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Abstract: A key issue in current federated learning research is how to improve the performance
of federated learning algorithms by reducing communication overhead and computing costs while
ensuring data privacy. This paper proposed an efficient wireless transmission scheme termed the
subsampling privacy-enabled RDP wireless transmission system (SS-RDP-WTS), which can reduce
the communication and computing overhead in the process of learning but also enhance the privacy
protection ability of federated learning. We proved our scheme’s convergence and analyzed its privacy
guarantee, as well as demoonstrated the performance of our scheme on the Modified National Institute
of Standards and Technology database (MNIST) and Canadian Institute for Advanced Research, 10
classes datasets (CIFAR10).
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1. Introduction

The proliferation of advanced technologies, including Artificial Intelligence (AI), internet of things
(IoT), and cloud computing, has led to the emergence of federated learning (FL) as a very promising
distributed machine learning approach [1]. Specifically, using the edge network could benefit FL by
enhancing the efficiency of learning updates and responses. Meanwhile, FL encounters the challenge
of costly communication and time-sensitive training when deploying FL in the edge network. Hence,
wireless multi-access channels are introduced in reference [2] as a means to transmit parameters or
gradient information, therefore mitigating communication overhead. Furthermore, multi-channel
communication in intricate wireless communication networks can conserve resources, provided that
the communication information is effectively distributed across various channels [3]. Therefore, the
proposed approach is to incorporate the gradient compression mechanism into FL in order to enhance
communication efficiency. Gradient compression strategies typically encompass methods like
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sparsification and quantization. The sparsification technique is employed to compress the local model
before transmission to the parameter server (PS), significantly reducing communication costs [4].
Nevertheless, it is possible that the process of sparsification could potentially impede the rate at which
convergence occurs. Quantization can potentially decrease the amount of data in a given
communication round prior to transmitting gradients to the PS, potentially expediting the convergence
process [5].

Although FL addresses certain challenges related to safeguarding data privacy, it has
vulnerabilities in terms of security [6–8]. One of the primary factors contributing to this issue is the
need for more consideration for safeguarding the model parameters in FL. In scenarios where servers
and clients are semi-honest, the potential for the inference of sensitive information exists, thus leading
to privacy breaches. In this context, current approaches integrate FL with privacy-preserving
technologies to augment privacy. These technologies encompass differential privacy (DP) [9–11],
homomorphic encryption [12], secure multi-party computation [13] and Blockchain [14], among
others. DP stands out among the various methods due to its rigorous mathematical description and
efficient computational requirements [15].

Additionally, DP can precisely measure data privacy and loss [16, 17]. Therefore, it is essential to
highlight that a prominent area of focus in the field of DP pertains to exploring various forms of
divergence for developing differential privacy variations. In this regard, Rényi differential privacy
(RDP) has demonstrated the capability to yield robust privacy outcomes by employing a sequence of
random mechanisms when accessing device datasets [18–20]. The implementation of DP has the
potential to enhance local data privacy. However, it is essential to note that employing encryption
procedures with DP may result in increased computational overhead and a decrease in training
accuracy, as stated in reference [21]. Therefore, optimizing FL’s performance by minimizing
communication overhead and computing costs while simultaneously upholding data privacy and
security emerges as a pivotal concern.

While DP can effectively safeguard private data by introducing noise, it also introduces potential
challenges, such as increased computing overhead and a potential decrease in training accuracy [21].
Motivated by the inherent danger, we present a novel framework SS-RDP-WTS. The proposed
scheme involves the utilization of multi-access channels within a wireless communication network to
ensure data privacy protection and efficient communication in the context of FL. The technique of
gradient compression is implemented by employing a multi-level stochastic quantization approach
inside a federated learning framework that incorporates wireless multiple access channels. This
approach effectively reduces the burden of communication and processing expenses by selectively
sampling and reducing randomness. Furthermore, considering the favorable combination aspects of
the RDP, we propose augmenting the privacy protection capability of the enhanced method. The
safeguarding of model parameters is achieved through discrete Gaussian noise during client updates,
enhancing their security. Additionally, clients’ privacy is further ensured by leveraging the privacy
amplification effect of uniform subsampling. Our paper provides a theoretical formulation for a
comprehensive distributed mean estimation problem. The empirical findings demonstrate that the
subsampling private wireless transmission technique efficiently ensures a balance between model
utility and communication while offering enhanced privacy protection.

The remainder of this paper is organized as follows. Section two describes the relevant prerequisites,
including basic definitions and theorems related to DP. Section three introduces the proposed system
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model with a subsampling private wireless transmission scheme. Section four analyzes the system
model’s privacy analysis and convergence rate, section five evaluates its performance, and section six
presents the conclusions.

2. Background

In this section, we present the system model and give RDP and its related definitions. The
commonly used notations are listed in Table 1.

Table 1. Summary of the main notations.

Symbol Description
ε Privacy budget
δ The upper bound of the probability of differential privacy failure
α The order of the ratio of two probability distributions
σk,t Noise level of client k in iteration t
wt The parameter vector in iteration t
ℓ(w) Loss function
∆ f The function of sensitivity
k The number of client
u(k)

i The data point i of client k
v(k)

i The label corresponding to the data point i of clientk
Dk Local dataset of client k
N Total number of all clients
T Total number of iterations
gt The gradient vector in iteration t
ĝt The noisy versions of the perturbed local gradients in iteration t
b Quantization levels
qt

k Quantized gradient vector of client k in iteration t
xt

k Model parameters after encoding operation
P Sampling probability
Kt Subsampling randomly selected client collection
d Feature dimension
C The capacity of wireless multiple access channels
nk,t Artificial noise of client kin iteration t

2.1. DP in wireless FL

Wireless FL is a distributed intelligent computing paradigm that aims to protect clients’ data privacy
while effectively utilizing decentralized data resources and computing power in large-scale devices
through local model training on edge devices. In the wireless communication network environment,
due to the rapid change of data and the complexity of edge devices, wireless FL can not only update the
model in real time, but also improve the learning effect. Moreover, it enables FL to train in a broader
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range of data and more powerful computing resources to improve the accuracy and performance of the
model.

One potential approach to addressing the FL objective while safeguarding client privacy involves
training the model using a modified and distorted representation of the data, which does not expose
the actual data directly during the training process. To solve this privacy issue, Du et al. [22]
implemented a machine learning strategy for smart edges using DP. Seif et al. [23] studied the
problem of FL over a wireless channel, modeled by a Gaussian multiple access channel (MAC) and
subject to local differential privacy constraints. Liu et al. [24] demonstrated that as long as the privacy
constraint level, measured via DP, is below a threshold that decreases with the signal-to-noise ratio,
the uncoded transmission achieves privacy “for free”, i.e., without affecting the learning performance.
During the learning process, model updates using local private samples and large-scale parameter
exchanges among agents impose severe privacy concerns and communication bottleneck. To address
these problems, Ding et al. [25] proposed two DP and communication efficient algorithms. In this
purpose, Wei et al. [26] to minimized FL training delay over wireless channels, constrained by overall
training performance as well as each client’s DP requirement.

2.2. Privacy definitions

It is known that DP has put private data analysis on the firm theoretical foundation [27, 28]. We
present the definitions of DP below.

Definition 1. (ε - DP [29]). For ε > 0, a randomized algorithm M is said to be ε -differentially private
if, and only if, for any two adjacent sets D1, D2 and any S ⊆ Range(M) , it holds that

Pr [M(D1) ∈ S ] ≤ exp (ε) × Pr [M(D2) ∈ S ] , (2.1)

where ε is the privacy budget.

In order to attain anonymity, it is imperative that the algorithm M has a randomized component. A
reduced privacy budget implies that the adversary has less capacity to discern the existence of any data
based on the output.

Definition 2. ( (ε, δ) - DP [9]). For ε, δ > 0, a randomized algorithm M is said to be (ε, δ) -differentially
private if, and only if, for any two adjacent set D1, D2 and any S ⊆ Range(M) , it satisfies that

Pr [M(D1) ∈ S ] ≤ exp (ε) × Pr [M(D2) ∈ S ]+δ. (2.2)

Definition 3. (RDP [19]). For ε > 0 and α > 1 , a randomized mechanism M satisfies (α, ε) -RDP if,
and only if, for any two adjacent sets D1, D2 ∈ S , it holds that

Dα (M (D1) ∥M (D2) ) =
1
α − 1

log
(
Eθ∼M(D2)

[(
M (D1) (θ)
M (D2) (θ)

)α])
≤ ε. (2.3)

It is evident that RDP is strictly stronger than (ε, δ)-DP for δ > 0, and it enables more precise bounds
for the composition of the Gaussian mechanism. The subsequent result is employed to transform an
RDP into a central DP.

Lemma 1. (From RDP to DP [30]). Suppose for any α > 1 , a mechanism M is (α, ε) -RDP, then, the
mechanism M is

(
ε+ log (1/δ) / (α − 1) , δ

)
-DP for all 0 < δ < 1.
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2.3. The advantages of RDP over DP

DP employs the concept of sensitivity to quantify the level of data privacy exposure. Sensitivity
refers to the utmost extent to which the outcomes of a complete database query are influenced by the
alteration of a single individual’s data. Nevertheless, RDP offers an enhanced flexibility and a wider
range of choices with the incorporation of a sensitivity parameter α for measurement.

To begin, RDP enables the selection of suitable sensitivity levels based on diverse application
scenarios, hence, improving the adaptability of privacy protection to a range of data processing
requirements. RDP, for instance, was equal to DP at α = 1. However, RDP is appropriate for
instances with higher privacy requirements and might offer stronger privacy protection when α > 1.
In contrast, when α < 1, enabling RDP resulted in increased query accuracy. On the contrary, when
α < 1, RDP led to a notable improvement in query accuracy.

Furthermore, when compared to DP, RDP demonstrates superior efficacy in safeguarding privacy
inside certain attack models. In certain scenarios, such as when facing a reorganization assault or when
numerous queries are allowed, it has been observed that DP may not offer adequate security for privacy.
DP synthesis can be achieved in RDP by strategically selecting suitable α values, resulting in enhanced
privacy protection performance.

Furthermore, RDP exhibits superior composability. This feature enables the integration of diverse
privacy strategies in order to enhance privacy protection, while still upholding privacy performance.
The inherent composability of this feature holds significant importance in facilitating advanced data
analysis and ensuring the secure exchange of data.

2.4. Discrete Gaussian mechanism via subsampling

We state the definitions of the discrete Gaussian mechanism and establish relevant privacy
guarantees. We first introduce discrete Gaussian distribution.

Definition 4. (Discrete Gaussian distribution [31]). Let σ ∈ R with σ > 0 . Discrete Gaussian
distribution is a probability distribution on a discrete additive subgroup L. The discrete Gaussian
distribution with scale σ is denoted as NL (σ) , x ∈ L , and the probability mass on x is proportional
to e−x2

/2σ2.

In order to ascertain the magnitude of the introduced noise, it is necessary to impose limitations on
the ℓ2 -sensitivity of the gradient aggregation. Within the context of DP, the process of calibrating the
amount of noise to be added is influenced by the sensitivity of the function, as explicitly specified as
follows.

Definition 5. (ℓ2 -sensitivity [32]). Suppose that a function f : D → R and two adjacent datasets are
D1 and D2. The ℓ2 -sensitivity of f is defined as ∆ f ∆= maxD1,D2∈D∥ f (D1) − f (D2)∥2.

Lemma 2. (RDP for discrete Gaussian mechanism [18]). A mechanism , which alters the output of
another algorithm range ( f ) ⊆ L, by adding Gaussian noise, i.e., f (.) + NL (σ), satisfies (α, ε′)-RDP
with ε′ = α(∆ f )2/2σ2.

The discrete Gaussian mechanism is realized by adding noise with discrete Gaussian distribution to
the output function evaluated on a sensitive dataset. Canonne et al. (2020) demonstrated concentrated
DP for the discrete Gaussian mechanism and provided a thorough analysis of the privacy and utility
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properties of the discrete Gaussian [30]. For FL, Wang et al. (2021) proposed a discrete Gaussian-
based RDP with an analytical moments accountant-based RDP [20].

It is significant to exploit the randomness in subsampling. Wang et al. (2018) remarked that discrete
Gaussian exhibits tight privacy amplification bound via subsampling and indicated that RDP enables
the discrete Gaussian mechanism to be composed tightly with an analytical moments accountant, which
saves the privacy budget in a multi-round FL [33].

3. Our proposed SS-RDP-WTS scheme

This section presents our proposed SS-RDP-WTS, as shown in Figure 1.
The proposed system performs an iterative process in which the following steps are repeated: 1)

The PS broadcasts the initialization model to a randomly selected subset of local clients. Each client
then performs local random gradient descent using its local data to obtain an updated local gradient. 2)
To tackle the communication bottleneck, the local gradient is compressed using multi-level random
ladder quantification for the clients that are selected through subsampling. 3) To further enhance
the algorithm’s privacy protection capability, discrete Gaussian noise is employed in the quantized
discretized gradient. 4) The model parameters of the noisy version are transmitted through wireless
global mobile access communication (GMAC) to improve the communication efficiency of the model.
5) The PS aggregates the uploaded model parameters in an average manner to obtain a new global
model.

Figure 1. Illustration of SS-RDP-WTS.

SS-RDP-WTS: We study an FL system with with a central server, N clients, and a wireless
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communication technique. The clients establish communication with the processing system through
wireless GMAC technology. The pseudocode of this algorithm is shown in Algorithm 1.

Each client k has a local dataset Dk, which includes the number of data points, denoted as u(k)
i . Each

data point i within client k’s dataset is associated with a label, denoted as v(k)
i . Its size is denoted as

|Dk|, and so Dk =
{(

u(k)
i , v

(k)
i

)}|Dk |

i=1
. The client establishes communication with the PS through GMAC to

train the model. This training process involves minimizing the loss function ℓ(w)

w∗ = arg min
w
ℓ (w) ∆=

1
|Dtotal|

Kt∑
k=1

|Dk |∑
i=1

ℓk
((

u(k)
i , v

(k)
i

)
; w

)
, (3.1)

where w ∈ Rd is the parameter vector, ℓk(·) is the loss function for client k, and Dtotal= ∪
Kt
k=1 Dk is

the total dataset participating in training minimized ℓ(w) iteratively by the stochastic gradient descent
(SGD) algorithm. In the training iteration t, the PS broadcasts the global parameter vector wt to the
clients. Each client k calculates its local gradient on the local dataset

gk (wt) =
1
|Dk|

|Dk |∑
i=1

fk

((
u(k)

i , v
(k)
i

)
; w

)
. (3.2)

Then, the clients statistically quantify the gradient values into a discrete domain and implement
the discrete Gaussian technique to ensure anonymity. During the quantification process, quantification
parameters are optimized considering the capacity level of the wireless GMAC. To streamline the
presentation, we have omitted the iteration index t from our paper. During each iteration, each client
performs quantization on its local vector gt

k by dividing it into bt
k discrete levels, ensuring that the

quantized value lies within the range
[
−gmax

k , g
max
k

]
. Let gmax

k be the clipping bound L. For every integer

φ in the range
[
0, bt

k

)
,

Bk (φ) ∆= −gmax
k +

φsk

bt
k − 1

, (3.3)

where bt
k ≥ 2 represents the quantization level for client k. It is usual to choose sk as 2gmax

k , and Bk (φ)
is the index. If gk, j ∈

[
Bk (φ) , Bk (φ + 1)

)
holds for the client k, it follows that

qk, j =

 Bk (φ + 1) , w.p. gk, j−Bk(φ)
Bk(φ+1)−Bk(φ) ,

Bk (φ) , otherwise.
(3.4)

So, qk, j is an unbiased estimator of gk, j, meaning that E
[
qt

k, j

]
= gt

k, j. Additionally, the variance can
be bounded

Var
[
qk, j

]
≤ (sk)2/4

(
bt

k − 1
)2
=

(
2gmax

k
)2/4

(
bt

k − 1
)2
= L2/

(
bt

k − 1
)2
. (3.5)

After quantizing the complete gradient vector, the Gaussian technique is subsequently employed.
This method is not suited for transferring quantized local gradients. One alternative method for
ensuring privacy is the incorporation of discrete Gaussian noise. If the local privacy model is outside
the quantization range, it is to employ preprocessing techniques to substitute it.

Subsequently, client k uses a preprocessing function to acquire the code word xt
k, denoted as

xt
k= f t

k

(
qt

k, j

)
, and transmits it to PS. In our paper, we examine the random set of participants Kt,
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obtaining using uniform subsampling. Among them, the client k participates in the training process
during iteration t with probability P. When Kt=N, it can be inferred that all clients are engaged in the
training. The signal generated by the client k during iteration t is

xt
k =

{
qt

k + nt
k, w.p. P = Kt

N ,

0, otherwise,
(3.6)

where nk,t ∼ NL
(
0, σ2

k,tId

)
.

Algorithm 1: SS-RDP-WTS
Input: N is the total number of clients; ηt is the learning rate; nk,t is the noise of client k; mt is

the channel noise; bt
k is the quantization level.

1 for t ← [T ] do
2 Parameter Server:
3 Subsampling a subset of client Kt ⊂ [N] , |Kt| = PN and broadcast wt−1 and gmax

k
4 Client:
5 for Each Client k ⊂ Kt in parallel do
6 Train the local model wk

t with wt as initialization
7 wk

t ← ClientUpdate(k,wt−1) /* Local model updating */
8 Let Bk (φ) ≜ −gmax

k +
φsk

bt
k−1 for every integer φ ∈

[
0, bt

k

)
/* Quantization */

9 for j ∈ d, gk, j ∈
[
Bk (φ) , Bk (φ + 1)

)
do

10 qk, j =

 Bk (φ + 1) , w.p. gk, j−Bk(φ)
Bk(φ+1)−Bk(φ) ,

Bk (φ) , otherwise.
11 xt

k = qt
k + nt

k, nk,t ∼ NL
(
0, σ2

k,tId

)
/* Adding discrete Gaussian noise */

12 Through transmission over GMAC /* GMAC transmission */

13 yt =
Kt∑

k=1
xt

k + mt =
Kt∑

k=1
qt

k +
Kt∑

k=1
nt

k + mt,mt ∼ NL (0,N0)

14 Send yt to the server
15 end
16 end
17 Parameter Server:
18 ĝt = ht (yt) =

[∑Kt
k=1 yk

]
/µ|KT | /* Aggregate */

19 wt = wt−1 − ηtĝt

20 end

In addition, when clients transmit xt
k to the PS through wireless GMAC, a total of dlog2b bits are

required for transmitting present the quantized gradient vector, where the transmission rate of clients
is rt

k = dlog2bt
k, which adheres to the GMAC capacity region [30] given by the inequality

Kt∑
k=1

rt
k ≤ CKt , Kt ⊂ [N] , |Kt| = 1, . . .N, (3.7)
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where CKt is the combined capacity of wireless GMAC in subset Kt. Suppose that the channel inputs
during each iteration adhere to the average power constraint, denoted as

∥∥∥xt
k

∥∥∥2

2
≤ NPk,∀k. Furthermore,

CKt = 0.5 log
(
1 +

∑Kt
k=1 pk/N0

)
.

The input-output relationship over GMAC can be expressed as follows:

yt =

Kt∑
k=1

xt
k + mt =

Kt∑
k=1

qt
k +

Kt∑
k=1

nt
k + mt

︸       ︷︷       ︸
Zt

. (3.8)

Here, xt
k ∈ Rd is the signal transmitted by client k at iteration t and mt ∼ NL (0,N0) is the independent

identically distribution (IID) channel noise.
After the PS receives signal yt, the objective of the PS is to acquire the average value of the

accurate gradient by utilizing a post-processing function ht(·). This average value can be represented
by ĝt =

[∑Kt
k=1 yk

]
/µ|Kt |. Nevertheless, due to the implementation of preprocessing and post-processing

techniques, as well as the GMAC system capabilities, the PS can only decode and restore the
perturbed local gradients.

4. Theoretical analysis

In this section, we present the primary results of our proposed approach. In this section, we analyze
the RDP features of the subsampling private wireless transmission system. Specifically, we discuss the
privacy guarantee outlined in Theorem 1. Additionally, we introduce the privacy-convergence trade-off
of the scheme, as shown in Theorem 2.

4.1. Privacy analysis under SS-RDP-WTS

The subsequent theorem elucidates the RDP guarantee associated with the discrete Gaussian
mechanism within the subsampling privacy model, as outlined in Theorem 1. Initially, a process is
conducted to select a subset of Kt ≤ N clients from a more extensive set of clients. This subsampling
is performed independently and uniformly, with each client having an equal likelihood of being
selected. The probability of selection is denoted by P = Kt/N. Subsequently, within the chosen subset
of k clients, each client k proceeds to quantize its respective local gradient and subsequently
implements a discrete Gaussian process.

Theorem 1. Let the bound for clipping be L, the scale of noise scale be σ and the quantization level
be bk with bk ≥ bmin. The proposed scheme meets (α, ε′ (α))-RDP with

ε′(α) ≤
1
α − 1

log

1 + P2
(
α

2

)
min

2e
4L2[(bmin−1)+

√
d]2

σ2(bmin−1)2
, 4

e 4L2[(bmin−1)+
√

d]2

σ2(bmin−1)2
− 1




+
∑α

x=3
2P2

(
α

x

)
e

(x−1)
2xL2[(bmin−1)+

√
d]2

σ2(bmin−1)2

 .
(4.1)
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Proof. Note
∑

L exp(−(x−(1−α)µ)2/2σ2)∑
L exp(−(x−µ)2/2σ2) ≤ 1 and range ( f ) ⊆ L. Thus

Dα
(
NL

(
0, σ2

)
||NL

(
µ, σ2

))
=

1
α − 1

log
∑

L

1

ΣL exp
(
−

(x−µ)2

2σ2

) exp
(
−
αx2

2σ2

)
· exp

(
−

(1 − α)(x − µ)2

2σ2

)

=
1
α − 1

log
∑

L

1

ΣL exp
(
−

(x−µ)2

2σ2

) exp
(
−
−x2 + 2(1 − α)µx − (1 − α)(µ)2

2σ2

)

=
1
α − 1

log

exp

(
α2 − α

)
µ2

2σ2

 = αµ2

2σ2 .

(4.2)

According to Lemma 1, the discrete Gaussian mechanism adheres to
(
α, α(∆ f )2/2σ2

)
-RDP.

Next, we prove the bound of the sensitivity for client k. Note yt =
∑Kt

k=1 gt
k + Zt and the variance

of the effective Gaussian noise Zt is σ2 =
∑Kt

k=1 σ
2
k,t + N0 and ∆ f ∆

= maxD1,D2∈D∥ f (D1) − f (D2)∥2,∥∥∥gt
k

∥∥∥
2
≤ L,∀k, where L is the Lipschitz parameter. Thus,

∆ f t
k = max

Dk ,D′k

∥∥∥yt − yt′
∥∥∥

2
= max

Dk ,D′k

∥∥∥gt
k − gt

k
′
∥∥∥

2
≤ max

Dk ,D′k

[∥∥∥gt
k

∥∥∥
2
+

∥∥∥gt
k
′
∥∥∥

2

]
≤ 2L. (4.3)

According to [20], the upper bound on the quantized ℓ2-sensitivity is denoted as

∆ f = 2
(
L +
√

d
L

bmin − 1

)
. (4.4)

Thus, it is sufficient to show that the composition of quantization and discrete Gaussian mechanism
is

(
α, α(∆ f )2/2σ2

)
-RDP if we have

ε =
α
(
2
(
L +
√

d L
bmin−1

))2

2σ2 =
2αL2

[
(bmin − 1) +

√
d
]2

σ2(bmin − 1)2 . (4.5)

According to Theorem 9 in [15], we obtain

ε′(α) ≤
1
α − 1

log

1 + P2
(
α

2

)
min

{
2eε(2), 4

(
eε(2) − 1

)}
+

α∑
x=3

2P2
(
α

x

)
e(x−1)ε(x)


=

1
α − 1

log

1 + P2
(
α

2

)
min

2e
4L2[(bmin−1)+

√
d]2

σ2(bmin−1)2
, 4

e 4L2[(bmin−1)+
√

d]2

σ2(bmin−1)2
− 1




+

α∑
x=3

2P2
(
α

x

)
e

(x−1)
2xL2[(bmin−1)+

√
d]2

σ2(bmin−1)2

 .
(4.6)

Our scheme meets
(
α, ε′(α)/2σ2

)
-RDP. This completes the proof of Theorem 1.
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Remark: Our proposed system offers a more robust privacy guarantee unlike prior research. This
can be primarily illustrated by considering the following factors:

1) The proposed scheme adheres to RDP principles, which offer enhanced privacy measures and a
more stringent composition, which have been shown in [19].

2) As a result of implementing privacy amplification through subsampling and the addition of
discrete Gaussian noise, our scheme maintains a reduced noise level.

4.2. The convergence rate on SS-RDP-WTS

Theorem 2. Assuming the loss function ℓ(.) is λ -strongly convex, µ-smooth, and L-Lipschitz gradient,
the learning rate is ηt = 1/λt. The convergence rate satisfies

E [ℓ (wT )] − ℓ (w∗)

≤
2µ
λ2T 2

T∑
t=1

(1 + ρ)L2 +
d
(
1 + ρ−1

)
N2P2

Kt∑
k=1

L2(
bt

k − 1
)2 +

d
N2P2

[
N0 + NP maxσ2

k,t

]. (4.7)

Proof. Note that

E[ℓ(wT ) − ℓ(w∗)] ≤
2µ

T∑
t=1

G2
t

T

λ2T
=

2µ
T∑

t=1
G2

t

λ2T 2 . (4.8)

In the iteration t, the PS averages the received Kt gradients, which is

ĝt =
1
µ|Kt |

∑
k∈Kt

qt
k +

1
µ|Kt |

Zt. (4.9)

After post-processing, we get g̃t = f̃ (ĝt). Note that Kt is a binomial random variable, and the
probability of each client being selected is the subsampling probability of P = Kt/N, so
µ|Kt | = NP, σ2

|Kt |
= NP (1 − P).

Then we obtain the bounds on the second moment of the gradient

E
[
∥g̃t∥

2
2

]
= E

[
gt + (g̃t − gt)2

2

]
= E

[
∥gt∥

2
2

]
+ E

[
∥g̃t − gt∥

2
2

]
+ 2E

[
< (g̃t − gt) , gt >

]
(a)
≤ (1 + ρ) E

[
∥gt∥

2
2

]
+

(
1 + ρ−1

)
E

[
∥g̃t − gt∥

2
2

]
(b)
≤

(
1 + ρ−1

)
E

[
∥g̃t − gt∥

2
2

]
+ (1 + ρ) L2

∆
= G2

t ,

(4.10)

where (a) follows that for any two vectors m, n ∈ Rd and ρ > 0, 2⟨m, n⟩ ≤ ρ ∥m∥22+ρ
−1 ∥n∥22, (b) follows

that the the local gradients satisfying the Lipschitz condition are bounded by
∥∥∥gt

k

∥∥∥
2
≤ L,∀k.
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According to the variance expression of the gradient estimate and the expected properties, we have

E
[
∥g̃t − gt∥

2
2

]
= E


∥∥∥∥∥∥∥ 1
µ|Kt |

∑
k∈Kt

(
qt

k − gt
k
)
+

1
µ|Kt |

Zt

∥∥∥∥∥∥∥
2

2


=

1
µ2
|Kt |

E


∥∥∥∥∥∥∥∑k∈Kt

(
qt

k − gt
k
)∥∥∥∥∥∥∥

2

2

 + 1
µ2

Kt

E
[∥∥∥Zt

∥∥∥2

2

]

=
1
µ2
|Kt |

∑
k∈Kt

d∑
j=1

E
[(

qt
k, j − gt

k, j

)2
]
+

1
µ2
|Kt |

E
[∥∥∥Zt

∥∥∥2

2

]
(c)
≤

d
N2P2

Kt∑
k=1

L2(
bt

k − 1
)2 +

d
N2P2

[
N0 + NP maxσ2

k,t

]
.

(4.11)

where (c) follows by E
[(

qt
k, j − gt

k, j

)2
]
= Var

[
qt

k, j

]
≤ L2/

(
bt

k − 1
)2

, Zt =
∑

k∈Kt
nk,t + mt ∼ NL

(
0, σ2

Zt
Id

)
,

and nk,t ∼ NL
(
0, σ2

k,tId

)
. Since mt ∼ NL (0,N0), we have

E
[∥∥∥Zt

∥∥∥2

2

]
= dσ2

Zt

= d[N0 + E[Kt]σ2
k,t]

≤ d[N0 + E[Kt] max
k
σ2

k,t]

= d[N0 + µKt max
k
σ2

k,t].

(4.12)

We complete the proof of Theorem 2.

Remark: The convergence rate of our scheme is determined by applying the established
convergence results of SGD, as in reference [34, 35]. We subsequently compute the necessary
parameters to ensure convergence. Furthermore, we demonstrate the potential for enhancing the
convergence rate of our methodology by adjusting the quantization level, subsampling probabilities
and noise parameters within the constraints of a specific privacy budget and communication set. The
convergence rates per round of SS-RDP-WTS can be improved due to the more compact structure of
subsampling RDP, given a specific noise level, in accordance with the convergence rate boundary.
Simultaneously, discrete Gaussian noise offers more robust privacy assurances at equivalent noise
levels.

To characterize the convergence of our scheme, the optimum values of quantization level and noise
parameters maximizing the convergence rate in Theorem 2 are the solutions to an optimization
problem, but the optimization problem is an instance of constrained integer nonlinear programming
(INLP). To simplify the calculation, we set some given noise parameters. Therefore, the optimization
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problem can be written as

min
bt

k

Kt∑
k=1

L2(
bt

k − 1
)2 ,

s.t.
Kt∑

k=1

rt
k ≤ sCKt ,Kt ⊂ [N] , |Kt| = 1, . . .N,

bt
k ≥ bmin,

bt
k ∈ Z+,∀k.

(4.13)

Computation cost analysis of SS-RDP-WTS: Our proposed approach involves calculating the
gradient of the clients, which is influenced by factors such as the dataset size of each client and the
complexity of the model. Typically, the computation of the gradient on the client side is considered a
reasonably low-cost process, as it only entails navigating through local data and making adjustments
to model parameters. The discretization operation is a technique that partitions the gradient values into
distinct regions, enhancing the privacy preservation of the gradient. The discretization procedure is
generally cost-effective because it mainly focuses on aligning gradient values with discrete regions. To
safeguard individual privacy, noise is introduced as an additional measure. This is accomplished by
perturbing the discretized gradient, a commonly employed and cost-effective procedure. Our proposed
scheme achieves this objective by directly injecting noise into the gradient.

Communication cost analysis of SS-RDP-WTS: The initial step involves selecting a smaller
portion of the dataset, followed by determining the client’s participation in training based on the
probability P. The outcome of the client to engage in training is then communicated to the server. The
communication overhead associated with this process is minimal, as it entails transmitting a single
binary decision outcome. The second component pertains to the transportation gradient, wherein each
individual communicates the discretized, noise-injected and amplified gradient to the server-side
using the wireless GMAC. The presence of communication overhead is contingent upon the
dimensionality and precision of the gradient. Lastly, the received gradient refers to the process in
which the server side is responsible for receiving gradients from all clients and subsequently
computing the global average gradient. This procedure entails obtaining gradient data from each
client, which is contingent upon the number of clients and the quantity of the gradient data.

5. Performance evaluation

In this section, we evaluate the efficacy of our proposed strategy. We examine two learning tasks
utilizing convolutional neural networks training on CIFAR10 and MNIST datasets, employing with a
cross-entropy loss function. The model’s dimensionality on CIFAR10 and MNIST is d = 62, 006 and
d = 44, 426, respectively. In our training process with the CIFAR10 dataset, we utilize IID partitions
corresponding to 10 clients. However, in the MNIST experiment, we employ non-IID partitions
corresponding to 10 clients.

Furthermore, it is necessary to establish a given subsampling probability. In this context, let δ =
10−5 for different subsampling probabilities P. In particular, when P = 1, it indicates that all clients
are involved in the training process. Let σk,t = 1,∀t ∈ [T ] be the Gaussian noise. Each client applies a
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clipping operation to the local gradient, utilizing an empirically determined Lipschitz constant, denoted
as L = 1. To perform the calculation of RDP accounting, the Google’s DP library is employed. In the
experiment, we conducted tests on the variable α within the range of two to 64, along with other
numerical values like 128, 256 and 512. Our objective was to identify the minimum value of ε through
the process. The identified of the minimal value of the quantization level is given as bmin = 101 in
Figure 2 while bmin = 64 in Figures 3 and 4. To facilitate the process of comparing different bounds,
the RDP bounds are translated into the epsilon-delta differential privacy framework.

0 100 200 300 400 500 600 700 800 900 1,000

Iteration

100

101

102

103

104

ε

P = 1

P = 0.2

P = 0.1

P = 0.01

Figure 2. Privacy measured by for different subsampling probabilities across iterations.

In Figure 2, it can be shown that the values ε corresponding to P = 1 and P = 0.1 , exhibit relatively
high levels, indicating a lower degree of privacy protection. It has been observed that reducing the
subsampling probabilities leads to an improvement in the privacy guarantee. In the context of the actual
wireless network environment, a significant number of clients are involved in the training process.
Hence, it would be rational to choose for a reduced subsampling probability.
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Figure 3. Model accuracy measured for different noise levels across iterations.

Figure 3 examines the relationship between model accuracy and noise level variation, while
maintaining a constant sampling probability. Hence, opt to select two clients for participation in the
training process, with an average transmit power limitation of p1 = 320 and p2 = 80 for the respective
datasets.

The number of channels in the MAC is set to s = 5d for each iteration. The minimum value of
the quantization level is given as bmin = 64. To maintain the quantized attributes, it is postulated that
the privacy local model undergoes truncation when it is beyond the truncation threshold, denoted as
qmax + 3σk,t. Here, qmax denotes the highest value of the quantized gradient. The findings illustrate that
the magnitude of the discrete Gaussian noise has a certain impact on the convergence rate outlined in
Theorem 2, once the accuracy of the model has already reached convergence. Simultaneously, when
the magnitude of noise decreases, the level of precision increases.
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Figure 4. Model accuracy measured for different privacy budgets across iterations.

Figure 4 illustrates the model’s accuracy when subjected to the various privacy budgets. Let σk,t =

1,∀t ∈ [T ] be the Gaussian noise. As the subsampling private wireless transmission strategy converges,
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its accuracy gradually approaches that of the scheme without privacy, given the various privacy budgets
and the same subsampling probability. Furthermore, the enhancement of our method in terms of model
accuracy post-convergence has a greater magnitude on the MNIST dataset compared to the CIFAR10
dataset. Furthermore, it can be observed that the model achieves convergence with a reduced privacy
budget when applied to the CIFAR10 dataset. This phenomenon occurs to a certain degree once the
accuracy of the model has reached convergence. Simultaneously, when the scale of noise decreases,
the level of precision increases.

6. Conclusions

In this paper, we presented a novel SS-RDP-WTS that aimed to minimize communication costs
and enhance the privacy of FL. In the FL framework with MAC, the model gradient was compressed
using multi-level stochastic gradient quantization to address the constraint of limited communication
resources. This compression technique helped minimize communication costs and enhance algorithm
communication efficiency by means of subsampling. Additionally, the system incorporated the
introduction of discrete Gaussian noise and leveraged the privacy amplification effect of subsampling
to strengthen the privacy protection measures, taking into account the closely intertwined
characteristics of RDP. The theoretical analysis of the subsampling private wireless transmission
technique encompassed the examination of its convergence and privacy boundary. Based on the
empirical findings, the implemented scheme exhibited the capability to enhance the efficacy of the FL
algorithm, concurrently mitigating communication burdens and safeguarding data confidentiality.
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