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Abstract: A stochastic continuous-time Markov chain tuberculosis model with fast-slow progression
and relapse is established to explore the impact of the demographic variation on TB transmission. At
first, the extinction threshold and probability of the disease extinction and outbreak are obtained by
applying the multitype Galton-Waston branching process for the stochastic model. In numerical sim-
ulations, the probability of the disease extinction and outbreak and expected epidemic duration of the
disease are estimated. To see how demographic stochasticity affects TB dynamics, we compare dy-
namical behaviors of both stochastic and deterministic models, and these results show that the disease
extinction in stochastic model would occur while the disease is persistent for the deterministic model.
Our results suggest that minimizing the contact between the infectious and the susceptible, and detect-
ing the latently infected as early as possible, etc., could effectively prevent the spread of tuberculosis.
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1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis, which
has brought serious hazards to human health. Usually, it can be transmitted through respiratory tract,
digestive tract, skin, urogenital tract, placenta, etc., of which respiratory tract is the main way of TB
transmission [1]. Healthy (or susceptible) individuals could be infected through inhaling the droplet
nucleus which are expelled into the atmosphere when an actively infectious TB person coughs, speaks
or sneezes [2]. In general, not all infected individuals will rapidly progress the active TB cases. About
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5% of the newly infected would develop TB directly (fast progression) but most newly infected in-
dividuals remain as latently infected carriers for their entire lives [3–5], and they are considered at
highest risk of developing active TB cases during the first two years of infection, during which ap-
proximately 5% of persons eventually develop active TB cases (slow progression) [6]. The incubation
period of infected individuals may vary from one year to several years due to their own immune sys-
tem and the virulence of Mycobacterium tuberculosis [2]. With currently-recommended treatments (a
4–6 months course of anti-TB drugs), about 85% of people could be cured. Regimens of 1–6 months
are available to treat TB infection [2]. However, either inadequate regimen treatment or insufficient
treatment duration (because of patents’ poor compliance) would result in the endogenous reactivation
of Mycobacterium tuberculosis, i.e., the relapse after treatment occurs [3, 7]. In 2021, based on the
estimation of the World Health Organization, there would be about 10.6 million new TB patients and
approximately 1.6 million people deaths from TB, and the incidence of morbidity and mortality are 134
and 17 (per 100,000 population per year) in the world, respectively. Among the 30 countries with high
burden of TB in the world, China ranks the third (7.4%), behind India (28%) and Indonesia (9.2%). In
China, the estimated number of new TB patients is 7.8 million and the estimated TB incidence is 55
(per 100,000 population per year) [2].

Mathematical models have been used extensively in studying the transmission dynamics of infec-
tious diseases and could help us to formulate control strategies [8–16]. The pioneer work about the
TB transmission model proposed by Waaler in 1962 [17] could shed light on how to describe the
transmission of TB. Blower et al. [5] established a detailed model to reflect the intrinsic transmission
dynamics of Mycobacterium tuberculosis. This model captures the temporal dynamics of five groups:
susceptible individuals (X), latently infected individuals (that is, individuals who have been infected
with Mycobacterium tuberculosis but have no clinical illness and hence are non-infectious) (L), in-
fectious TB cases (a case would transmit the infection to others) (Ti), non-infectious TB cases (these
cases maybe spontaneously cured and move into the recovered non-infectious state) (Tn) and recov-
ered cases (that is, an individual in the recovered state may either relapse and develop TB again or may
never relapse and die of other cause) (R). The corresponding model is given by

dX
dt
=Π − λX − µX,

dL
dt
=(1 − p)λX − (υ + µ)L,

dTi

dt
=p fλX + qυL + ωR − (µ + µT +C)Ti,

dTn

dt
=p(1 − f )λX + (1 − q)υL + ωR − (µ + µT +C)Tn,

dR
dt
=C(Ti + Tn)I − (2ω + µ)R.

(1)

This model separately assessed the TB transmission risks of the fast and slow processes, and en-
abled us to understand the dynamics of TB and design some disease control strategies. After that, there
have been many studies on the mathematical modeling of TB transmission [18–22]. For instance, Xu
et al. [18] studied the TB transmission model with fast-slow progression, age related latency and infec-
tion, proving that the global dynamics of this model is completely determined by the basic reproduction
number. Liao et al. [19] established a deterministic TB transmission model to study the potential impact
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of the recurrence and reinfection on TB spread. And a probabilistic risk model was developed to assess
the TB infection risk of diseases occurring in Taiwan. A dynamical TB transmission model with fast-
slow progression and relapse was addressed to estimate the contribution percentages of drug-sensitive
and drug-resistant Mycobacterium tuberculosis infections in Xinjiang [20]. Wu et al. [21] fitted an
age-structured TB model in Hong Kong between 1968 and 2008 and used the model to quantify the
proportion of annual cases due to recent transmission versus endogenous reactivation of latent infec-
tion. Weerasuriya et al. [22] established a TB model incorporating relapse and drug-resistance under
different vaccine strategies and found that targeting TB vaccination by age may be a more economical
method.

However, uncertainty and random phenomena are ubiquitous in the transmission process of infec-
tious diseases. Hence, it is more realistic to investigate the dynamical behaviors of infectious disease
models incorporating stochastic variability. Stochastic variability usually includes the variability as-
sociated with the environment (such as conditions related to terrestrial or aquatic settings, referred to
as environmental variability) and the one associated with individual dynamics (such as transmission,
recovery, births or deaths, referred to as demographic random effects) [23]. Due to the variability
associated with individual dynamics during the spread of infectious diseases, the population of each
compartment may change at every time. Therefore, the continuous-time Markov chain model (CTMC)
is used to characterize this random variability and approximately estimate the disease extinction or
outbreak probability and expected epidemic duration of infectious diseases. Thus it could provide
the basis and guidance for the prevention and control of infectious diseases [24]. Jacquez et al. [25]
studied a continuous-time stochastic SI (Susceptible-Infectoius) epidemic model with recruitment and
death. West and Thompson [26] analyzed continuous-time and discrete-time stochastic SI models and
compared the difference between them and the deterministic model. Allen et al. compared the dynam-
ical behaviors of deterministic and stochastic discrete-time SIS (Susceptible-Infectoius-Susceptible)
and SIR (Susceptible-Infectoius-Recovered) and obtained the probability distribution and quasi sta-
tionary distribution of the infectious in [27]. Fatimatuzzahroh et al. [28] established a CTMC model
for TB transmission incorporating isolation measures and analyzed the impact of isolation measures at
different levels on the expected epidemic duration of the disease.

Inspired from the above work, in this paper, we formulate the stochastic CTMC model with fast-
slow progression and relapse to explore the impact of stochastic variability associated with individual
dynamics on TB transmission. By using the multitype Galton-Waston branching process, we obtain
the extinction threshold and the extinction probability of the CTMC model. In numerical simulations,
we estimate the probability of the disease extinction and outbreak and expected epidemic duration of
the disease and compare the differences between the dynamical behaviors of this stochastic model and
those of the deterministic one.

This paper is organized as follows. In Section 2, a deterministic TB model with fast-slow progres-
sion and relapse is introduced. In Section 3, a CTMC model is developed based on the deterministic
model using the infinitesimal transition probabilities. In Section 4, we use the multitype Galton-Watson
branching process to obtain the stochastic threshold for disease extinction and the approximate extinc-
tion probability. Numerical simulations are provided to demonstrate our analytical results in Section
5. A brief discussion is given in Section 6.
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2. Deterministic model

Model (1), proposed by Blower et al. in [5], is a classic TB dynamical transmission model. This
model was established on the assumption that only a certain fraction of cases are assumed to be in-
fectious and a case may be spontaneously cure (i.e., without treatment) and move into the recovered
non-infectious state (so he/she is non-infectious case), that is, there is a non-infectious compartment
Tn considered in model (1). However, there are relevant clinical and experimental data indicating that
non-infectious is uncommon in immunocompetent individuals [29]. Therefore, on basis of model (1),
in this paper, we amalgamate the infectious and non-infectious compartments into single one, that is,
the total population N is divided into four sub-populations: S (susceptible), E (latently infected, that
is, individuals who have been infected with Mycobacterium tuberculosis but have no clinical illness
and hence are non-infectious), I (infectious) and R (recovered, that is, an individual in the recovered
state may either relapse and develop TB again or may never relapse and die of other cause). The total
population has the common natural death rate denoted by µ. Recruitment to the susceptible popula-
tion occurs at a constant rate Λ. The susceptible individuals may acquire the infection by contacting
infectious individuals at a rate βS I

N , where β is the probability of successful infection for a suscepti-
ble individual after contacting with an infected individual per unit time. A proportion p of the newly
infected to develop the infectious I directly (fast-progression) and a proportion (1 − p) of the newly
infected to enter the class E (slow-progression). Latently infected individuals would either slowly de-
velop TB at an average rate δ due to endogenous reactivation (several years after infection) or they
would die of other causes at an average rate µ before developing TB. Most active TB patients could be
effectively cured by a regimen treatment with recovery rate γ and move into the recovered class R. The
rest of TB patients would die due to TB with a mortality rate d. Some recovered individuals may either
relapse due to endogenous reactivation and develop the actively infectious TB patients again with the
rate k or may never relapse and die of other cause.

Based on the above description, a flowchart for the transmission of TB can be proposed in Figure
1. According to this flowchart, we can establish a TB dynamical transmission model with fast-slow
progression and relapse as follows.

Figure 1. The flowchart for TB transmission dynamics.
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dS
dt
=Λ − µS −

βS I
N
,

dE
dt
=

(1 − p)βS I
N

− (µ + δ)E,

dI
dt
=

pβS I
N
+ δE − (γ + µ + d)I + kR,

dR
dt
=γI − (µ + k)R,

(2)

where N = S + E + I + R. The detailed descriptions of parameters are provided in Table 1.

Table 1. Parameter descriptions of model (2).

Parameter Descriptions
Λ Recruitment rate of the susceptible
µ Natural death rate of population
β Effective transmission probability of the infectious
p Proportion of the infected rapidly progressing the actively infectious
δ Rate of the latent progressing the infectious
d Additional mortality rate from active TB patients
γ Recovery rate of the infectious
k Relapse rate of the recovered

The basic reproduction number, R0, is defined as the number of secondary infections that one infec-
tive would produce in a completely susceptible population over the entire period of infectiousness [30].
We compute the basic reproduction number for model (2) by using the next generation matrix ap-
proach [30]. The rates of appearance of new infections and transition of individuals are given by

F =


(1 − p)βS I/N

pβS I/N
0

 and V =


(µ + δ)E

(d + γ + µ)I − δE − kR
(µ + k)R − γI

 ,
respectively. Then, the new incidence and transition matrices are

F =


0 (1 − p)β 0
0 pβ 0
0 0 0

 and V =


δ + µ 0 0
−δ d + γ + µ −k
0 −γ µ + k

 ,
respectively. Hence, by calculating FV−1, we obtain

FV−1 =


(1 − p)βδ(µ + k)

µ2(d + δ + k + γ + µ) + δµ(k + γ) + dδk
(1 − p)β(µ + k)

µ(µ + d + k + γ) + δ + dk
(1 − p)βk

µ(µ + d + k + γ) + δ + dk
pβδ(µ + k)

µ2(d + δ + k + γ + µ) + δµ(k + γ) + dδk
pβ(µ + k)

µ(µ + d + k + γ) + δ + dk
pβk

µ(µ + d + k + γ) + δ + dk
0 0 0

 .
Thus, the basic reproduction number R0 of model (2) is

R0 = ρ(FV−1) =
β(δ + µp)(µ + k)

(δ + µ)(dk + dµ + kµ + µγ + µ2)
,
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where ρ denotes the spectral radius of FV−1. Applying Theorem 2 in [30], we establish the following
result:

Theorem 1. The disease-free equilibrium E0 = (Λ
µ
, 0, 0, 0) of model (2) is locally asymptotically stable

if R0 < 1 and unstable if R0 > 1.

Theorem 1 shows that when the basic reproduction number R0 < 1, the disease in model (2) will
die out. Otherwise, the disease in model (2) will be prevalent when R0 > 1.

3. Stochastic model

Deterministic models have already done well in exploring transmission dynamics of infectious dis-
eases from a theoretical perspective. It could help us to know whether the disease is prevalent or not
for long-term infection relying on the basic reproduction number or threshold. However, when there
are few infected individuals, deterministic models could not capture the uncertainty and variability
that is inherent in real-life epidemics due to demographics or the environment, which is significant
when the initial number of infected individuals is small [27]. In particular, if one infectious indi-
vidual is introduced in a completely susceptible population, there is a probability that an infectious
individual could die or recover before transmitting the infection to a sufficient number of susceptible
population [31, 32]. Therefore, it is important to consider a stochastic model to capture the variabil-
ity associated with individual dynamic (e.g., birth or death, transmission, recovery), i.e., demographic
variability [23]. Since models with demographic variability describe a discrete movement of individ-
uals between epidemiological classes and not average rate, the number in these stochastic models are
integers and not continuously changing values [31, 33]. Therefore, in this paper, based on the assump-
tions of deterministic TB model (2), we develop a CTMC TB model because the random variables
corresponding to the deterministic state variables are discrete and time is continuous. Moreover, in-
spired by the CTMC models discussed in [28, 34], we also consider the random effects of individual
birth and death processes (i.e., demographic variability).

For simplicity, we use the same notation for the random variables and parameters as used in the
deterministic model (2). Let S (t), E(t), I(t) and R(t) be the discrete random variables for the number
of the susceptible, latently infected, infectious and recovered at time t ∈ [0,+∞), respectively. Here,
S (t), E(t), I(t) and R(t) take values in the finite state space {0, 1, 2, 3, · · · ,G}, where G is the maximum
size of the number of total population. For the CTMC model, the transition from one state to another
state may occur at any time t. All possible state transitions and their corresponding rates for the CTMC
model are presented in Table 2.

The stochastic process {Z(t) = (S (t), E(t), I(t), R(t), t ∈ [0,+∞))} is a multivariate process with a
joint probability function [35, 36]

P(s,e,i,r)(t) = Prob
{
S (t) = s, E(t) = e, I(t) = i,R(t) = r

}
,

and it is time-homogeneous and satisfies the Markov property stating that the future state of the process
at time (t + ∆t) only depends on the current state of the process at time t [31, 35]. Hence,

P{[S (t + ∆t), E(t + ∆t), I(t + ∆t),R(t + ∆t)]|[S (0), E(0), I(0),R(0)],
[S (∆t), E(∆t), I(∆t),R(∆t)], · · · , [S (t), E(t), I(t),R(t)]}

= P{[S (t + ∆t), E(t + ∆t), I(t + ∆t),R(t + ∆t)]|[S (t), E(t), I(t),R(t)]}.
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Owing to the Markov assumption, the time to the next event is exponentially distributed [31,35,37,
38]. It is assumed that ∆t is sufficiently small such that the transition probabilities of the process are
within the interval [0, 1] [27,35,39] and at most one event takes place during the time interval [t, t+∆t]
[31, 40]. Using the notation in [35], we have the infinitesimal transition probabilities for the stochastic
process Z(t) = (S (t), E(t), I(t),R(t)) from state (s, e, i, r) at time t to a new state (s+ js, e+ je, i+ ji, r+ jr)
at time (t + ∆t) is

P(s+ js,e+ je,i+ ji,r+ jr),(s,e,i,r)(∆t) = P{∆S (t) = js,∆E(t) = je,∆I(t) = ji,∆R(t) = jr

|S (t) = s, E(t) = e, I(t) = i,R(t) = r}

and are defined by

P(s+ js,e+ je,i+ ji,r+ jr),(s,e,i,r)(∆t) =



Λ∆t + o(∆t), ( js, je, ji, jr) = (1, 0, 0, 0),
µs∆t + o(∆t), ( js, je, ji, jr) = (−1, 0, 0, 0),
(1 − p)βsi

N
∆t + o(∆t), ( js, je, ji, jr) = (−1, 1, 0, 0),

pβsi
N
∆t + o(∆t), ( js, je, ji, jr) = (−1, 0, 1, 0),

µe∆t + o(∆t), ( js, je, ji, jr) = (0,−1, 0, 0),
δe∆t + o(∆t), ( js, je, ji, jr) = (0,−1, 1, 0),
(µ + d)i∆t + o(∆t), ( js, je, ji, jr) = (0, 0,−1, 0),
γi∆t + o(∆t), ( js, je, ji, jr) = (0, 0,−1, 1),
µr∆t + o(∆t), ( js, je, ji, jr) = (0, 0, 0,−1),
kr∆t + o(∆t), ( js, je, ji, jr) = (0, 0, 1,−1),
(1 − Q)∆t + o(∆t), ( js, je, ji, jr) = (0, 0, 0, 0),
o(∆t), otherwise,

(3)

where Q = Λ + µs + βsi
N + (µ + δ)e + (µ + d + γ)i + (µ + k)r.

Applying the Markov property to the stochastic process and the infinitesimal transition probabilities
given in Eq (3), we can express the state probabilities at time (t + ∆t) in terms of the state probabilities
at time t [41]. Thus, the state probabilities P(s,e,i,r)(t) satisfy the following difference equation

P(s,e,i,r)(t + ∆t) =P(s−1,e,i,r)(t) [Λ∆t + o(∆t)] + P(s+1,e,i,r)(t)
[
µ(s + 1)∆t + o(∆t)

]
+ P(s+1,e−1,i,r)(t)

[
(1 − p)β(s + 1)i

N
∆t + o(∆t)

]
+ P(s+1,e,i−1,r)(t)

[
pβ(s + 1)(i − 1)

N
∆t + o(∆t)

]
+ P(s,e+1,i,r)(t)

[
µ(e + 1)∆t + o(∆t)

]
+ P(s,e+1,i−1,r)(t) [δ(e + 1)∆t + o(∆t)]

+ P(s,e,i+1,r)(t)
[
(µ + d)(i + 1)∆t + o(∆t)

]
+ P(s,e,i+1,r−1)(t)

[
γ(i + 1)∆t + o(∆t)

]
+ P(s,e,i,r+1)(t)

[
µ(r + 1)∆t + o(∆t)

]
+ P(s,e,i−1,r+1)(t) [k(r + 1)∆t + o(∆t)]

+ P(s,e,i,r)(t) [1 − Q∆t + o(∆t)] + o(∆t).

(4)
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Table 2. The CTMC model state transitions and rates.

Event State transition[t → (t + ∆t)] Transition Transition rate
Recruitment of S (S , E, I,R)→ (S + 1, E, I,R) (1, 0, 0, 0)T Λ

Death of S (S , E, I,R)→ (S − 1, E, I,R) (−1, 0, 0, 0)T µS
Slow progression for S
after infection

(S , E, I,R)→ (S − 1, E + 1, I,R) (−1, 1, 0, 0)T (1 − p)βS I/N

Death of E (S , E, I,R)→ (S , E − 1, I,R) (0,−1, 0, 0)T µE
Fast progression for S
after infection

(S , E, I,R)→ (S − 1, E, I + 1,R) (−1, 0, 1, 0)T pβS I/N

Progression of E (S , E, I,R)→ (S , E − 1, I + 1,R) (0,−1, 1, 0)T δE
Death of I (S , E, I,R)→ (S , E, I − 1,R) (0, 0,−1, 0)T (µ + d)I
Recovery of I (S , E, I,R)→ (S , E, I − 1,R + 1) (0, 0,−1, 1)T γI
Death of R (S , E, I,R)→ (S , E, I,R − 1) (0, 0, 0,−1)T µR
Relapse of R (S , E, I,R)→ (S , E, I + 1,R − 1) (0, 0, 1,−1)T kR

To investigate the time evolution of P(s,e,i,r), we rearrange the terms of Eq (4) and then take the limit
as ∆t → 0. Then, the following forward Kolmogorov differential equation is derived

dP(s,e,i,r)(t)
dt

=P(s−1,e,i,r)(t) [Λ] + P(s+1,e,i,r)(t)
[
µ(s + 1)

]
+ P(s+1,e−1,i,r)(t)

[
(1 − p)β(s + 1)i

N

]
+ P(s+1,e,i−1,r)(t)

[
pβ(s + 1)(i − 1)

N

]
+ P(s,e+1,i,r)(t)

[
µ(e + 1)

]
+ P(s,e+1,i−1,r)(t) [δ(e + 1)]

+ P(s,e,i+1,r)(t)
[
(µ + d)(i + 1)

]
+ P(s,e,i+1,r−1)(t)

[
γ(i + 1)

]
+ P(s,e,i,r+1)(t)

[
µ(r + 1)

]
+ P(s,e,i−1,r+1)(t) [k(r + 1)]

− P(s,e,i,r)(t)
[
Λ + µs +

βsi
N
+ (µ + δ)e + (µ + d + γ)i + (µ + k)r

]
.

(5)

4. Stochastic threshold for disease extinction

Similar to the basic reproduction number R0 in deterministic models, there exists a threshold in
stochastic models which could provide important information about disease extinction and outbreak. If
a disease emerges from one infectious group with R0 > 1 and if i infectious individuals are introduced
into a whole susceptible population, then the probability of major disease outbreak is 1 − (1/R0)i

[42]. However, this result does not hold if the infection emerges from multiple infectious groups.
For multiple infectious groups, stochastic threshold for disease extinction and outbreak depends not
only on the number of individuals in each group but also on the probability of disease extinction for
each group. The multitype Galton-Watson branching processes is used to approximate the probability
of disease extinction and outbreak. In this section, we first present a general theory of multitype
Galton-Watson branching process and then apply it to our stochastic TB model in order to obtain the
approximation of the disease extinction and a major outbreak.
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4.1. The multitype Galton-Watson branching process

The multitype Galton-Watson branching process theory addresses questions about extinction and
survival in ecology and evolutionary biology [42]. In the theory of Galton-Watson branching process,
individuals’ behaviors are categorised into a finite number of types and each individual’s behavior is
independent of the other. An individual of a given type could provide offsprings of all possible types,
and individuals of the same type have the same offspring distribution. Some of theory of continuous-
time, multitype Galton-Watson branching process that relates to probability of ultimate extinction are
briefly summarized as follows.

Definition 1. [31,42] A multitype Galton-Watson branching process {Y(t)}∞t=0 is a collection of vector
random variables Y(t), where each vector consists of k different types, Y(t) = (y1(t), y2(t), · · · , yk(t)) and
each random variable yi(t) has k associated offspring random variables for the number of offsprings
of type j = 1, 2, · · · , k from a parent of type i.

The multitype Galton-Watson branching process is applied only to the infectious groups and as-
sumes that susceptible populations are at the disease-free equilibrium [43]. Since the multitype Galton-
Watson branching process is linear near the disease-free equilibrium, it is homogeneous in time and
births (i.e., new infections) and deaths or recovery are independent. Hence, the offspring probability
generating functions for the birth and death of infected individuals could be defined. These probabil-
ity generating functions are then used to approximate the probability of disease extinction or a major
outbreak [31, 43].

Let {X ji}
n
j=1 be the offspring random variables for type i (i ∈ 0, 1, 2, · · · , n) so that X ji be the number

of offspring of type j generated by infectious individuals of type i. Let the probability that an individual
of type i gives birth to u j individuals of type j be

Pi(u1, u2, · · · , un) = Prob{X1i = u1, X2i = u2, · · · , Xni = un}.

Thus, the offspring probability generating function for individual of type i given that yi(0) = 1 and
y j(0) = 0, j , i, fi : [0, 1]n → [0, 1] is

fi(x1, x2, · · · , xn) =
∞∑

un=0

∞∑
un−1=0

· · ·

∞∑
u1=0

Pi(u1, u2, · · · , un)xu1
1 xu2

2 · · · x
un
n . (6)

There is always a fixed point at fi(1, 1, · · · , 1) = 1, fi(0, 0, · · · , 0) denotes the probability of extinc-
tion for yi given that yi(0) = 1 and y j(0) = 0 for all other types [37, 42, 44].

The expectation matrix of the offspring probability generating functions is defined as M = [m ji],
which is an n × n, nonnegative and irreducible matrix, and the element m ji represents the expected
number of offsprings of individuals of type j produced by one infective individual of type i. m ji is
calculated from Eq (6) by differentiating the probability generating functions fi with respect to x j and
then evaluating all the x variables at 1, that is,

m ji =
∂ fi

∂x j

∣∣∣∣
x=1
. (7)

The spectral radius of the expectation matrix M, i.e., ρ(M), determines the probability of disease
extinction or persistence by the multitype Galton-Watson branching process [31]. Thus, if ρ(M) ≤ 1

Electronic Research Archive Volume 31, Issue 11, 7104–7124.



7113

(sub-critical and critical cases), the probability of disease extinction is 1 as t → ∞, but when ρ(M) > 1
(supercritical case), there is a positive probability that disease may persist [31, 45]. The criteria for the
probability of disease extinction or persistence are summarized in Theorem 2 [31, 37, 42–44].

Theorem 2. Let the initial sizes for each type of the infected Y(t) = (y1(t), y2(t), · · · , yk(t)) be Y(0) =
(y1(0), y2(0), · · · , yk(0)). Suppose the generating functions fi(x1, x2, · · · , xk) (i = 1, 2, · · · , k) for the
infective of type i (yi(t)) are nonlinear functions of x j ( j = 1, 2, · · · , k) with fi(0, 0, · · · , 0) > 0. Also,
suppose that the expectation matrix M = [m ji] of the offspring probability generating functions is an
n × n, nonnegative and irreducible matrix. Let ρ(M) be the spectral radius of M.

(i) If ρ(M) < 1 or ρ(M) = 1 (subcritical and critical cases, respectively), then the probability of
ultimate extinction for the infected Y(t) is one, that is

P{lim
t→∞

Y(t) = 0} = 1.

(ii) If ρ(M) > 1 (supercritical case), then the probability of ultimate extinction for the infected Y(t)
is less than one, that is

P{lim
t→∞

Y(t) = 0} = xy1(0)
1 xy2(0)

2 · · · xyk(0)
k < 1,

where (x1, x2, · · · , xk) is the unique fixed point of the offspring probability generating function,
fi(x1, x2, · · · , xk) = xi and 0 < xi < 1 (i = 1, 2, · · · , k), and the value of xi is the probability of ul-
timate extinction for infectives of type i . Furthermore, the probability of outbreak for the disease is
approximately reached

1 − xy1(0)
1 xy2(0)

2 · · · xyk(0)
k .

Moreover, Allen and van den Driessche [43] proved that the deterministic and stochastic thresholds
for disease extinction, R0 > 1 and ρ(M), respectively, satisfy the following relationship

R0 < 1,= 1, > 1 if only and only if ρ(M) < 1,= 1, > 1. (8)

4.2. Application of the multitype Galton-Watson branching process to TB model

In our CTMC model, a susceptible individual would be infected by effectively contacting an active
TB patient, thus becoming the infectious or latently infected individual with fast-slow progression.
A latently infected individual may further progress to the infectious due to endogenous activation of
Mycobacterium tuberculosis. Infectious individuals would be cured with a regimen treatment of no
less than six months and eventually enter to the recovered. However, individuals who had recovered
may also lose their immunity after a period of time and become the infectious (i.e., relapse). Thus, the
number of infected individuals during the early stages of TB transmission could be approximated by
a three-type Galton-Watson branching process. That is, we define the offspring probability generating
functions for three classes: the latent infected E, the infectious I and the recovered R.

If initially there is a single latently infected individual but no infectious individuals and recovered
individuals (i.e., E(0) = 1, I(0) = 0 and R(0) = 0), then the offspring probability generating function
for E by using Eq (6) is given by

f1(x1, x2, x3) =
δx2 + µ

δ + µ
, (9)
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with xi ∈ [0, 1] for i = 1, 2, 3. Here, the term δ/(δ+ µ) stands for the probability that a latently infected
individual successfully progressed the infectious in his/her lifespan, while the term µ/(δ + µ) is the
probability that a latently infected individual may die before becoming infectious individual which
results in zero latently infected and infectious individuals.

Similarly, when there is a single infectious individual but no the latent infected and recovered indi-
viduals at the beginning, that is I(0) = 1, E(0) = 0 and R(0) = 0, the offspring probability generating
function for I is given by

f2(x1, x2, x3) =
(1 − p)βx1x2 + pβx2

2 + γx3 + d + µ
β + d + γ + µ

, (10)

with xi ∈ [0, 1] for i = 1, 2, 3. Here, the term (1 − p)β/(β + d + γ + µ) is the probability that a
susceptible individual is successfully infected by an infectious individual and then becomes the latently
infected one with slow progression. The term pβ/(β + d + γ + µ) is the probability that a susceptible
individual is successfully infected by an infectious individual and then becomes the actively infectious
individual with fast progression. The term γ/(β + d + γ + µ) is the probability that the infectious
individual may recover resulting in zero infectious individual and one recovered individual. The term
(d + µ)/(β + d + γ + µ) is the probability that the infectious individual may die before transmitting the
infection to a susceptible individual leading to zero infectious individual.

If there is a single recovered individual, without the latent infected and infectious individuals at the
beginning (i.e., R(0) = 1, E(0) = 0 and I(0) = 0), then the offspring probability generating function for
R is given by

f3(x1, x2, x3) =
kx2 + µ

k + µ
, (11)

with xi ∈ [0, 1] for i = 1, 2, 3. Here, the term k/(k + µ) represents the probability that a recovered
individual may relapse resulting in an infectious individual and zero recovered individual. The term
µ/(k+ µ) is the probability that the recovered individual may die before relapsing which results in zero
recovered individual.

Then, the expectation matrix of the branching process is a 3×3 matrix which is determined by using
Eq (7), the offspring probability generating Eq (9–11) and evaluated at x = (x1, x2, x3) = 1. Thus, the
expectation matrix M of the offspring probability generating functions is given by

M =



∂ f1

∂x1

∂ f2

∂x1

∂ f3

∂x1
∂ f1

∂x2

∂ f2

∂x2

∂ f3

∂x2
∂ f1

∂x3

∂ f2

∂x3

∂ f3

∂x3


x=1

=


0

(1 − p)β
β + d + γ + µ

0

δ

δ + µ

(1 − p)β + 2pβ
β + d + γ + µ

k
k + µ

0
γ

β + d + γ + µ
0


.

The elements of the first column for the expectation matrix M separately represent the expected
number of the latently infected, the infectious and the recovered, generated by a latently infected
individual. Likewise, the elements of the second column of M are the expected number of the latently
infected, the infectious and the recovered, respectively, generated by a actively infectious individual.
And the elements of the third column of M are the expected number of the latently infected, the
infectious and the recovered, respectively, generated by a recovered individual.
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The threshold for disease extinction or persistence for the CTMC model is the spectral radius of
expectation matrix M, ρ(M), which is given by

ρ(M) =

√
ac[acβ2(p + 1)2 + 4bcδβ(p + 1) + 4abkγ] + βac(p + 1)

2abc
,

where a = δ + µ, b = β + d + γ + µ, c = µ + k. It could easily be verified that Eq (8) holds.
For the supercritical branching process, i.e., ρ(M) > 1 and R0 > 1, there exists a fixed point,

(x1, x2, x3) ∈ (0, 1)3 of the offspring probability generating Eq (9–11), which is used to write the explicit
expression for the probability of disease extinction [31, 42, 43]. Let fi(x1, x2, x3) = xi for i = 1, 2, 3.
Thus, we obtain the following system of equations:

δx2 + µ

δ + µ
= x1,

(1 − p)βx1x2 + pβx2
2 + γx3 + d + µ

β + d + γ + µ
= x2,

kx2 + µ

µ + k
= x3.

(12)

Solving system (12) for x1, x2 and x3, we obtain

x1 =
δ(dk + dµ + γµ + kµ + µ2)
β(δ + µp)(µ + k)

+
µ

δ + µ
,

x2 =
(δ + µ)(dk + dµ + γµ + kµ + µ2)

β(δ + µp)(µ + k)
,

x3 =
k(δ + µ)(dk + dµ + γµ + kµ + µ2)
(µ + k)(dk + dµ + γµ + kµ + µ2)

µ + k.

Because R0 =
β(δ+µp)(µ+k)

(δ+µ)(dk+dµ+γµ+kµ+µ2) , we rewrite x2 =
1
R0

, so x1 =
δ

(δ+µ)R0
+

µ

δ+µ
and x3 =

k
(µ+k)R0

+
µ

µ+k .

The expression for x1 is the sum of two probabilities: (i) the probability of a successful progression
from one latently infected individual to the infectious δ/(δ + µ) times the probability there are no
secondary infections 1/R0 plus (ii) the probability of no successful infections µ/(µ+ δ), that is, natural
death for the latently infected individual. Similarly, x2 is the probability that there are no secondary
infections 1/R0. The value of x3 is the sum of two probabilities: (i) the probability of a successful
relapse from one recovered individual to the infectious k/(µ + k) times the probability there are no
secondary infections 1/R0 plus (ii) the probability of no successful infections µ/(µ+ k), that is, natural
death for the recovered individual.

Therefore, given that the initial numbers of latently infected, infectious and recovered are separately
E(0), I(0) and R(0), the probability of extinction for TB is approximated to be [23, 35, 40, 42]

P0 = xE(0)
1 xI(0)

2 xR(0)
3

=

(
δ

(δ + µ)R0
+
µ

δ + µ

)E(0) ( 1
R0

)I(0) ( k
(k + µ)R0

+
µ

k + µ

)R(0)

.

Moreover, the probability of the outbreak or persistence of disease will be approximated to 1 − P0.
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5. Numerical simulations

By using numerical simulation, we calculate the probability of disease extinction or outbreak and
expected epidemic duration for CTMC model, and compare the differences of dynamical behaviors for
deterministic model (2) and CTMC model. The time unit is day.

We set the effective transmission rate of the infectious TB is β = 5.0000 × 10−3 [28]. We assume
that Λ = 1/(3 × 365) = 9.1324 × 10−4. Because people diagnosed as a TB patient requires about 6
months to 20 months treatment regimens [2], then we set γ = 1/365 = 2.7397 × 10−3, and TB-related
mortality rate is about 6% [5], so we set d = 0.06/365 = 1.6438 × 10−4. Since the average lifetime of
people in China is 76.34 years [46], that is, µ = 1/(76.34 × 365) = 3.5888 × 10−5. Moreover, during
the first two years of infection, only around 5% of these latently infected individuals would progress
the infectious [6]. Hence, we choose p = 0.05. It takes an average of 15 years for the latently infected
to progress the infectious, and about 2.4% of the recovered would relapse and become the infectious
again [47]. Then, we select δ = 1/(15 × 365) = 1.8265 × 10−4 and k = 0.024/365 = 6.5753 × 10−5.

Under these values of parameters, we obtain that the fixed point of the offspring probability generat-
ing functions is (x1, x2, x3) ≈ (0.3955, 0.2767, 0.5321). The basic reproduction number of deterministic
model (2) is R0 ≈ 3.6141 and the stochastic threshold of CTMC model is ρ(M) ≈ 1.243. In the fol-
lowing, the multitype Galton-Waston branching process is applied to obtain the probability of disease
extinction P0.

5.1. Probability of disease extinction

We calculate the probability of disease extinction P0 under different initial conditions. As shown in
Table 3, the probability of disease extinction is highest (P0 ≈ 0.5321) when there is a single recovered
individual (i.e., S (0) = 100, E(0) = 0, I(0) = 0, R(0) = 1), the probability of disease prevalence (1 −
P0 ≈ 0.4679) is the lowest. Moreover, P0 is smaller (P0 ≈ 0.0582) if the disease is introduced by one
latently infected individual, one infectious individual and one recovered individual. In particular, when
the number of all three infected groups increases, P0 decreases (P0 ≈ 0.0034), that is, the probability
of disease outbreak is very high (1 − P0 ≈ 0.9966) if all three infected groups are present at the onset
of the epidemic process.

Table 3. Probabilities of disease extinction and outbreak of the disease when the disease is
introduced by a latently infected individual, an infectious individual, a recovered individual
and all infected groups.

S (0) E(0) I(0) R(0) P0 1 − P0

100 1 0 0 0.3955 0.6045
100 0 1 0 0.2767 0.7239
100 0 0 1 0.5321 0.4679
100 2 0 0 0.1564 0.8436
100 0 2 0 0.0766 0.9234
100 0 0 2 0.2831 0.7169
100 1 1 1 0.0582 0.9418
100 2 2 2 0.0034 0.9966
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Moreover, we plot the trajectories of the solutions for deterministic model (2) and CTMC model
with different initial conditions, respectively. As shown in Figures 2 and 3, the disease is persistent
for deterministic model R0 ≈ 3.6141 > 1 whereas the disease could be extinct (Figure 2) or prevalent
(Figure 3) for CTMC model when ρ(M) ≈ 1.243 > 1, depending on the initial value of three infected
groups. This indicates that the dynamical behaviors of CTMC model would be highly dependent on the
initial conditions, whereas those of deterministic model would be not affected by the initial conditions.
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Figure 2. Dynamical behaviors of solutions for CTMC model and the corresponding deter-
ministic model (2) with the initial condition S (0) = 100, E(0) = 0, I(0) = 1 and R(0) = 0.
The color solid curves are the solutions for CTMC model under four randomly selected sam-
ple paths whereas the black dashed curve is the solution for deterministic model (2).

5.2. Expected epidemic duration

The other difference between stochastic and deterministic models is that stochastic models could
estimate the expected epidemic duration of the disease (T ), that is, the time until the number of infec-
tious individuals asymptotically approaches zero. The length of T depends on the initial number of
infected classes, the population size and the value of R0 [37, 39]. In Table 4, the expected epidemic
duration T of the disease for CTMC model is estimated under the different initial conditions, based on
50,000 sample paths and 95th percentile of end times as indicators of expected epidemic duration.

It could be seen from Table 4 that T is the longest (1.7040×106) when the disease is only introduced
by an infectious individual, compared with those values of T when the disease is only introduced by
one latently infected individual and one recovered individual. This may be due to the fact that it takes
a long time for a latently infected individual to progress the actively TB patient (about 10–15 years).
In addition, if the disease is introduced by all three infectious classes (E(0) = I(0) = R(0) = 1 or
E(0) = I(0) = R(0) = 2), then the expected epidemic duration T is the longest (T = 2.0070 × 106 or
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Figure 3. Dynamical behaviors of solutions for CTMC model and the corresponding deter-
ministic model (2) with the initial condition S (0) = 100, E(0) = I(0) = R(0) = 2. The color
solid curves are the solutions for CTMC model under four randomly selected sample paths
whereas the black dashed curve is the solution for deterministic model (2).

2.1532 × 106). Figure 4 shows the approximate probability distribution of expected epidemic duration
when the disease is introduced by a latently infected individual, an infectious individual, a recovered
individual and all infected groups. The mass of probability distribution in Figure 4 that make up
the early disease extinctions corresponds to the probability of disease extinction as predicted by the
multitype Galton-Watson branching process (see Table 4).

Table 4. The expected epidemic duration T for CTMC model when the disease is intro-
duced by a latently infected individual, an infectious individual, a recovered individual and
all infected groups.

S (0) E(0) I(0) R(0) P0 T (Days)
400 1 0 0 0.3955 1.5660 × 106

400 0 1 0 0.2767 1.7040 × 106

400 0 0 1 0.5321 1.3931 × 106

400 1 1 1 0.0582 2.0070 × 106

400 2 2 2 0.0034 2.1532 × 106

6. Discussion

Considering the demographic variation that occurs in the TB transmission (the changes related
to individual dynamics, such as births, deaths, infection, recovery and relapse etc.), in this paper, a
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stochastic CTMC model with fast-slow progression and relapse was established. By using multitype
Galton-Watson branching process, the stochastic threshold ρ(M) of this model and the probability of
disease extinction and outbreak were obtained. General speaking, the disease would become extinct
for deterministic model and stochastic model both for when R0 < 1 and ρ(M) < 1. However, the
disease would be persistent for deterministic model if R0 > 1, whereas there is a possibility of disease
extinction for the stochastic model if ρ(M) > 1. Numerical simulations were performed not only to
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Figure 4. Approximate probability distributions for the expected epidemic duration T of the
disease in CTMC model when the disease is introduced by a latently infected individual, an
infectious individual, a recovered individual, and all infected groups. Initial conditions are
indicated above each graph. Probability of disease extinction P0 and T for each graph are
presented in Table 4. Histograms are plotted based on 50,000 sample paths.

support our analytical results but also to obtain the probability of extinction and expected epidemic
duration when the disease was introduced by different initial conditions. Figures 2 and 3 indicated
that when R0 > 1 and ρ(M) > 1, the disease of the deterministic model would be prevalent while the
disease for stochastic model might be extinct with a certain probability, depending on the initial value
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of infectious classes. The factor which causes this difference might be the demographic stochasticity
that is inherent in the stochastic models, which is one of the major asymptotic differences between
deterministic and stochastic models [23, 39].

In addition, the random fluctuation in the infectious compartment I is strongest, followed by the
random fluctuation in latently infected compartment E, and the random fluctuations in the recovered
compartment R is weakest (see Figures 2 and 3), which indicates that the susceptible should minimize
the contacts with TB patients as much as possible and some latently infected individuals should be
detected as early as possible so that the spread of TB could be effectively prevented.

There are also other interesting questions deserving our further exploration. Although we put our
model in the context of a biological question, we determine parameter from some related literature in
our numerical simulations. If we can calibrate the transmission rate β of our stochastic CTMC model
by using actual reported TB cases in China, for example, similar to the references [48, 49], it would
make progress on the biological question by way of numerical simulations. Then, the conclusions
obtained in our paper would be more convincing. In addition, relevant reports indicated that Bacillus
Calmette-Guerin vaccine has been introduced in the national immunization program in more than 80%
of countries worldwide [2]. Therefore, we could further establish a stochastic SVEIR model to assess
the effect of vaccination on TB transmission. Moreover, most TB patients could be cured after receiv-
ing regular treatments, but those patients might eventually develop into drug-resistant TB patients due
to unreasonable or nonstandard treatment [2, 20]. Therefore, we could further investigate a stochastic
CTMC model of drug-resistant TB transmission [50]. Last but not least, air temperature, relative hu-
midity and the other climatic factors may affect the Mycobacterium tuberculosis transmission. Hence,
it is important to establish a stochastic CTMC model in order to explore the effects of seasonal variation
on TB transmission dynamic [51].
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