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Abstract: A two-degree-of-freedom vehicle wheel-rail impact vibration system model is developed, 
and the equivalent impact stiffness and damping of the rail are fitted applying ABAQUS, taking into 
account the high and low irregularity generated by the welded joints of the rail. A wheel-rail periodic 
interface with fixed impact was selected as the Poincaré map, and the fourth-order Runge-Kutta 
numerical method with variable step size was used to solve the system response. The dynamic 
characteristics of the system are investigated using a combination of the Bifurcation diagram, Phase 
plane diagram, the Poincaré map, the Time-domain diagram and the Frequency-domain diagram. It is 
verified that the vehicle wheel-rail impact vibration system has Hopf bifurcation, Neimark-Sacker 
bifurcation, Period-doubling bifurcation and Boundary crisis, and there are rich and complex nonlinear 
dynamic behavior changes. The research on the bifurcation and chaos characteristics of vehicle wheel-
rail impact vibration systems can provide a reference for improving the stability of vehicle operation in 
engineering practice as well as the prediction and control of chaos in vehicle vibration reduction design. 
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1. Introduction 

With the rapid development of railway technology in China, there are higher requirements for the 
speed and comfort of the train. The vertical vibration problem caused by the speed increase of the train 
is becoming more and more prominent. The rail is connected by welding, which eliminates the impact 
of rail joints and maintains the continuity and integrity of the line to the greatest extent. However, due 
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to the influence of welding materials, welding process level and other factors, under the action of 
repeated rolling of wheels and wear between wheels and rails, various defects will appear at the welded 
joints of the rails, which will aggravate the irregularity of the rails. Its existence will cause the 
deterioration of the dynamic response of the wheels and rails, cause the impact vibration of the wheels 
and rails and have a great influence on the vibration of the wheels and rails. There is even a safety 
hazard of wheel-rail detachment [1]. 

In recent years, the theoretical research on vehicle system dynamics has attracted the attention of 
scholars at home and abroad. The average comfort approach and the Sperling method were used in 
reference [2] to assess the comfort of riding railway vehicles subjected to vertical vibration. Reference [3] 
developed a three-dimensional coupled dynamic model of the vehicle-track, and to find the wheel-flat 
signal, employed two techniques based on Variational modal analysis and envelope spectrum. 
Comparing the concurrent existence of wheel planarity and wheel eccentricity provided more evidence 
of the viability of the suggested strategy. To forecast how the vehicle body and equipment will react to 
tracking failures, reference [4] developed a 3D rigid-flexible coupled vehicle system dynamics model. 
The suspension parameters were designed using the DVA theory. Reference [5] employed numerical 
simulation to examine how the anti-winding damping affected the vertical vibration and ride quality 
of the vehicle body. On the vehicle body vertical acceleration power spectral density and ride comfort 
index, the impacts of damping, stiffness and damper installation angle were primarily studied. 
Reference [6] presented a tangential contact theory based on the FastSim algorithm. With calculation 
speed an order lower than the Variational Theory, the recommended technique offers errors for creep 
forces of around 4%. The disturbance rejection and force tracking damper controller algorithms were 
used in reference [7] to manage the required force of the MR damper. This study demonstrated that the 
proposed semi-active suspension methods may greatly minimize a vehicle’s vertical vibrations. 
Reference [8] described an alternative analytical approach based on an analogous VBI model under 
resonant excitations. The main causes of the excessive damping issue were then identified. The 
proposed method provided insights that enable a precise estimation of the extra damping amount 
needed to take into account VBI effects on short railway bridges with simple supports, as shown by 
the provided numerical demonstrations. A classifier for track defects has been created to automatically 
detect track faults, according to reference [9]. The findings demonstrated how carbody vibration was 
used to extract the feature of track defects, which are then categorized using the suggested feature 
space and machine learning approaches. Reference [10] gave a summary of the assessment standards 
relating to feelable vibrations and ground-borne noise, experimental and numerical forecasting 
methods, the main vehicle and track parameters that may have an impact on vibration levels, and 
various suggested mitigation solutions. Reference [11] suggested calculating the Root-Mean-Square 
acceleration for various carbody areas using the bond graph approach and Sperling’s Riding Index for 
a low-to-medium speed vehicle. Using ISO 2631, the physiological consequences of the vibrations on 
the human body were examined. Reference [12] used NP versus λ3mm scatter plots from the ECF 
database to examine how track maintenance operations affect vehicle dynamics. In reference [13], the 
vertical dynamic model of the railway vehicle bogie-carbody-seat coupled system was established, and 
the numerical analysis method of the vertical dynamic model of the railway vehicle bogie-carbody-
seat coupled system was given by variable transformation. In reference [14], the free vibration and 
forced vibration problems of four-axle vehicles with double spring suspension were studied, and the 
vertical dynamics problem of the vehicle was simplified using the Lagrange equation, which greatly 
simplified their solution. The relationship between random vibration and motion characteristics of 
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railway vehicles was studied in reference [15], and a correlation between random vibration and vertical 
acceleration of railway vehicles was discovered. In reference [16], the impact vibration response 
features of rail vehicles under different shock excitation sources were classified and analyzed in detail, 
and some attempts and possible mitigation measures of using rail vehicle vibration to detect rail defects 
were summarized. In reference [17], a two-degree-of-freedom numerical model of 1/2 vehicle with a 
two-stage Ruzicka model was established, and the multi-objective optimization genetic algorithm was 
used to verify that the optimized damping parameters could effectively improve the vibration level of 
the target. The wheel-rail interaction characteristics under the effect of flat scar were simulated by 
modifying the wheel radius in reference [18], and the wheel-rail impact dynamic load characteristics 
were investigated. In reference [19], a three-dimensional finite element model of wheel-rail rolling 
contact was created. The mechanical response of a wheel-rail impact generated by a flat tire was 
examined using the explicit finite element approach. The change in the wheel-rail contact state was 
explained during the process of wheel flat impact on the rail. The effects of fatigue damage and strain 
rate effect of wheel-rail material on wheel-rail impact reaction were investigated, as well as the 
influence of critical parameters such as train speed, flat length and axle load. Reference [20] 
investigated the dynamic characteristics of the vehicle wheel-rail impact vibration in crosswind. The 
rapid Fourier transform harmonic synthesis method and the Davenport coherence function were used 
to create a wind load model, and the lateral displacement of the high-speed train wheelset under 
crosswind was then calculated. The dynamic model of the vehicle wheel-rail collision vibration system 
under crosswind conditions was developed. The impacts of vibration frequency, wheel-rail gap and 
lateral damping on the characteristics of the vehicle wheel-rail lateral gap impact vibration system 
were studied. 

The application research of non-smooth dynamical systems and collision-shock vibration systems 
is also rapidly developing. The classic Melnikov approach was utilized in reference [21] to investigate 
the hybrid piecewise smooth system model with impulse effect and noise excitation. The stochastic 
Melnikov process of the system was developed by measuring the distance between the stable and 
unstable manifolds after the disturbance, and the criterion for the occurrence of chaos in the system 
with or without noise stimulation was established. Finally, the algorithm’s correctness was validated 
using this new extension approach and numerical simulation. The Jacobi stability of the five-
dimensional self-excited monopole disk generator system was extensively studied in reference [22] 
based on the Kosambii-Cartan-Chern theory. The Jacobi stability of the equilibrium point under 
specified parameter values was discussed using the eigenvalues of the second KCC invariant matrix. 
The periodic orbit was shown to be Jacobi unstable. The pulse control problem in a five-dimensional 
self-excited homopolar disk generator was also studied, and the hidden attractor was efficiently 
suppressed. Reference [23] analyzed the impact gap value’s effect on the mean translating velocity of 
the robot’s wheel platform and made recommendations for designers as well as scholars of similar 
robotic devices. Reference [24] studied the influence of important system characteristics, such as the 
change of size gap term, load resistance and electromagnetic coupling coefficient, on the vibration and 
energy behavior of electromagnetic shock damping. A study of VCM of mechanical and electrical 
devices used in the HPS was presented in reference [25], along with an introduction of problems caused 
by vibration based on earlier research from roughly 30 years ago. There have been investigations on 
the sources of vibrations of HPS spinning and non-rotating machines, as well as vibration measuring 
standards. A two-degree-of-freedom vibratory mechanism engaging a single stiff stop was examined 
in reference [26]. Some unusual paths to chaos are investigated, including Period-doubling bifurcations 
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of periodic movements with a single impact. The paths to chaos identified in vibro-impact systems 
were found to be fundamentally distinct from the standard Period-doubling route to chaos observed in 
conventional sequential maps. In reference [27], using a mechanical model of a two-degree-of-freedom 
forced vibration system with clearance-elastic constraints, the diversity and bifurcation characteristics 
of periodic impulsive vibration of this type of non-smooth vibration system were investigated. In 
reference [28], the Poincaré map equation of vibration systems with gaps was established, and the 
stability and local bifurcation of the fixed point of the map was examined. The equation described the 
symmetric periodic impact motion of a two-degree-of-freedom gap vibration system. Through 
numerical simulation, the Fork bifurcation, the Period-doubling bifurcation and the “Grazing” 
singularity transition to chaos were examined as part of the overall bifurcation process of the 
symmetric periodic collision motion of the vibration system with gaps. Reference [29] considered a 
two-degree-of-freedom vibro-impact system with two-sided clearances. It was shown that the system’s 
periodic motion has a variety of pattern types and transitional properties. There was a relationship 
between the presence of a saddle-node bifurcation around the grazing bifurcation and the variance in 
displacement amplitude. 

The existing research works show that there were few studies on the vehicle vertical system 
dynamics from the perspective of bifurcation and chaos characteristics, and these research works 
considered the theoretical analysis and numerical simulation when the connection stiffness and 
damping are linear in the system, and the research on the complex vibro-impact system with nonlinear 
stiffness is limited. Thus, in a dynamical system, with the increase of nonlinear factors, the system will 
appear more complex with bifurcation and singularity problems. For example, when considering the 
strong nonlinear factors of the air spring in the secondary suspension of the vehicle, there are more 
complex nonlinear dynamic behaviors contained in the vehicle impact vibration system, and there are 
also complex roads leading to the chaotic motion of the system: The quasi-periodic road contains Hopf 
bifurcation, Neimark-Sacker bifurcation, torus doubling and so on. 

Furthermore, in an existing dynamic characteristics analysis of the wheel-rail impact vibration 
system, the rails were frequently treated as a rigid body to deal with the wheel-rail dynamics problem, 
rather than as a flexible body to calculate the vertical impact stiffness and damping value between the 
wheel and rail for dynamic analysis. By integrating the qualitative analysis approach of nonlinear 
dynamics with the vehicle wheel-rail impact vibration system in engineering practice, a two-degree-
of-freedom flexible impact vibration model with high and low uneven clearances of welded joints of 
rails has been produced. It is demonstrated that there is a process of transition from the vehicle wheel-
rail impact vibration system to chaos due to Hopf bifurcation and Neimark-Sacker bifurcation through 
utilizing an impact interface as the section of the Poincaré map and the fourth-order Runge-Kutta 
numerical method with variable step size. The detailed examination of its bifurcation and chaotic 
behavior offers a theoretical foundation for the best design of vehicle stability in practical running. 

2. Uneven model of the welded joint of a rail 

There are some differences in the waveform types of rail joint irregularity, but in general, they 
can be summarized into 3 types: Convex irregularity, concave irregularity and harmonic irregularity. 
The harmonic irregularity contains periodic irregularities with wavelengths of tens to one hundred 
millimeters and usually superposes convex, concave or step-type waveforms, as shown in Figure 1. 
Among them, the unimodal irregularity is usually composed of half-period cosine wave superposition 



7044 

Electronic Research Archive  Volume 31, Issue 11, 7040-7060. 

of weld irregularity with a wavelength of about 0.1 m. The range of joint irregularity is usually between 0.2 
and 0.4 mm, accounting for 82% of the total number of samples of range distribution statistical results, 
and the samples larger than 0.4 mm account for 15% [30]. A unimodal rail joint irregularity model is used 
as the main external excitation to study the nonlinear dynamic response of the vehicle vertical system. 

 

Figure 1. Uneven wave type of rail welded joint. 

 

Figure 2. Convex welded joint uneven model. 

Figure 2 shows a convex welded joint irregularity model, which can be described by a three-
segment cosine function and can be expressed as the following displacement function: 
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In Eq (1): 
t—time taken for the vehicle to pass the welded joint irregularity /(s); 
v—Vehicle running speed /(km/h); 
δ1, δ2—long wave and short wave depth /mm respectively for rail welded joints /(mm); 
λ—wavelength of short wave irregularity of welded joint /(m). 
The research showed that the wheat-rail impact at the welded joint is mainly controlled by short-

wave irregularity (wavelength less than 0.2 m) [31], and the maximum safety limit of short-wave 
irregularity amplitude is 0.2 mm, which is 2  <= 0.2 mm. The maximum safety limit for long-wave 
irregularity is 0.3 mm. 
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3. The impact stiffness and damping were calculated by finite element fitting 

In this paper, U7lMn-rail used in high-speed railways was taken as the calculation model [32]. 
The three-dimensional spatial entity method is adopted to solve the model. After modeling through 
CATIA, the model was imported into ABAQUS for finite element calculation, as shown in Figure 3. 
If the axle weight of the vehicle is 150 kN and the wheel-rail force is 1.5 times the static wheel load [33], 
the vertical impact force of the wheel-rail can be 115 kN and the impact force is applied directly above 
the middle of the model. Table 1 shows the calculation parameters. 

 

Figure 3. Calculation model. 

Table 1. Calculate parameter values. 

Rail parameter Value 
Section type /(kg/m) 60 
Density /(kg/m3) 7830 
Elasticity modulus /MPa 22,000 
Poisson ratio 0.3 

The stress contour and vertical displacement diagram of U7lMn-rail obtained by finite element 
simulation are shown in Figures 4 and 5. To find the equivalent impact stiffness and damping values, 
the finite element calculation results were fitted into an approximate curve by MATLAB for calculation 
purposes as shown in Figures 6 and 7. 

 

Figure 4. Stress contour. 
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Figure 5. Vertical displacement. 

 

Figure 6. Load-displacement. 

 

Figure 7. Displacement-time. 

The maximum vertical displacement and load of the load-displacement curve are respectively 
taken as calculation values: 

61.304 10 /X mm  , 115F kN  

According to Hooke’s theorem, the equivalent impact stiffness can be obtained: 

10
3 / 8.19 10 /K F X N m    

The curve of rail deformation and displacement is fitted with the following function: 

-5 -6 2(t) 2.3 10 sin( ) 1.04 10 [( 10) -100]X t t                      (2) 

The fitting load-displacement curve is calculated by applying a vertical dynamic load with a 
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maximum value of 115 kN to the rail, which can reflect the damping characteristics of the material [34,35]. 
That is, the area S enclosed by the curve of vertical deformation displacement of the rail with load is 
equal to the negative work done by the equivalent damping force of the rail in a cycle: 

1 2

0
( ) 0.07989cx t dx cx dt S N m                           (3) 

By substituting Eq (2) into Eq (3), the equivalent impact damping can be obtained as: 

3 828.67 /C N s m   

4. Vehicle impact vibration system and its dynamic equation 

Based on the 1/4 vehicle system model, assuming that the vertical displacement of the vehicle 
body is 0, the vehicle impact vibration system model is abstracted from the maximum safety amplitude 

2   of short-wave irregularity of the welded rail joint as the wheel-rail impact clearance, and the 
nonlinear dynamic behavior of the vehicle impact vibration system near the safety critical value of 
short-wave along amplitude of the welded joint was studied. 

 

Figure 8. Impact vibration schematic of a vehicle. 

As shown in Figure 8, 1M  is half of the wheelset mass, 2M  is half of the bogie mass, 1K  is 
the suspension stiffness of the first series, 2K  is the vertical stiffness of the air spring of the second 
series, 3K   is the equivalent impact stiffness of the rail, 1C   is the damping of the first series of 
suspension, 2C   is the damping of the second series of suspension, 3C   is the equivalent impact 
damping of the rail and D  is the impact clearance of the wheel and rail. 

The vertical stiffness of vehicle air spring can be fitted as a quadratic function [36], and the 
excitation amplitude and nonlinear stiffness are the major factors affecting the nonlinear characteristics 
of air spring suspension, and among the nonlinear forces, only the cubic nonlinear force plays a role [37], 

22K  is the nonlinear stiffness coefficient, so the vertical stiffness of air spring is taken as: 

2
2 21 22K K K X                                     (4) 

The periodic wheel-rail impact force at the irregularity of the welded joint of the rail:
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( ) sin( )i iP T P T     is taken as the external excitation acting on the wheelset and bogie, where:
3 / 2i iP K   , ( 1, 2i  ), /100v  , respectively takes the centroid of the wheelset and bogie as the 

origin of coordinates, and takes the vertical downward movement as the positive direction to establish 
a two-dimensional coordinate system as shown in Figure 8. The fixed length of the rail [38] is 100 m, 
that is, the longitudinal distance of each welded joint along the rail. Assuming that the vehicle running 
speed is v = 246 km/h ~ 263 km/h, the vertical system parameters of a certain type of vehicle are taken 
as the calculation parameters of the system, as shown in Table 2. 

Table 2. Vehicle vertical system parameters. 

System parameter Value 
1/4 Bogie mass /kg 680 
1/2 Wheelset mass /kg 950 
Secondary suspension damping /(kN·s/m) 15 
Primary suspension damping /(kN·s/m) 21 
Secondary suspension stiffness /(MN/m) 2.19 
Nonlinear stiffness /(MN/m) 2620 
Primary suspension stiffness /(MN/m) 2.4 

When a wheel-rail collides, the system’s kinetic energy (T), potential energy (V) and dissipated 
energy (D) are as follows: 

2 2
1 1 2 2

2 2 2
2 2 1 1 2 3 1

2 2 2
2 2 1 1 2 3 1
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1 [ ( ) ( ) ]
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1 [ ( ) ]
2
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
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 

   

                 (5) 

In Eq (5): 
1X - Wheelset vertical vibration displacement /mm; 
2X - Vertical vibration displacement of bogie /mm; 
1X - Wheelset and track impact instantaneous velocity /(mm/s); 

2X - Vertical vibration speed of bogie /(mm/s); 

The motion differential equation of the system is established by using the Hamiltonian principle 
and Lagrange equation: 

( )i i

i
i i i

Q P T
L T V

d L L D Q
dt q q q




 
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       

                          (6) 

In Eq (6): 
iq - Generalized displacement vector;  
iq - Generalized velocity vector;  
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iQ - Generalized force vector;  
The differential equation of motion of the system may be found by inserting Eqs (4) and (5) into 

Eq (6): 

2
1 1 1 3 1 1 1 3 1 1 3
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2 2 1 1 2 2 1 1 21 22 2 2
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 (7) 

Given 01 M , 1 0K  , the dimensionless form of Eq (7) is: 
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In Eq (8): “ ix  ” represents the two-order derivative of the iM   oscillator’s displacement 
concerning dimensionless time t , and “ ix ” stands for the first-order derivative of the iM  oscillator’s 
displacement ix  concerning dimensionless time t . 
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               (9) 

5. Bifurcation of periodic motion of the system and transition to chaos 

Assuming that the vehicle running speed is: v = 246 km/h ~ 263 km/h, the corresponding 

dimensionless excitation frequency is: [1.08,  1.15] . The Poincaré map T  of the periodic impact 

of the system is constructed to compute the dynamic response of the vehicle wheel-rail system when 
the impact vibration occurs to analyze the variety, existence area and local bifurcation problems of the 
periodic motion of the system. 

 4
1 1 2 2 1 1( , , , , ) , 0, , 0T x x x x R S x b x          

5.1. Hopf bifurcation and the quasi-periodic road to chaos 

Reference [39] studies that the critical speed of railway passenger cars is as follows. Chaos is 
observed when the system experiences nonlinear vibration events like Hopf bifurcation, and the 
change from chaos to quasi-periodic solution may be associated. Reference [40] uses a numerical 
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method to study Hopf bifurcation and the limit cycle of railway passenger cars and verifies the results 
by full-scale roller stage test. 

The system parameters in Table 2 are converted to the dimensionless parameters of the system:
0.055b   , 0.013   , 1.39m   , 2 0.714c   , 3 0.039c   , 21 0.9125k   , 22 1091k   , 

3 34125k  , 2 0.4p  . The fourth-order Runge-Kutta numerical method is used to solve the dynamic 
system, and the bifurcation diagram when [1.08,  1.15]  is obtained, as shown in Figure 9. In this 
figure, the abscissa represents the dimensionless excitation frequency, and the dimensionless 
instantaneous speed when the wheelset 1M  goes downward and impacts with the rail is represented 
by the ordinate. The Hopf bifurcation occurs as the excitation frequency of the system decreases.  

 

Figure 9. Bifurcation diagram. 

In Figure 10(a), the abscissa represents the dimensionless displacement of the /q p n  periodic 
motion of the wheelset on the Poincaré section, and the dimensionless instantaneous speed when the 
wheelset 1M  goes downward and impacts with the rail is represented by the ordinate. The periodic 
motion of the impact vibration system is usually expressed by /q p n  [41], n  denotes the number 
of force cycles and p  denotes the number of collisions between the wheelset and the rail. At that 
time, the Poincaré map of the system is a fixed point, then the system has stable 1/1q   periodic 
motion, and no modulation phenomenon occurs. Only the vibration frequency of the fundamental 
frequency appears in the frequency domain diagram, as shown in Figure 10(b). The Time-domain 
diagram of the system presents an approximate sinusoidal periodic stable state and has an equal 
maximum value periodically. The comparison of the red isolines in Figure 10(c) is shown. 

   

    (a) Poincaré map      (b) Frequency-domain graph       (c) Time-domain diagram 

Figure 10. Dynamic ( 1.13820  ) response of wheelset. 

When   gradually decreases through 1.38105, the system undergoes Hopf bifurcation, and the 
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1/1q   periodic motion gradually destabilizes and bifurcates out of the quasi-periodic oscillatory 
state, forming a closed invariant cycle on the projected Poincaré section. It is worth noting that the 
attractive invariant cycle near the bifurcation point has smoothness, as shown in Figure 11(a).  

   

(a) Poincaré map      (b) Frequency-domain graph       (c) Time-domain diagram  

Figure 11. Dynamic ( 1.13775  ) response of wheelset. 

        
   (a) Poincaré map( 1.13574  )      (b) Poincaré map( 1.13573  ) 

Figure 12. Dynamic response of wheelset. 

In the frequency domain diagram, there are two primary frequency vibration frequencies, 1  and 
2 , and their ratio is irrational. In addition, there are secondary frequency vibration frequencies, as 

shown in Figure 11(b). The Time-domain diagram of the system transitions from an approximately 
single-period to a multi-period oscillatory state, as shown in Figure 11(c). 

   

   (a) Poincaré map       (b) Frequency-domain graph       (c) Time-domain diagram  

Figure 13. Dynamic ( 1.1352  ) response of wheelset. 
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As the excitation frequency   gradually decreases, the attractive invariant ring gradually breaks 
and becomes larger and its smoothness is also destroyed. The system is in a quasi-periodic oscillatory 
state, as shown in Figure 12(a). With the further decrease of the parameter  , the system enters the 
quasi-periodic oscillatory state after phase locking ( 27 / 27q   periodic motion) as shown in Figure 12(b). 
At this time, the Poincaré map of the system is a closed smooth invariant cycle. There are two major 
frequency vibration frequencies and it is worth noting that their secondary frequency vibration 
frequencies gradually increase. As shown in Figure 13(a),(b). The difference in the peak amplitude of 
the Time-domain diagram of the system is larger than before, as shown in Figure 13(c). 

   
   (a) Poincaré map       (b) Frequency-domain graph       (c) Time-domain diagram  

Figure 14. Dynamic ( 1.13415  ) response of wheelset. 

When the   goes through 1.13415, the Neimark-Sacker bifurcation occurs, and the system is in 
the quasi-periodic oscillatory state. At this time, three major frequency vibration frequencies, 1 , 2  
and 3 , appear in the frequency domain diagram, and their secondary frequency vibration frequencies 
become more, as shown in Figure 14(a),(b). The difference between the peak amplitude of the Time-
domain diagram of the system is larger, and the oscillation period is increased, as shown in Figure 14(c). 

However, as    continues to decrease, when 1.0972   , as illustrated in Figure 15(a), the 
system’s Poincaré map has 9 fixed points and is in periodic motion with 9 / 9q  , and Figure 15(b) 
shows the partially enlarged drawing of one of the fixed points. At this time, the Time-domain diagram 
of the system changes and is in the state of 9-period oscillation, as shown in Figure 15(c). 

Here, 1
/p nT is used to denote the p attracting invariant cycles generated on the Poincaré map by Hopf 

bifurcation of /q p n  fixed points in the impact vibration system [41]. When 1.0961  , 9 attracting 
invariant cycles 1

9/9T  are generated by projection in the Poincaré map. At this time, the system enters the 
quasi-periodic oscillatory state due to Hopf bifurcation, as shown in Figure 16(a), and the partially enlarged 
drawing is shown in Figure 16(b). The Time-domain diagram of the system is shown in Figure 16(c) 

   
    (a) Poincaré map         (b) Partial enlarged graph        (c) Time-domain diagram 

Figure 15. Dynamic ( 1.0972  ) response of wheelset. 
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   (a) Poincaré map         (b) Partial enlarged graph        (c) Time-domain diagram 

Figure 16. Dynamic ( 1.0961  ) response of wheelset. 

         

      (a) Poincaré map              (b) Partial enlarged graph 

Figure 17. Dynamic ( 1.0957  ) response of wheelset. 

As the parameter   gradually decreases, the 9 attracting invariant circles gradually deform and 
the system then enters a multi-period oscillation, as shown in Figure 17(a),(b). 

When   crosses 1.0945, the system undergoes 2 1
9/9T  tori doubling, as shown in Figure 18(a), 

which indicates that the system may enter a chaotic state with further changes of  . In the frequency 
domain diagram, there are four major frequency vibration frequencies, and the size of the main 
frequency has increased compared with before. The system contains abundant secondary frequency 
vibration frequencies, as shown in Figure 18(b). The Time-domain diagram of the system is still in the 
state of multi-period oscillation, as shown in Figure18(c). 

   

   (a) Poincaré map     (b) Frequency-domain graph       (c) Time-domain diagram 

Figure 18. Dynamic ( 1.0945  ) response of wheelset. 
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(a) Poincaré map        (b) Phase plane diagram         (c) Time-domain diagram 

Figure 19. Dynamic ( 1.0935  ) response of wheelset. 

Continue to decrease    to 1.0935, the system finally enters the chaotic state that should be 
avoided. Figure 19(a) shows the strange attractor with a very complex unique and self-similar structure, 
and the phase plane diagram of the system is shown in Figure 19(b). At this time, the Time-domain 
diagram shows an aperiodic oscillatory state, as shown in Figure 19(c). The system’s motion state 
follows deterministic law yet exhibits random motion. 

5.2. The road of period-doubling bifurcation to chaos 

Taking the parameters of the same vehicle impact vibration system in the previous chapter: 
0.55b   , 0.013   , 1.39m   , 2 0.714c   , 3 0.039c   , 21 0.9125k   , 3 34125k    and 

2 0.4p  . Continue to use the fourth-order Runge-Kutta numerical method to simulate the system, and 
obtain the bifurcation diagram when 22 [100,  1100]k   as shown in Figure 20. The abscissa in the 
diagram represents the dimensionless nonlinear stiffness ratio of the system, and the ordinate 
represents the dimensionless vertical vibration displacement of the bogie. It can be seen that with the 
increase of the dimensionless nonlinear stiffness ratio of the system, the system transits to the chaotic 
motion state through the period-doubling bifurcation, and the existence domain of the chaotic motion 
is gradually dense. The increase of the nonlinear stiffness of the air spring in the system may lead to 
the occurrence of chaotic motion of the system. 

 

Figure 20. Bifurcation diagram. 

The numerical simulation shows that the nonlinear stiffness ratio is 750. As illustrated in Figure 22(a), 
the system’s phase plane diagram has 2 closed circles. the Poincaré map of the system is two stable 
fixed points, as shown in Figure 21(a). The abscissa represents the dimensionless vertical vibration 



7055 

Electronic Research Archive  Volume 31, Issue 11, 7040-7060. 

displacement of the bogie 2M  , and the ordinate represents the dimensionless vertical vibration 
velocity of the bogie 2M . At this time, the system has a stable 2 / 2q   periodic motion. When the 
nonlinear stiffness ratio is 22 900k  , the Poincaré map of the system increases to four stable fixed 
points by Period-doubling bifurcation, as shown in Figure 21(b). As illustrated in Figure 22(b), the 
system’s phase plane diagram has 4 closed circles. At this time, the system is in a stable / 44q   
periodic motion state. When the nonlinear stiffness ratio continues to increase to 22 1091k   , the 
periodic motion state of the system disappears and gradually becomes unstable, as shown in Figure 22(c). 
At this time, the system enters the chaotic oscillatory state through the period-doubling bifurcation. The 
fractal structure with a self-similar structure can be seen in Figure 21(c). 

     

  (a) 22 750k              (b) 22 900k               (c) 22 1091k   

Figure 21. Poincaré map. 

     

   (a) 22 750k              (b) 22 900k              (c) 22 1091k   

Figure 22. Phase plane diagram. 

5.3. The road of boundary crisis to chaos 

Keep the above system simulation parameters unchanged, increase the system damping ratio to: 
0.023   , and obtain the system bifurcation diagram when the nonlinear stiffness ratio is 

22 [100,  1450]k    as shown in Figure 23. It can be seen that with the increase of the nonlinear 
stiffness ratio 22k , the system enters chaotic motion after the boundary crisis occurs nearby. 

When the nonlinear stiffness ratio is 22 400k  , the Poincaré map of the system is a stable fixed 
point, as shown in Figure 24(a). As illustrated in Figure 25(a), the system’s phase plane diagram has 1 
closed circle. At this time, the system has a stable /11q    periodic motion. When the nonlinear 
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stiffness ratio is 22 1091k   , the system enters the / 22q    periodic motion state through the 
Period-doubling bifurcation. As illustrated in Figure 25(b), the system’s phase plane diagram has 2 
closed circles. The Poincaré map of the system is two stable fixed points, as shown in Figure 24(b). 

 

Figure 23. Bifurcation diagram ( 0.023  ). 

     

    (a) 22 400k                 (b) 22 1091k             (c) 22 1377k   

Figure 24. Poincaré map. 

         

    (a) 22 400k                (b) 22 1091k              (c) 22 1377k   

Figure 25. Phase plane diagram. 

As the nonlinear stiffness ratio increases to 1377, there is a boundary crisis in the system, and the 
system suddenly enters a chaotic motion state, as shown in Figure 25(c). The shape of the chaotic 
attractor can be observed from the Poincaré map of the system, as shown in Figure 24(c). 
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6. Conclusions 

1) In this paper, the theoretical analysis and numerical simulation of the vehicle wheel-rail impact 
vibration system at v = 245 km/h ~ 260 km/h show that when the wheelset and rail impact vibration 
occur near the critical value of the short-wave depth of the rail welded joint (0.2 mm), the system has 
Hopf bifurcation and Neimark-Sacker bifurcation, and there are multiple complex roads leading to 
chaotic motion. With the increase of the nonlinear stiffness ratio 22k   of the air spring in the 
secondary suspension of the vehicle, the system has a transition from Period-doubling bifurcation and 
Boundary crisis to chaotic motion. 

2) When the dimensionless excitation frequency is in the interval [1.1382,  1.15] , the vehicle 
wheel-rail impact vibration system is a stable 1/1q   periodic motion, and the vehicle system is 
relatively stable at this time (v = 259 km/h ~ 263 km/h). When the non-dimensional excitation 
frequency is in the range [1.0972,  1.1245] , multiple impact collisions (v = 250 km/h ~ 256 km/h) 
occur between the wheel and rail, and the system is 9 / 9q    periodic motion. When 

[1.08,  1.0972] , the excitation frequency of the system crosses 1.0945   (v = 249.4 km/h), it 
enters the chaotic state by 1

9/92T  tori doubling. 
3) When more nonlinear elements of the vehicle wheel-rail impact vibration system are examined, 

the system exhibits more complicated and rich nonlinear dynamic behavior. The system analysis results 
differ when rail flexibility is taken into account. The research on bifurcation and chaos behavior of 
vehicle wheel-rail shock vibration systems provides a reference for preventing the chatter of bogie 
components and improving the safe environment of vehicle operation. 
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