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Abstract: This paper is concerned with the application of a machine learning approach to inverse
elastic scattering problems via neural networks. In the forward problem, the displacements are approx-
imated by linear combinations of the fundamental tensors of the Cauchy-Navier equations of elasticity,
which are expressed in terms of sources placed inside the elastic solid. From the near-field measure-
ment data, a two-layer neural network method consisting of a gated recurrent unit to gate recurrent
unit has been used to reconstruct the shape of an unknown elastic body. Moreover, the convergence of
the method is proved. Finally, the feasibility and effectiveness of the presented method are examined
through numerical examples.
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1. Introduction

Direct and inverse time-harmonic elastic wave scattering by a bounded body [1] has a wide range of
applications, such as radar/sonar, geophysical exploration, medical imaging, seismology and materials
sciences [2–5]. The forward problem is to determine and approximate the diffracted field given an
incident wave and the elastic body. We refer the reader to, e.g., [6, 7] for the existence and uniqueness
of forward solutions via the variational approach. The inverse scattering problem (see e.g., [8–10]) is
to determine the physical or geometric information of the scatterer based on knowledge of the scattered
field. This paper is concerned with both direct and inverse problems.

In recent years, numerical approaches for position and shape reconstruction in many elastic scatter-
ing problems have drawn the attention of a large number of scholars. In [11], Arens proved that in two
dimensions the shape of an elastically rigid body can be determined from the information of compres-
sional and shear far-field patterns for all incident elastic plane waves with distinct directions at a fixed
frequency. In [7], Bao et al. investigated the direct and inverse problems for a penetrable anisotropic
elastic body embedded in a homogeneous and isotropic background medium. They show the unique-

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023355


7001

ness and existence of weak solutions by using the Fredholm alternative together with properties of the
Dirichlet-to-Neumann map in both two and three dimensions. Moreover, an iterative method was de-
signed to recover the interface from the multi-frequency near-field data. Charalambopoulos et al. [12]
evaluated the inverse elastic scattering problem by using penetrable isotropic bodies embedded in an
isotropic host environment via the factorization method. Hu et al. [13] investigated some uniqueness
results for a ball or a convex Lipschitz polyhedron and adapted the factorization method to recover the
shape of a rigid body from the scattered S-waves or P-waves corresponding to all incident plane shear
or pressure waves. Recently, a reverse time migration method was proposed by Chen and Huang [14].
In [15], Li et al. presented an iterative method to solve the inverse elastic scattering problem. The do-
main derivative expresses the rate of change with respect to the surface displacement. A continuation
method using multiple frequency data was established for the inverse problem.

The method of fundamental solutions (MFS) is an effective method for solving both direct and in-
verse problems governed by partial differential equations (PDEs). Since it is very simple and easy to
program, it has been attracting an increasing amount of attention in recent years. Various engineering
problems, including the acoustics scattering problems [16,17] and the acoustics-elastic scattering prob-
lem [18], can be solved by the MFS. The MFS can also be used to solve the inverse acoustic scattering
problems (see e.g., [19–21]). Alves et al. [22] used the MFS to solve non-homogeneous elastic wave
equations.

In recent years, neural networks, one of the most popular schemes in machine learning, have been
applied in many research studies, including inverse scattering problems [23, 24]. The seq2seq neural
network has been applied for natural language processing and machine translation in the literature
[25, 26]. In [27], a new SwitchNet with a sparse neural network structure was proposed to solve the
wave equation-based backscattering problems. Neural networks are especially suitable for dealing with
inaccurate and vague information processing problems involving many parameters and constraints,
and they can fully approximate complex nonlinear maps. Yin et al. [23] proposed a two-layer neural
network method to recover the location and shape of an obstacle by using phaseless far-field data.

In this paper, we consider inverse elastic scattering problems related to recovering the shape of
a rigid body and a cavity by applying a two-layer gated controlled recurrent unit (GRU) neural net-
work. The convergence of the presented method will be verified. The contributions of this paper are
summarized as follows.

(1) We propose a fast numerical scheme for solving the direct problem;
(2) We prove the convergence of a two-layer GRU neural network;
(3) We test the accuracy of the reconstruction method by numerical examples.
The rest of the paper is arranged as follows. In Section 2, we formulate the elastic scattering problem

and describe the numerical scheme for forward solutions. In Section 3 we introduce the architecture of
the neural network. In Section 4, we perform theoretical analysis for the convergence of the network. In
Section 5, numerical experiments are presented to verify the efficiency and effectiveness of the neural
network.

2. Formulation and solution method

Let D ⊂ Ω be a two-dimensional elastic body with the smooth boundary ∂D, where Ω ⊂ R2

is a subdomain. The exterior domain Dc : = R2 \ D is supposed to be connected and filled with a
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homogeneous and isotropic elastic medium. The displacement u(x, t) satisfies

µ△u(x, t) + (λ + µ)∇∇ · u(x, t) − ρ
∂2u(x, t)
∂t2 = 0.

In general, the displacement u(x, t) is time harmonic and given by u(x, t) = eiωtv(x) (where i is the
imaginary unit); thus, the displacement v(x) satisfies the Navier equation

µ∆v + (λ + µ)∇∇ · v + ρω2v = 0 in R2 \ D, (2.1)

where ω > 0 is the angular frequency, λ, µ are the Lamé constants satisfying that µ > 0 and λ + µ > 0,
and ρ is the density function, which is assumed to be constant.

The forward problem considered in this paper is to give an incident elastic plane wave uincident =

deikp d·x + d⊥eiκs d·x with d = (cosϑ, sinϑ) and d⊥ = (− sinϑ, cosϑ), ϑ ∈ [0, 2π), as well as to find the
scattered field v = (v1, v2)⊤ that satisfies the Navier equation.

By the well-known Hodge decomposition, any solution v to (2.1) can be decomposed into

v = vp + vs,

where vp := (−1/k2
p)grad divv is known as the compressional part of v and vs := (−1/k2

s)grad⊥ div⊥v,

with grad⊥ = (−∂2, ∂1)⊥ and div⊥v = −∂2v1 + ∂1v2 as the shear part. Here, ks = ω
√
ρ

µ
is the shear wave

number and kp = ω
√

ρ

λ+2µ is the compressional wave number.
For a rigid body D, the scattered field v satisfies the first (Dirichlet) kind of boundary condition, i.e.,

it holds that
v = −uincident on ∂D (2.2)

so that the total displacement is zero.
If D is a cavity, the following second (Neumann) kind of boundary condition holds:

tnv = −t on ∂D, (2.3)

with t := tnuincident. Here, the traction operator tn is defined by

(tnv)(x) =
{[

(λ + 2µ)
∂v1

∂x1
+ λ
∂v2

∂x2

]
n1 + µ

[
∂v1

∂x2
+
∂v2

∂x1

]
n2

}
ê1

+

{
µ

[
∂v2

∂x1
+
∂v1

∂x2

]
n1 +

[
λ
∂v1

∂x1
+ (λ + 2µ)

∂v2

∂x2

]
n2

}
ê2, (2.4)

where êi, i = 1, 2, designates the unit vector along the xi axis and n = (n1, n2) denotes the unit normal
direction point into Dc.

To ensure uniqueness, we require the scattered field v to satisfy the two-dimensional Kupradze-
Sommerfeld radiation condition at infinity, that is,

lim
r→∞

r1/2(∂rvp − ikpvp) = 0, lim
r→∞

r1/2(∂rvs − iksvs) = 0, r := |x|.

In this paper, we will employ the MFS (see [28] for the acoustic scattering problem) to calculate
the forward solution v. The main idea of the MFS is to approximate the scattered field in the solution
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domain Dc by using a linear combination of fundamental solutions [18,29] to the Navier equation (2.1)
with N source points y j ∈ D, i.e.,

v(x) ≈ vN(x) =
N∑

j=1

U(x, y j)
[
a j

b j

]
, x ∈ Dc. (2.5)

Here, a j, b j are the coefficients to be determined by the boundary condition on ∂D and U(x, y) is
Green’s tensor of the two-dimensional Lamé system of the form

U(x, y) =
Φ(ks|x − y|)

µ
I +

1
ρω2

 ∂2

∂x2
1

∂2

∂x1∂x2

∂2

∂x2∂x1

∂2

∂x2
2

 (Φ(ks|x − y|) − Φ(kp|x − y|)
)
,

where I is the 2-by-2 identity matrix and

Φ(k|x − y|) = −
i
4

H(1)
0 (k|x − y|), k = kp, ks

is the fundamental solution of the Helmholtz equation associated with the wavenumber k. Here, H(1)
0

is the Hankel function of the first kind of order zero.

Remark 2.1. Following the idea in [29], the solution v(x) of this problem can be approximated by the
single-layer potential function, with ψ ∈ (L2(∂B))2, as follows:

Sψ(x) =
∫
∂B

U(x, y)ψ(y)dsy, x ∈ Dc, (2.6)

where B ⊂ D. If we discretize the integral operator S , we can get a linear combination of the funda-
mental solutions with respect to some source points located on ∂B with the unknown density function
ψ(y j). It can be seen that (2.5) is a certain discrete form of (2.6) with some weight coefficients.

We respectively define the compressional and shear parts of U(x, y) as follows:

Up(x, y) = −
1
ρω2

 ∂2

∂x2
1

∂2

∂x1∂x2

∂2

∂x2∂x1

∂2

∂x2
2

Φ(kp|x − y|)

and

Us(x, y) =
Φ(ks|x − y|)

µ
I +

1
ρω2

 ∂2

∂x2
1

∂2

∂x1∂x2

∂2

∂x2∂x1

∂2

∂x2
2

Φ(ks|x − y|).

Then U(x, y) = Up(x, y) + Us(x, y). Thus we have

vp(x) =
N∑

j=1

Up(x, y j)
[
a j

b j

]
, x ∈ Dc, (2.7)

and

vs(x) =
N∑

j=1

Us(x, y j)
[
a j

b j

]
, x ∈ Dc. (2.8)
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Recalling the definitions of the traction vector (2.4) and the fundamental solution to the Navier
equation, one can approximate the traction vector on the boundary ∂D as follows:

tnv(x) ≈ tnvN(x) =
N∑

j=1

T(x, y j)
[
a j

b j

]
. (2.9)

Here, the matrix T(x, y j) is defined by

T(x, y j) =
(

T11(x, y j) T12(x, y j)
T21(x, y j) T22(x, y j)

)
with the entries

T11(x, y j) =
[
(λ + 2µ)

∂U11(x, y j)

∂x1
+ λ
∂U21(x, y j)

∂x2

]
n1 + µ

(
∂U11(x, y j)

∂x2
+
∂U21(x, y j)

∂x1

)
n2,

T12(x, y j) =
[
(λ + 2µ)

∂U12(x, y j)

∂x1
+ λ
∂U22(x, y j)

∂x2

]
n1 + µ

(
∂U12(x, y j)

∂x2
+
∂U22(x, y j)

∂x1

)
n2,

T21(x, y j) = µ
(
∂U11(x, y j)

∂x2
+
∂U21(x, y j)

∂x1

)
n1 +

[
λ
∂U11(x, y j)

∂x1
+ (λ + 2µ)

∂U21(x, y j)

∂x2

]
n2,

T22(x, y j) = µ
(
∂U12(x, y j)

∂x2
+
∂U22(x, y j)

∂x1

)
n1 +

[
λ
∂U12(x, y j)

∂x1
+ (λ + 2µ)

∂U22(x, y j)

∂x2

]
n2.

To determine the coefficients a j, b j, j = 1, 2, ...N, we employ the collocation method by choosing M

collocation points
{
x j

}M

j=1
⊂ ∂D and impose the boundary condition on ∂D. Set d′ := (a1, · · ·, aN , b1, · ·

·, bN)⊤ to be the vector of 2N unknown parameters. It can be calculated by solving a linear system with
2M equations of the form

Ad′ = h′, (2.10)

where the matrix A ∈ C2M×2N on the left-hand side and the vector h′ ∈ C2M×1 on the right-hand side
are defined as follows depending on the boundary condition on ∂D.

• Dirichlet boundary condition (rigid body)

Ai, j = U11(xi, y j),Ai, j+N = U12(xi, y j),Ai+M, j = U21(xi, y j),Ai+M, j+N = U22(xi, y j),

h′i = −u1
incident(xi), h′i+M = −u2

incident(xi), i = 1, · · ·,M, j = 1, · · ·,N.

• Neumann boundary condition (cavity)

Ai, j = T11(xi, y j),Ai, j+N = T12(xi, y j),Ai+M, j = T21(xi, y j),Ai+M, j+N = T22(xi, y j),

h′i = −t1(xi), h′i+M = −t2(xi), i = 1, · · ·,M, j = 1, · · ·,N.
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In our numerics, we choose the number M = N in all examples. The algebraic linear system (2.10)
is solved directly by using Matlab with the command d′ = A\h′. Then we can get the scattered near-
field data v on ∂Ω from (2.5). One can also get the shear part vs|∂Ω and compressional part vp|∂Ω of v by
replacing Green’s tensor U by its shear and compressional parts in (2.7) and (2.8), respectively. These
synthetic data will be used as the measurement data in our inverse problem. In our examples below,
we suppose, for simplicity that the boundary ∂Ω can be parameterized as follows:

∂Ω = {c(θ) = R(cos θ, sin θ) + (a, b) : θ ∈ (0, 2π]}, R, a, b ∈ R.

This means that the measurement data are taken on the circle centered at (a, b) ∈ R2 with the radius
R > 0.

Definition 2.1. Let d̂m := R(cos θm, sin θm) + (a, b),m = 1, 2, · · · ,N1; indicate the measurement posi-
tions where N1 ∈ N and θm ∈ (0, 2π]. Given the obstacle D and the compressional and shear wave-
numbers kp, ks, respectively, we define the measurement set I = (I(1), I(2), · · · , I(T )) with T = 2N1 as
follows:

I(n) = vp(d̂n,D), I(n +N1) = vs(d̂n,D), n = 1, 2, · · · ,N1.

The inverse problem in this paper is to recover the shape of the obstacle or the cavity, namely ∂D,
by applying knowledge of the near-field data on ∂Ω associated with a fixed incident field:

(vp(d̂n, ∂Ω), vs(d̂n, ∂Ω)) −→ ∂D.

Assumption 2.1. The boundary of the obstacle D is assumed to take the form

∂D : x(θ) = p(θ) (cos θ, sin θ) , 0 ≤ θ ≤ 2π,

where p(θ) permits the following (truncated) Fourier representation:

p(θ) =
a0

2
+

Q∑
m=1

am cos(mθ) +
Q∑

m=1

bm sin(mθ), (2.11)

where Q ∈ N. Below we define the set of the Fourier coefficients a0, am and bmm = 1, 2, · · · ,Q, by
y = {y(1), y(2), · · · , y(N)} with N = 2Q + 1. In the remaining part of this paper, we shall consider the
inverse problem of recovering y from our measurement data set.

3. Architecture of neural networks

In this section, we introduce the main components of the neural network first. Then how to construct
the neural network to deal with the inverse elastic scattering problem is given.

Figure 1 gives a simple map of the exhibition of its working status. We introduce the GRU cells
(see e.g., [23, 30]), i.e., the principal element of the update network. This network consists of many
GRU neurons.

Electronic Research Archive Volume 31, Issue 11, 7000–7020.



7006

Figure 1. Internal structure of GRU neuron.

(1) The cell receives a stimulus, i.e., an input I(t)(t = 1, 2, · · · ,T ). Then the cell will respond to the
stimulus. We describe this response as an activation function acting on the previous output h(t−1)
and the present stimulus I(t) to produce a reset gate r(t), which is to control candidate status h̃(t)
based on whether it depends on the prior status of learning.

r(t) = σ(wr · [I(t), h(t − 1)]) (3.1)

h̃(t − 1) = h(t − 1) ⊙ r(t) (3.2)

h̃(t) = tanh(wh̃ · [I(t), h̃(t − 1)]) (3.3)

(2) It preserves historical output h(t − 1) and presents input I(t) to obtain update gate z(t), which can
be used to choose and forget memory. In other words, it can forget some information passed down
in h(t − 1) and select and memorize the information in h̃(t).

z(t) = σ(wz · [I(t), h(t − 1)]) (3.4)

h(t) = (1 − z(t)) ⊙ h(t − 1) ⊕ z(t) ⊙ h̃(t). (3.5)

In order to see the notations clearly, we list the notations used in the neural network in Table 1.

3.1. Construction of the network

The whole model consists of three parts, namely, the encoding end, the middle status and the de-
coding end. The role of the encoding end is to extract data features, and the intermediate state serves to
connect the encoding and decoding ends. The function of the decoder is to decode the information ob-
tained by the encoder to obtain the output sequence. Next, the relevant details of the network structure
are illustrated as below.

Electronic Research Archive Volume 31, Issue 11, 7000–7020.
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Table 1. The notations used in GRU neurons.

Notations
r(t) The reset gate
z(t) The update gate
wr The reset gate weight
wh̃ The candidate status weight
wz The update gate weight
σ(x) = 1

1+e−x . A sigmoid activation function
tanh(x) = ex−e−x

ex+e−x The hyperbolic tangent activation function
h(t) The GRU output
⊙ The tensor product of matrices
⊕ Plus

Step 1: The scattered data features are extracted by using GRU neurons on the encoding end, i.e.,

h1(t) := ζt
(
I(t) h1(t − 1)

)
, t = 1, 2, ...,T,

where ζt signifies the tth GRU cells in the course of the work. That is, it is equivalent to extracting
the input data features by using (3.1)–(3.5). Then the first layer extracts the scattered data as h1 =

(h1(1), h1(2), · · · , h1(T )).
Step 2: Extracting features again.
Take the features extracted for the first time, i.e., h1 = (h1(1), h1(2), · · · , h1(T )) as input to extract

the features again by means of (3.1)–(3.5):

h2(t) := ζt
(
h1(t) h2(t − 1)

)
, t = 1, 2, ...,T.

Step 3: First decoding process on the decoding terminal.
The decoder side will use N GRU neurons to decode the second layer output information h2(T ) and

the obstacle boundary Fourier expansion coefficients y = (y(1), y(2), · · · , y(N)):

h3(1) = ζ1
(
y(1) h2(T )

)
,

h3(n) = ζn
(
y(n) h2(n − 1)

)
, n = 2, ...,N,

where ζn signifies operation of the nth GRU. It plays the same role as ζt in Step 1.
Step 4: Second decoding process at the decoder end.
Get the output h4 for the fourth layer by decoding the output h3 = (h3(1), h3(2), · · · , h3(N)) of the

third layer. That is, this layer will preserve profitable information and discard unprofitable information

h4(1) = ζ1
(
h3(1) h2(0)

)
,

h4(n) := ζn
(
h3(n) h4(n − 1)

)
, n = 2, ...,N.

Finally, the latest output from the decoding side will be converted into a predictive output by the
fully connected layer. That is to say, we will calculate ŷ = (ŷ(1), ŷ(2), · · · , ŷ(N)), i.e., the predicted
output of the network by using the following formula

ŷ(n) = wo · h4(n).

Electronic Research Archive Volume 31, Issue 11, 7000–7020.
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4. Theoretical analysis of convergence

This section is devoted to the convergence analysis of the neural network.

Definition 4.1. Let {y(n)}Nn=1 be the initial values of the boundary curve and {ŷ(n)}Nn=1 be the network
prediction output. Define the common mean absolute value loss (error) function as

L(w) =
1
N

N∑
n=1

|y(n) − ŷ(n)|. (4.1)

When y(n) − ŷ(n) , 0, the derivative of the loss function (4.1) with respect to the weight w in
(3.1)–(3.5) is given by

∂L(w)
∂w

= −
1
N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂w

)⊤
. (4.2)

For the sake of convenience, we introduce some symbols. The input weights and the internal
weights of every layer are gathered in the weight matrices WI and WL. We denote W = (WI ,WL).
The specific forms are as follows

WI = (W1
I ,W

2
I ,W

3
I ,W

4
I ),

WL = (W1
L,W

2
L,W

3
L,W

4
L)⊤ =


wr

1 wh̃
1 wz

1
wr

2 wh̃
2 wz

2
wr

3 wh̃
3 wz

3
wr

4 wh̃
4 wz

4

 .
Here, WI has the same form as WL.

Next, we write the input of every layer as

u1(t) =
(

I(t)
h1(t − 1)

)
, u2(t) =

(
h1(t)

h2(t − 1)

)
,

u3(n) =
(

y(n)
h3(n − 1)

)
, u4(n) =

(
h3(n)

h4(n − 1)

)
.

The input vectors for each layer of the encoding and decoding ends are given as follows:
v1(t)
v2(t)
v3(n)
v4(n)

 =

W1u1(t)
W2u2(t)
W3u3(n)
W4u4(n)

 =


W1
I I(t) +W1

Lh1(t − 1)
W2

I h1(t) +W2
Lh2(t − 1)

W3
I y(n) +W3

Lh3(t − 1)
W4

I h3(n) +W4
Lh4(n − 1)

 .
Definition 4.2. Given a vector α = (α1, α2, · · · , αn), the activation function acts on a vector as follows:

σ(α) = (σ(α1), σ(α2), · · · , σ(αn)).

The derivatives of the activation function acts similarly

σ′(α) = (σ′(α1), σ′(α2), · · · , σ′(αn)),

σ′′(α) = (σ′′(α1), σ′′(α2), · · · , σ′′(αn)).
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In other words, the activation function acts on a vector componentwise.
The weight gradient of the fourth-layer neural network update gate can be calculated directly:

∂ŷ(n)
∂wz

4
=
∂ŷ(n)
∂h4(n)

· ((1 − z′4(n)) ⊙ h4(n − 1) ⊕ z′4(n) ⊙ h̃(n))σ′(v4(n)) (4.3)

×

(
u4(n) +W4

L
∂h4(n − 1)
∂wz

4

)
.

From the initial condition constant ŷ(0) ≡ 0, we have

∂ŷ(0)
∂w

= 0. (4.4)

For any given initial weight w0, the weight sequence {wk} can be generated from an iterative formula:

wk+1 = wk + ∆wk, (4.5)

where

∆wk = −γ
∂L(wk)
∂w

(4.6)

and γ is the learning rate.

Assumption 4.1. ( [31, 32]) |σ(a)|, |σ′(a)|, |σ′′(a)| and | tanh(a)|, | tanh′(a)|, | tanh′′(a)| are uniformly
bounded for a ∈ R .

Assumption 4.2. ( [31, 32]) ∥Wk
L∥(k=1,2,··· ) is bounded in the learning course described by (4.5) .

In order to check the convergence of the neural network, we claim the following theorem.

Theorem 4.1. The loss function is defined as the formula (4.1), and the weight sequence {wk} can be
generated from the iterative formula (4.5). If Assumptions 4.1 and 4.2 are valid, then we have the
following:

(1) L(wk+1) ≤ L(wk);

(2) ∃ L∗ ≥ 0 s.t. limk→∞ L(wk) = L∗.

Proof. First, we can also use the method employed in [32], which adopts the induction argument to
calculate ∆v4(wk, n) as follows:

∆v4(wk, n) =
(
u4(n) +W4

L
∂h4(n − 1)
∂wz

4

)
∆wk + δ(wk, n), (4.7)

∥∆v(wk, n)∥ ≤ C∥∆wk∥,
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where δ(wk, n) will be given in the following remark. Then, apply the Taylor expansion to v4(wk, n);
we have

L(wk+1) − L(wk) = −
1
N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′4(n)) ⊙

h4(n − 1) ⊕ z′4(n) ⊙ h̃(n))σ′(v4(n))∆v4(wk, n)

−
1

2N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′′4 (n)) ⊙ h4(n − 1)

⊕ z′′4 (n) ⊙ h̃(n))(σ′(τ(wk, n)))2(∆v4(wk, n))2

−
1

2N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′4(n)) ⊙ h4(n − 1)

⊕ z′4(n) ⊙ h̃(n))σ′′(τ(wk, n))(∆v4(wk, n))2.

Next, substituting (4.7) into the first order term of ∆v4(wk, n) of the above equation, we have

L(wk+1) − L(wk) = −
1
N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′4(n)) ⊙ h4(n − 1)

⊕ z′4(n) ⊙ h̃(n))σ′(v4(n))(u4(n) +W4
L
∂h4(n − 1)
∂wz

4
)∆wk + δ(wk, n))

−
1

2N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′′4 (n)) ⊙ h4(n − 1)

⊕ z′′4 (n) ⊙ h̃(n))(σ′(τ(wk, n)))2(∆v4(wk, n))2

−
1

2N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′4(n)) ⊙ h4(n − 1)

⊕ z′4(n) ⊙ h̃(n))σ′′(τ(wk, n))(∆v4(wk, n))2.

Then, combining (4.2), (4.3) and (4.6), we will get

L(wk+1) − L(wk) = −
1
γ
∥∆wk∥2 −

1
N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′4(n)) ⊙ h4(n − 1)

⊕ z′4(n) ⊙ h̃(n))σ′(v4(n))δ(wk, n) −
1

2N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′′4 (n)) ⊙ h4(n − 1) ⊕ z′′4 (n) ⊙ h̃(n))(σ′(τ(wk, n)))2(∆v4(wk, n))2

−
1

2N

N∑
n=1

y(n) − ŷ(n)
|y(n) − ŷ(n)|

(
∂ŷ(n)
∂h4(n)

)
((1 − z′4(n)) ⊙ h4(n − 1)

⊕ z′4(n) ⊙ h̃(n))σ′′(τ(wk, n))(∆v4(wk, n))2

= −
1
γ
∥∆wk∥2 + φ(wk).
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By Assumptions 4.1 and 4.2, together with the Cauchy-Schwarz inequality, we obtain that |φ(wk)| ≤
C∥∆wk∥2.Hence L(wk+1)−L(wk) ≤ (− 1

γ
+C)∥∆wk∥2. If the learning rate is sufficiently small and satisfies

that 0 < γ < 1/C (C is a constant), then the first conclusion of Theorem 4.1 is established.
Since L(wk) ≥ 0 is monotonically bounded, there exists an L∗ such that limk→∞ L(wk) = L∗. The

proof is completed.

Remark 4.1. In (4.7), we have

δ(wk, n) =
n−1∑
d=1

n∏
l=n−d+1

Wk
L((1 − z′4(l)) ⊙ h4(l − 1) ⊕ z′4(l) ⊙ h̃(l))σ′(v4(l))∆Wk

L

× ((1 − z′4(n − d)) ⊙ h4(n − d − 1) ⊕ z′4(n − d) ⊙ h̃(n − d))

σ′(v4(n − d))∆v(wk, n − d) +
1
2

n−1∑
d=0

n∏
l=n−d+1

Wk
L((1 − z′4(l))

⊙ h4(l − 1) ⊕ z′4(l) ⊙ h̃(l))σ′(v4(l)) × ∆Wk
L × (((1 − z′′4 (n − d))

⊙ h4(n − d − 1) ⊕ z′′4 (n − d) ⊙ h̃(n − d))(σ′(τ(n − d)))2 + ((1 − z′4(n − d))
⊙ h4(n − d − 1) ⊕ z′4(n − d) ⊙ h̃(n − d)σ′′(τ(n − d))))(∆v(wk, n − d))2,

with
n∏

l=n−d+1

Wk
L((1 − z′4(l)) ⊙ h4(l − 1) ⊕ z′4(l) ⊙ h̃(l))σ′(v4(l)) = 1.

when d = 1. Here, τ(n − d) is the intermediate quantity for v(wk+1, n) and v(wk, n).
From (4.3) and (4.4), we have

∂h4(n)
∂wz

4
=

n−1∑
d=0

n∏
l=n−d+1

((1 − z′4(l)) ⊙ h4(l − 1) ⊕ z′4(l) ⊙ h̃(l))σ′(v4(l))×

W4
L((1 − z′4(n − d)) ⊙ h4(n − d − 1) ⊕ z′4(n − d)

⊙h̃(n − d)) × σ′(v4(n − d))u(n − d).

When d = 0,
n∏

l=n−d+1
W4

L((1 − z′4(l)) ⊙ h4(l − 1) ⊕ z′4(l) ⊙ h̃(l))σ′(v4(l)) = 1.

5. Numerical examples

In this section, we will give some numerical examples to show the effectiveness of the pre-
sented method.

The scattered data described by ID = (I(1), I(2), · · · , I(T )) corresponding to the obstacle D are given
by Definition 2.1. The shape parameters yD = (y(1), y(2), · · · , y(N)) are defined as in Assumption 2.1.
We denote the training data set by

T ′ = {(ID, yD),D ∈ D},

whereD denotes the set of shape parameters. For the elements in T ′, ID is also updated as the shape D
changes, and we randomly selected 2% of the scattered data as the testing set to get the final prediction
results.
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The inverse problem can be solved in two steps. First, for a given shape D, the elastic wave equa-
tion (2.1) is solved by using the MFS described in Section 2. Second, the network was trained to
identify the obstacle from the scattered data, i.e., the network was trained to approximate the Fourier
coefficients of the obstacle.

To test the sensitivity to the noise, we suppose that noisy data is generated by adding Gaussian
random noise pointwise, i.e.,

Iδ(i) = I(i) + δ · I(i)ξ(i),

where δ ≥ 0 denotes the noise level and the random variable ξ(i) is the standard Gaussian distribution.
In all numerical examples, the parameters are given as follows.

(1) We shall use the Lamé constants λ = 2 and µ = 1 and the frequency ω = 3, ρ = 1.
(2) The symbol “-” signifies the exact boundary of an obstacle, and “- -” signifies the forecast bound-

ary of an obstacle.
(3) The number of neurons of the GRU neural network is generally set as 2p(p ∈ R+), and the network

parameters were determined through a large number of numerical experiments. The number of
GRU neurons was set as 128. Dropout was set as 0.5. Batch processing was set as 500. And the
number of iterations is 40.

Remark 5.1. The scattering data are complex numbers and the current neural network method can only
deal with real numbers; thus, we took out the real and imaginary parts of the scattering data as the
scattering data information in the training data set. In addition, we need to use a random function to
generate random numbers as the shape parameters in the training data set. This is the preparation of
the training set. After the training set is prepared, the network model is trained by using the data in the
training set through the two-layer network which has been built. Finally the output of the network, i.e.,
the predicted values of the shape parameters, is obtained by using the trained model to use the test data
set.

Example 5.1 (Dirichlet boundary condition). First, the scattered data used in the training network are
noise free, and the scattered data are collected on a circle with the radius R = 3 centered at the origin.
We chose to investigate the numerical recovery results by changing the number of measurements T .
The d = (1, 0) is the incident direction. The boundaries of the scatterers used in this example are
parameterized as follows.

The first case is a heart-shaped domain parameterized by

x(θ) =
(
1.1 + 1.6 cos2

(
θ

2

)
sin

(
θ

2

))
(cos θ, sin θ).

The second case is a round-square domain parameterized by

x(θ) = (cos10 θ + sin10 θ)−
1

10 (cos θ, sin θ).

The polar diameter has the following (truncated) Fourier representation: a0
2 +

∑Q
m=1 am cos(mθ).We

take Q = 6, and the idea is to reconstruct the Fourier coefficients am. The coefficients used in the
training process, i.e., a0 ∈ [0.5, 4], a1, a2 ∈ [−0.5, 0.5] and am ∈ [−0.05, 0.05],m = 3, 4, 5, 6, are
uniformly distributed random numbers.
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(a) T = 4000 (b) T = 20000 (c) T = 40000 (d) Error

(e) T = 4000 (f) T = 20000 (g) T = 40000 (h) Error

Figure 2. Numerical results for recovering the heart-shaped and round-square domain, ob-
tained with noise free data and different numbers T ∈ {4000, 20,000, 40,000} for Example 5.1.

Figure 2 presents the recovery results for a fixed number T ∈ {4000, 20,000, 40,000}. From the
numerical recovery results in Figure 2, we can see that the accuracy in the numerical results will be
improved by increasing the number T .

Second, in addition to the usual rounding errors, we also contaminated the forward scattered data
by adding random noise. We chose to investigate the stability of the inversion schemes by changing the
noise level δ. Figure 3 presents the recovery results for the noise level δ ∈ {5%, 10%, 15%}. From the
fourth column in Figure 3, we can see that the errors are becoming smaller as the noise level decreases.
We can also see that the numerical reconstruction results are poorest where the body has high curvature.
This meets our expectations, since more expansion coefficients are required at the corner.

Example 5.2 (Neumann boundary condition). For comparison, in this example we consider the scat-
tering problem by cavities, i.e., the Neumann boundary condition is imposed. In this example, we will
consider a heart-shaped domain parameterized by

x(θ) =
(
1.1 + 1.6 cos2

(
θ

2

)
sin

(
θ

2

))
(cos θ, sin θ).

The training sets are the same as in Example 5.1.
We chose the direction d = (1, 0). The scattered data were collected on a circle with the radius R = 3

centered at the origin. The numerical recovery results for the noise level δ ∈ {0%, 5%, 10%, 15%} with
a fixed number T = 40, 000 are shown in Figure 4. From this, we observe that the locations and
shapes are still well captured. From the fourth row in Figure 4, we can see that the errors are becoming
smaller as the noise level decreases. We can also see that the numerical reconstruction results are
poorest where the body has high curvature. This further shows that our methods are independent of the
physical properties of the underlying scatterers.
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(a) Noise level 5% (b) Noise level 10% (c) Noise level 15% (d) Error

(e) Noise level 5% (f) Noise level 10% (g) Noise level 15% (h) Error

Figure 3. Numerical results for recovering the heart-shaped and round-square domain, ob-
tained with different noise levels δ ∈ {5%, 10%, 15%} and T = 40,000 for Example 5.1.

(a) Noise level 5% (b) Noise level 10% (c) Noise level 15% (d) Heart-shaped

Figure 4. Numerical results for recovering the heart-shaped domain, obtained with different
noise levels δ ∈ {0%, 5%, 10%, 15%} and T = 40, 000 for Example 5.2.

Example 5.3 (Neumann boundary condition). In this example, we will consider the case of an apple-
shaped domain parameterized by

x(θ) =
(
1 +

sin 2θ
5 + 4 cos θ

)
(cos θ, sin θ).

The polar diameter has the following (truncated) Fourier representation a0
2 +

∑Q
m=1 bm sin(mθ).We take

Q = 6, and the idea is to reconstruct the Fourier coefficients a0 and bm. The coefficients used in the
training process, i.e., a0 ∈ [0.5, 3], b1, b2, b3, ∈ [−0.5, 0.5] and b4, b5, b6, ∈ [−0.1, 0.1], are uniformly
distributed random numbers.

We chose the direction d = (1, 0). The scattered data were collected on a circle with the radius
R = 3 centered at the origin. The numerical recovery results for the noise level δ ∈ {5%, 10%, 15%}

Electronic Research Archive Volume 31, Issue 11, 7000–7020.



7015

with a fixed number T = 40, 000 are shown in Figure 5. The error for all testing sets obtained with
different noise levels δ ∈ {5%, 10%, 15%} and T = 40, 000 is demonstrated by the fourth column in
Figure 5. From this, we observe that the locations and shapes are still well captured.

(a) Noise level 5% (b) Noise level 10% (c) Noise level 15% (d) Error

Figure 5. Numerical results for recovering the apple-shaped domain obtained with different
noise levels δ ∈ {5%, 10%, 15%} and T = 40, 000 for Example 5.3.

The above examples give the effectiveness of the presented method for the case of a single obstacle
or cavity. The following example will give the case of two disjoint components. Meanwhile, we should
know that D is the case of two disjoint components as the a priori information. The Fourier coefficients
were tracked as two independent groups.

Example 5.4 (Mixed boundary conditions). As shown in Figure 6, we consider a scatterer with two
disjoint components. We set the scatterer to be a combination of a triangle-shaped domain and a peanut-
shaped domain. Suppose that D1 is a big triangle-shaped domain of the Dirichlet kind, parameterized
by

x(θ) = 0.8 (2 + 0.3 cos θ) (cos θ, sin θ).

D2 is a mini peanut-shaped cavity. The boundary ∂D2 is parameterized by

x(θ) = 0.05
√

3 cos2 θ + 1(cos θ, sin θ) + (2,−1).

We chose the direction d = (
√

3
2 ,

1
2 ) in this example. The scattered data were collected on a circle

with the radius R = 3 centered at the origin. Figure 6 shows the numerical results obtained from the
knowledge of the compressional near-field measurements, the shear near-field measurements and the
full near-field measurements with δ = 10%. From these subfigures, we observe that the locations and
shapes can be captured. This further shows that the presented method is independent of the physical
properties of the underlying scatterers, even for two disconnected obstacles with different boundary
conditions. We also note that the numerical error is worse than that in the above examples.

Example 5.5 (Two obstacles). As shown in Figures 7 and 8, the underling scatterer D is given as the
union of two disjoint obstacles D = D1 ∪ D2. We consider two cases in this example.

• Dirichlet boundary condition: We chose the direction d = (1, 0). D1 is a peanut-shaped domain,
and the boundary ∂D1 is parameterized by

x(t) = 0.5
√

3 cos2 t + 1(cos t, sin t) + (0, 3).
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(a) Compressional near-field (b) Shear near-field (c) Full near-field

Figure 6. Numerical results for recovering a Dirichlet-type boundary ∂D1 and a Neumann-
type boundary ∂D2 shown in Example 5.4 with δ = 10%,T = 40, 000.

D2 is a heart-shaped domain, and the boundary ∂D2 is parameterized by

x(θ) = 0.5
(
1.1 + 1.6 cos2

(
θ

2

)
sin

(
θ

2

))
(cos θ, sin θ) + (3, 0).

• Neumann boundary condition: We chose the direction d = (
√

2
2 ,

√
2

2 ). D1 is a round-square
domain, and the boundary ∂D1 is parameterized by

∂D1 = 0.5(cos10 θ + sin10 θ)−
1

10 (cos θ, sin θ).

D2 is a kite-shaped domain, and the boundary ∂D2 is parameterized by

∂D2 = 0.4(cos θ + 0.65 cos 2θ − 0.65, 1.5 sin θ) + (1.3, 0).

The numerical recovery results for the noise level δ ∈ {0%, 10%} with a fixed number T = 40, 000
are shown in Figures 7 and 8. From this, we observe that the locations and shapes are still well captured.

Example 5.6 (Dirichlet boundary condition). The last example considered here is a different option
of the physical parameters. The Lamé constants are given as λ = 3.88, µ = 2.56 and the frequency
ω = π. The scattered data were collected on a circle with the radius R = 3 centered at the origin. The
incident direction is d = (−1

2 ,
3
2 ). The boundary of the scatterer is a heart-shaped domain parameterized

by

x(θ) = 0.5
(
1.1 + 1.6 cos2

(
θ

2

)
sin

(
θ

2

))
(cos θ, sin θ).

Figure 9 presents the recovery results for a fixed number T = 40, 000 with the noise level δ ∈
{5%, 10%, 15%}. It can be seen that the recovery results are independent of the physical parameters.
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(a) Noise free (b) Noise level 10%

Figure 7. Numerical recovery results for Dirichlet boundary condition on ∂D for Exam-
ple 5.5 with T = 40, 000.

(a) Noise free (b) Noise level 10%

Figure 8. Numerical recovery results for Neumann boundary condition on ∂D for Exam-
ple 5.5 with T = 40, 000.

(a) Noise level 5% (b) Noise level 10% (c) Noise level 15% (d) Error

Figure 9. Numerical results for recovering the heart-shaped domain obtained with different
noise levels δ ∈ {5%, 10%, 15%} and T = 40, 000 for Example 5.6.
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6. Conclusions

In this paper, we applied a neural network trained on solutions from the MFS to solve inverse
elastic wave scattering problems. Both convex and non-convex geometries with smooth boundaries
have been investigated. The numerical results confirm the effectiveness of the presented method. From
the presented examples, we can see that the presented method is independent of the physical properties
of the underlying scatterers. When the boundary consists of two parts, this method also gives a good
approximation of the exact boundary curves.
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