ≥ 2 and α ∈ [1/2, 1), and let σ > ν/2, s > d/2 + 1 and
N ≥ max{σ + ν, σ + s − 2α} be real numbers. Assume that f (ωt, x) ∈ CN(Tν × Td;Rd) is a time-
dependent quasi-periodic function with Diophantine frequency ω and satisfies∫

Tν×Td
f (φ, x)dxdφ = 0, (1.6)

then there exists a positive constant ε0 such that if ε ≤ ε0, system (1.1) admit time quasi-periodic
solutions

uω(t, x) = U(ωt, x) ∈ C(Tν; H s) ∩C1(Tν; H s−2α),
pω(t, x) = P(ωt, x) ∈ C(Tν; H s).

Moreover, ∫
Tν×Td

U(φ, x)dxdφ = 0 (1.7)

and
∥U∥CφHs

x∩C1
φHs−2α

x
≤ Cε, ∥P∥CφHs

x ≤ Cε. (1.8)

In particular, if f satisfies ∫
Td

f (φ, x)dx = 0, ∀φ ∈ Tν, (1.9)

then the above conclusion holds for ω ∈ Rν, and∫
Td

U(φ, x)dx = 0, ∀φ ∈ Tν.

Remark 1.2. If we look for the quasi-periodic solutions near a constant vector ζ ∈ Rd satisfying a
suitable assumption, a similar statement may be obtained for α ∈ (0, 1) by the normal form method
and KAM method. Precisely, solutions are written as

u(t, x) = ζ + w(t, x),

where ∇ · w = 0.

Remark 1.3. It is easy to see that if U0(φ) is the solution of Eq (1.3), then U0 + C(C ∈ Rd) is also a
solution of Eq (1.3). In this paper, we choose the zero order term as zero.
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On the other hand, let u(t, x) = uω(t, x) + v(t, x) and p(t, x) = pω(t, x) + q(t, x) be the perturbed
quasi-periodic solutions. The asymptotic stability of quasi-periodic solutions uω(t, x), pω(t, x) can be
investigated by studying the global existence of solutions for the following initial value problem∂tv + (−∆)αv + ∇q = −uω · ∇v − v · ∇uω − v · ∇v,

∇ · v = 0,
(1.10)

with initial datum
v0(x) = v(0, x). (1.11)

By constructing time-weighted function space, we prove the global existence of small solutions by
the Banach fixed point theorem. As a by product, we present the exponential decay estimates of the
perturbation v.

We state the asymptotic stability of quasi-periodic solutions as follows.

Theorem 1.4 (Asymptotic stability). Let α ∈ (1/2, 1), β ∈ (0, 1) and the assumptions of Theorem 1.1
hold. Suppose that u0 = u(0, x) ∈ H s and∫

Td
(u0 − uω(0))dx = 0. (1.12)

Put
E1 = ∥u0 − uω(0)∥Hs ,

then there exists a positive constant δ1 such that if E1 ≤ δ1, the problems (1.10) and (1.11) have a
unique global solution (v, q) ∈ C([0,∞),H s). Moreover,∫

Td
(u − uω)dx = 0, ∀ t ≥ 0, (1.13)

and
∥(u − uω)(t)∥Hs ≤ CE1e−βt, ∥(p − pω)(t)∥Hs ≤ CE1e−βt, ∀ t ≥ 0. (1.14)

The paper is organized as follows. In Section 2, we give some function spaces and useful lemmas.
Then, in Section 3, we prove the existence of time quasi-periodic solutions which have the same os-
cillation frequency with the f (ωt, x). Finally, the asymptotic stability of time quasi-periodic solutions
obtained in Section 3 discussed in Section 4.

2. Preliminaries

This section collects some notations, function space and useful lemmas.

2.1. Notations and function spaces

We introduce some notations and function spaces used in this paper. For m ∈ N, let Zm
0 := Zm\{0}.

Let P denote the Leray projection operator on solenoidal vector fields. We denote a generic positive
constant by C. For any vectors u = (u1, u2, · · · , ud) and v = (v1, v2, · · · , vd), u ⊗ v = (uiv j)1≤i, j≤d

represents the matrix-valued tensor product of u and v.
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For any u(x) ∈ L2(Td), one can expand it by the Fourier series [29]

u(x) =
∑
k∈Zd

û(k)eix·k,

where the Fourier coefficients are given by

û(k) =
1

(2π)d

∫
Td

u(x)e−ix·kdx.

Let π0 be the orthogonal projection operator defined by

π0u(x) :=
1

(2π)d

∫
Td

u(x)dx = û(0).

For any s ≥ 0, σ ≥ 0, H s = H s(Td) is the standard Sobolev space with the norm

∥u∥Hs(Td) =

∑
k∈Zd

(1 + |k|2)
s
2 |û(k)|2


1
2

.

And let Ḣ s = Ḣ s(Td) be the corresponding Sobolev space with the norm

∥u∥Ḣs(Td) =

∑
k∈Zd

|k|s|û(k)|2


1
2

.

For any u(φ, x) ∈ L2(Tν; L2(Td)), one can expand it as

u(φ, x) =
∑
ℓ∈Zν

∑
k∈Zd

û(ℓ, k)eiℓ·φeix·k,

where the Fourier coefficients are

û(ℓ, k) =
1

(2π)ν+d

∫
Td

∫
Tν

u(φ, x)e−iℓ·φe−ix·kdφdx.

The function space Hσ,s = Hσ(Tν; H s) is defined by

Hσ,s = {u ∈ L2(Tν; L2(Td)) | ∥u∥HσφHs
x < +∞},

where

∥u∥HσφHs
x =

∑
ℓ∈Zν

∑
k∈Zd

(1 + |ℓ|2)
σ
2 (1 + |k|2)

s
2 |û(ℓ, k)|2


1
2

.

For an interval I and a Banach space X, Cm(I; X) denotes the space of m-times continuously differ-
entiable functions on I with values in X. One can also define Cm(Tν, X) in a similar way.
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2.2. Two lemmas

Lemma 2.1. Let σ > ν/2, ι ≥ 0, then Hσ+ι(Tν) is compactly imbedded in Cι(Tν) and

∥u∥Cι ≤ C∥u∥Hσ+ι .

Note that H s(Td) is a Banach algebra whenever s > d/2. The result below readily follows.

Lemma 2.2. Let σ > ν/2, s > d/2, then one can get

∥uv∥Hs
x ≤ ∥u∥Hs

x∥v∥Hs
x (2.1)

for u(x), v(x) ∈ H s(Td), and
∥uv∥HσφHs

x ≤ ∥u∥HσφHs
x∥v∥HσφHs

x (2.2)

for u(φ, x), v(φ, x) ∈ Hσ(Tν; H s(Td)).

3. Existence of quasi-periodic solutions

This section is devoted to establishing the existence of quasi-periodic solutions that have the same
oscillation frequency as f for system (1.1).

3.1. Proof of Theorem 1.1

Proof. First, for Eq (1.3), by (1.6) we have

U0(φ) =
∑
ℓ∈Zν0

ε f̂ (ℓ, 0)
iω · ℓ

eiℓ·φ.

Clearly, ∇ · U0 = 0 and ∫
Tν×Td

U0(φ)dxdφ =
∫
Td×Tν

U0(φ)dφdx = 0.

From the Diophantine condition (1.5) and the Hölder inequality, it follows that

∥U0(φ)∥Hσφ ≤ εγ
−1∥ f0∥Hσ+νφ ≤ Cεγ−1∥ f ∥Hσ+νφ H0

x
. (3.1)

Next, for Eq (1.4), we would justify the solvability by the contraction mapping principle in the
setting Hσ(Tν; H s(Td)) with σ > ν/2, s > d/2 + 1. To this end, define the following function space

Xσ,s = {u ∈ Hσ(Tν; H s(Td)) : ∇ · u = 0, π0u = 0, ∥u∥X < ∞},

where
∥u∥X := ∥u∥HσφHs

x .

Let
Lω := ω · ∂φ + (−∆)α : Xσ+1,s+2α → Xσ,s.
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Owing to the operator Lω as invertible on Xσ,s, define the mapping

T (u) := L−1
ω P(ε fp − u · ∇u), (3.2)

where

L−1
ω g(φ, x) =

∑
ℓ∈Zν

∑
k∈Zd

0

ĝ(ℓ, k)
iω · ℓ + |k|2α

eiℓ·φeik·x.

Now, it suffices to verify that the mapping T is a strict contraction on some closed ball in Xσ,s.
Define the function space

XR = Xσ,sR := {u ∈ Xσ,s : ∥u∥X ≤ R}.

where R is a positive constant that will be determined later. For any u ∈ Xσ,s, a direct calculation shows
that

∥L−1
ω u(φ, x)∥2HσφHs+2α

x
≤ C
∑
ℓ∈Zν

∑
k∈Zd

0

(1 + |ℓ|2)σ|k|2(s+2α) |û(ℓ, k)|2

|iω · ℓ + |k|2α|2

≤ C
∑
ℓ∈Zν

∑
k∈Zd

0

(1 + |ℓ|2)σ|k|2s|û(ℓ, k)|2

≤ C∥u∥2HσφHs
x
,

(3.3)

where we have used the equivalence of ∥u∥HσφHs
x and ∥u∥Hσφ Ḣs

x
, then for any u ∈ XR, it is easy to check

that ∫
Tν

∫
Td
T (u)dxdφ = 0 and ∇ · T (u) = 0.

From (3.3), Lemma 2.2 and the Sobolev embedding theorem, it follows that

∥T (u)∥HσφHs
x = ∥L

−1
ω P(ε fp − u · ∇u)∥HσφHs

x

≤ C∥(ε fp − u · ∇u)∥HσφHs−2α
x

≤ Cε∥ fp∥HσφHs−2α
x
+C∥u ⊗ u∥HσφHs+1−2α

x

≤ Cε∥ f ∥CN +C∥u∥2HσφHs+1−2α
x

≤ C1ε +C2∥u∥2HσφHs
x
.

(3.4)

Taking R = 4C1ε yields
∥T (u)∥X ≤ 2C1ε ≤ R, (3.5)

whenever ε ≤ 1/(16C1C2). Moreover, for any u1, u2 ∈ XR, from (3.2), (3.4) and Lemma 2.2, we have

∥T (u1) − T (u2)∥HσφHs
x ≤ C2∥u1 ⊗ (u1 − u2) + u2 ⊗ (u1 − u2)∥HσφHs+1−2α

x

≤ C2(∥u1∥HσφHs
x + ∥u2∥HσφHs

x)∥u1 − u2∥HσφHs
x

≤ 2C2R∥u1 − u2∥HσφHs
x .
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Noting that R = 4C1ε and ε ≤ 1/(16C1C2), it gives us

∥T (u1) − T (u2)(t)∥X ≤
1
2
∥u1 − u2∥X. (3.6)

Combining (3.5) and (3.6), we arrive at T as a strict contraction from XR to XR. Thus, there exists a
unique fixed point in XR of the mapping T , which is a unique time quasi-periodic solution Up of (1.4).

Finally, we end the proof with the regularity of solution U = U0 + Up. By Lemma 2.1, we have

∥U∥CφHs
x ≤ R ≤ Cε.

For the C1 regularity with respect to φ, from (1.3) and (1.4), it follows that

∥∂φU0∥Hσφ ≤ Cε∥ f0∥Hσφ ≤ Cε

and
∥∂φUp∥HσφHs−2α ≤ C∥ − (−∆)αUp + P(−(Up · ∇Up) + ε fp)∥HσφHs−2α

≤ C∥Up∥HσφHs +C∥Up∥
2
HσφHs +Cε∥ fp∥HσφHs−2α

≤ Cε,

hence,
∥U∥C1

φHs−2α
x
≤ Cε.

For the pressure P,

∥P∥CφHs
x ≤ C∥P∥HσφHs

x ≤ C∥∆−1∇ · (∇ · (U ⊗ U) + ε f )∥HσφHs
x

≤ C∥U∥2HσφHs
x
+ ε∥ f ∥HσφHs−1

x

≤ Cε.

On the whole, we conclude that u(ωt, x) = U(φ, x) and p(ωt, x) = P(φ, x) are solutions of system
(1.1) and satisfy the desired properties (1.7) and estimates (1.8). For the particular case of f satisfying
(1.9), Eq (1.3) only admits a trivial solution U0 = C ∈ Rd and the verification of Eq (1.4) is similar
with the above one. We omit here for simplification. The whole proof of Theorem 1.1 is completed.

4. Stability

In this section, we prove the asymptotic stability of quasi-periodic solutions.

Lemma 4.1. Let α ∈ [1/2, 1), s ≥ 0. Assume u0 ∈ Ḣ s satisfies π0u0 = 0, then it holds that

∥e−t(−∆)αu0∥Ḣs ≤ e−t∥u0∥Ḣs , ∀ t > 0. (4.1)

Let 1 ≤ s0 ≤ s + 1 and β ∈ (0, 1), then for g ∈ Ḣ s+1−s0 satisfying π0g = 0, it holds that

∥e−t(−∆)α∇ · g∥Ḣs ≤ Ct−
s0
2α (1 − β)−

s0
2α e−βt∥g∥Ḣs+1−s0 , ∀ t > 0. (4.2)
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Proof. We only prove (4.2). From Parseval’s equality and the basic property of rapidly decaying func-
tions, one can get

∥e−t(−∆)α∇ · g∥2Ḣs =
∑
k∈Zd

0

|k|2(s+1)e−2t|k|2α |ĝ(k)|2

=
∑
k∈Zd

0

e−2tβ|k|2α |k|2(s+1−s0)|k|2s0e−2t(1−β)|k|2α |ĝ(k)|2

≤ e−2βt(t(1 − β))−
s0
α

∑
k∈Zd

0

|k|2(s+1−s0)|ĝ(k)|2

× (
√

t(1 − β)|k|α)
2s0
α e−2t(1−β)|k|2α

≤ Ce−2βt(t(1 − β))−
s0
α

∑
k∈Zd

0

|k|2(s+1−s0)|ĝ(k)|2

= Ce−2βt(t(1 − β))−
s0
α ∥g∥2Ḣs+1−s0

.

The lemma is proved.

Denote

B(u, v) := −
∫ t

0
e−(t−τ)(−∆)αP∇ · (u ⊗ v)(τ)dτ. (4.3)

Lemma 4.2. Let α ∈ (1/2, 1), β ∈ (0, 1) and s > d/2. There holds that

sup
t≥0

eβt∥B(u, v)∥Hs ≤ C3 sup
t≥0

eβt∥v∥Hs sup
t≥0
∥u∥Hs , (4.4)

sup
t≥0

eβt∥B(u, v)∥Hs ≤ C3 sup
t≥0
∥v∥Hs sup

t≥0
eβt∥u∥Hs (4.5)

and
sup
t≥0

eβt∥B(v, v)∥Hs ≤ C3
(

sup
t≥0

eβt∥v∥Hs
)2
, (4.6)

for u, v ∈ C([0,∞); H s) and supt≥0 eβt∥v∥Hs < ∞.

Proof. Since the proof of (4.4) and (4.5) are similar, we only prove the former. If 0 < t ≤ 1, by (4.2)
with s0 = 1 and Lemma 2.1, we have

∥B(u, v)∥Hs ≤ C
∫ t

0
∥e−(t−τ)(−∆)α(u ⊗ v)(τ)∥Hs+1dτ

≤ C
∫ t

0
e−β(t−τ)(t − τ)−

1
2α (1 − β)−

1
2α ∥(u ⊗ v)(τ)∥Hsdτ

≤ Ce−βt sup
t≥0

eβt∥v∥Hs sup
t≥0
∥u∥Hs

∫ 1

0
τ−

1
2αdτ

≤ Ce−βt sup
t≥0

eβt∥v∥Hs sup
t≥0
∥u∥Hs .
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If t > 1, we decompose the integral as∫ t

0
∥e−(t−τ)(−∆)α(u ⊗ v)(τ)∥Hs+1dτ

=

∫ t−1

0
(· · · )dτ +

∫ t

t−1
(· · · )dτ

=:J1 + J2.

By changing variables, one can treat J2 similarly with the case 0 < t ≤ 1. For the term J1, from the
Sobolev imbedding inequality and (4.2) with s0 = s + 1, it follows that

J1 ≤

∫ t−1

0
(t − τ)−

s+1
2α (1 − β)−

s+1
2α e−β(t−τ)∥(u ⊗ v)(τ)∥L2dτ

≤ Ce−βt sup
t≥0

eβt∥v∥Hs sup
t≥0
∥u∥Hs

∫ t

1
τ−

s+1
2α dτ

≤ Ce−βt sup
t≥0

eβt∥v∥Hs sup
t≥0
∥u∥Hs .

Since e−βt ≤ 1 for any t ≥ 0, the estimates (4.6) can be proved in a similar way. The lemma
is proved.

Now we turn back to the proof of Theorem 1.4.

Proof. Note that
q = (−∆)−1 (∇ · (uω · ∇v + v · ∇uω + v · ∇v))

and, therefore, we mainly focus on the unknown v(t, x) in the following. Due to Duhamel’s principle,
one can deduce that

v = e−t(−∆)αv0 −

∫ t

0
e−(t−τ)(−∆)αP(v · ∇uω + uω · ∇v + v · ∇v)(τ)dτ.

Therefore, define the following mapping

Mv = e−t(−∆)αv0 −

∫ t

0
e−(t−τ)(−∆)αP∇ · (uω ⊗ v + v ⊗ uω + v ⊗ v)(τ)dτ

:= V0 + B(uω, v) + B(v, uω) + B(v, v),
(4.7)

where B(·, ·) is defined in (4.3). For 0 < β < 1 and s > d/2, define the following functional space

YR := {u ∈ C([0,∞); H s(Td)) : ∥u∥Y ≤ R},

where
∥u∥Y := sup

t≥0
eβt∥u∥Hs .
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For the linear term, from (4.1) we get

sup
t≥0

eβt∥V0∥Hs ≤ sup
t≥0

e(β−1)t∥v0∥Hs ≤ ∥v0∥Hs . (4.8)

For the Duhamel integral terms, applying Lemma 4.2, one can get

∥B(uω, v) + B(v, uω)∥Hs ≤ 4C1C3e−βtε∥v∥Y , (4.9)

and
∥B(v, v)∥Hs ≤ C3e−βt∥v∥2Y . (4.10)

Combining (4.8)–(4.10) yields

∥Mv∥Y ≤ E1 + 4C1C3ε∥v∥Y +C3∥v∥2Y .

Taking R = 4E1, one can obtain
∥Mv∥Y ≤ 2E1 ≤ R, (4.11)

provided that E1 ≤ 1/(32C3) and ε ≤ min{1/(16C1C2), 1/(8C1C3)}. For any v1, v2 ∈ YR, let vδ = v1−v2,
and we get

∥M(v1) −M(v2)∥Hs ≤ ∥

∫ t

0
e−(t−τ)(−∆)αP∇ · (uω ⊗ vδ + vδ ⊗ uω)(τ)dτ∥Hs

+ ∥

∫ t

0
e−(t−τ)(−∆)αP∇ · (v1 ⊗ vδ + vδ ⊗ v2)(τ)dτ∥Hs

≤ ∥B(uω, vδ)∥Hs + ∥B(vδ, uω)∥Hs + ∥B(v1, vδ)∥Hs + ∥B(vδ, v1)∥Hs .

Applying Lemma 4.2 again, one can get

∥M(v1) −M(v2)∥Y ≤ 4C1C3ε∥v1 − v2∥Y + 2C3R∥v1 − v2∥Y ≤
3
4
∥v1 − v2∥Y , (4.12)

provided that E1 ≤ 1/(32C3) and ε ≤ min{1/(16C1C2), 1/(8C1C3)}. Combining estimates (4.11) and
(4.12), one can see that mapM is a strict contraction. We then obtain that there exists a unique fixed
point v of the mapM in YR, which is the unique solution of problems (1.10) and (1.11). Therefore, we
conclude that the quasi-periodic solution in Theorem 1.1 is asymptotically stable. Moreover,

∥u − uω∥Hs = ∥v∥Hs ≤ CE1e−βt.

This completes the proof of Theorem 1.4.
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