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Abstract: Fly communities exhibit rich ecological dynamics, and one of the important influencing
factors is the interaction between species. A discrete Nicholson-type system with multiple time vary-
ing delays which considers the mutualism relationship between two fly species is investigated in this
paper. Sufficient conditions for the existence of positive periodic solutions are elucidated. The result
is obtained by the well-known continuation theorem of coincidence degree theory. An example is at-
tached to illustrate our result. Moreover, the actual biological descriptions obtained from our main
result are explained.
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1. Introduction

Flies are complete metamorphosis insects that contain various species, including Muscidae (house-
flies), Calliphoridae (blowflflies) Drosophilae (fruitflies) and Scrcophagidae (fleshflies), etc. The life
history of flies can be divided into egg, larva , pre-pupa, pupa and adult stages. Although the life span
of flies is only about one month, they are very fertile and multiply rapidly in a short period [1]. The
feeding habits of flies are very complex. They can feed on a variety of substances, such as human food,
animal waste, kitchen scraps and other refuses. It is known to us that flies transmit various pathogens
from filth to humans and cause many diseases [2–4]. On the other hand, flies are also beneficial to
medical research, ecosystem food chain and pollen dispersal. Considering medical research, for ex-
ample, fruit fly Drosophila is of great significance in studying the pathogenesis and therapy of human
diseases. The nervous system of Drosophila is much simpler than that of human beings, but it also ex-
hibits complex behavioral characteristics similar to humans [5, 6]. Therefore, studying fly population
dynamics is of crucial importance to both nature and human society.

The study of biological population growth model promotes the development of human society to a
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great extent. It has important applications in population control, social resource allocation, ecological
environment improvement, species protection and human life and health [7–9]. To understand the
population dynamics of the Australian sheep blowfly, Gurney et al. [10] constructed the autonomous
delay differential equation

x′(t) = − δx(t) + Px(t − τ)e−γx(t−τ)

based on experimental data [11, 12]. In this model, x is the density of mature blowflies, δ is the daily
mortality rate of adult blowflies, P is the maximum daily spawning rate of female blowflies, τ is the
time required for a blowfly to mature from an egg to an adult, 1/γ is the blowfly population size at
which the production function f (u) = ue−γu reaches the maximum value. Subsequently, this model and
its modified extensions were continually used to describe rich fly dynamics.

Environmental changes play an important role in biological systems. The influence of a periodically
changing environment on the system is different from that of a constant environment, and it can better
facilitate system evolution. Moreover, delay is one of the important factors which can change the
dynamical properties and result in more rich and complex dynamics in biological systems [13, 14].
Many researchers have assumed periodic coefficients and time delays in the system to combine with
the periodic changes of the environment [15–18]. For related literature, we refer to [19, 20]. However,
considering the fact that adult flies number is a discrete value that varies daily and the situations where
population numbers are small and individual effects are important or dominate, a discrete model would
indeed be more realistic to describe the population evolution in discrete time-steps [21–23].

Interactions between different species are extremely important for maintaining ecological balance.
Such interactions are typically direct or indirect between multiple species, including positive inter-
actions and negative interactions. Among them, the positive interactions can be divided into three
categories according to the degree of action: commensalism, protocooperation and mutualism [24,25].
In the paper [9], a delay differential Nicholson-type system concerning the mutualism effects with con-
stant coefficients was proposed. The existence, global stability and instability of positive equilibrium
were obtained. Based on this system, Zhou [26] and Amster [27] considered periodic Nicholson-type
system combined with nonlinear harvesting terms. The main research theme is the existence of positive
periodic solutions. Recently, Ossandóna et al. [28] presented a Nicholson-type system with nonlinear
density-dependent mortality to describe the dynamics of multiple species, the uniqueness and local ex-
ponential stability of the periodic solution are established. However, relatively few studies on discrete
dynamical systems have explored the mutualism of flies. In this paper, we consider the mutualism
relationship between two fly species and establish a two-dimensional discrete Nicholson system with
multiple time-varying delays

∆x1(k) = − a1(k)x1(k) + b1(k)x2(k) +
∑n

j=1 c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k)),

∆x2(k) = − a2(k)x2(k) + b2(k)x1(k) +
∑n

j=1 c2 j(k)x2(k − τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k)).
(1.1)

We assume that ai : Z → (0, 1), bi : Z → (0,∞), ci j : Z → (0,∞), τi j : Z → Z+ and γi j : Z → (0,∞)
are ω-periodic discrete functions for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n. The period ω is a positive integer.
Moreover, the interaction rate of second fly specie on first fly species and that of first fly specie on
second fly species are represented by b1 and b2, respectively.
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Because τi j (1 ≤ i ≤ 2) have ω-periodicity, we can find the maximum values

τi = max
1≤ j≤n

{
max
1≤k≤ω

τi j(k)
}
∈ Z+

of {τi1(k)}, {τi2(k)}, . . . , {τin(k)} for i = 1, 2. Note that 0 < ai(k) < 1 for k ∈ Z. Then, the solution
x(·, φ) = (x1(·, φ1), x2(·, φ2))T of system (1.1) that satisfies the initial condition

xi(s) = φi(s) > 0 for s ∈ [− τi, 0] ∩ Z (1.2)

is a positive solution. The purpose of this paper is to present sufficient conditions for the existence of
positive ω-periodic solution of (1.1).

2. Priori bounds for parametric system and auxiliary lemma

We discuss the parametric delay difference system
∆x1(k) = − λa1(k)x1(k) + λb1(k)x2(k) + λ

∑n
j=1 c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k)),

∆x2(k) = − λa2(k)x2(k) + λb2(k)x1(k) + λ
∑n

j=1 c2 j(k)x2(k − τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k))
(2.1)

for each parameter λ ∈ (0, 1). Let ai = min1≤k≤ω ai(k) and bi = max1≤k≤ω bi(k) for i = 1, 2. Then, an
estimation of upper and lower bounds of positive ω-periodic solution of (2.1) can be conducted.

Proposition 2.1. Suppose that
a1a2 − b1b2 > 0 (2.2)

and there exists a constant γ > 1 such that

n∑
j=1

ci j(k) > γ ai(k) for k = 1, 2, . . . , ω and 1 ≤ i ≤ 2. (2.3)

Then, every positive ω-periodic solution x = (x1, x2)T of (2.1) is bounded. Specifically,

A1 < x1(k) ≤ B1 and A2 < x2(k) ≤ B2 for k = 1, 2, . . . , ω,

where

A1 ≤ min
{

ln γ
γ1

, γB1e−γ1B1

}
and B1 =

a2

(a1a2 − b1b2)e

 n∑
j=1

c1 j

γ
1 j

+
b1

a2

n∑
j=1

c2 j

γ
2 j

 ,
A2 ≤ min

{
ln γ
γ2

, γB2e−γ2B2

}
and B2 =

a1

(a1a2 − b1b2)e

 n∑
j=1

c2 j

γ
2 j

+
b2

a1

n∑
j=1

c1 j

γ
1 j

 ,
in which γ

1 j
= min1≤k≤ω γ1 j(k), γ

2 j
= min1≤k≤ω γ2 j(k), c1 j = max1≤k≤ω c1 j(k), c2 j = max1≤k≤ω c2 j(k),

γ1 = max1≤ j≤n{max1≤k≤ω γ1 j(k)} and γ2 = max1≤ j≤n{max1≤k≤ω γ2 j(k)}.
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Remark 1. Note that Ai and Bi are the lower bound and upper bound of xi, respectively. We can verify
the fact that Ai < Bi for i = 1, 2. From the definitions of A1 and A2, we see that

A1 ≤ γB1e−γ1B1 ≤
γ

eγ1
and A2 ≤ γB2e−γ2B2 ≤

γ

eγ2
.

Hence, we obtain

B1 >
a2

(a1a2 − b1b2)e

n∑
j=1

c1 j

γ
1 j

= 1
/ 1 − b1b2

a1a2

 × 1
a1e

n∑
j=1

c1 j

γ
1 j

>

∑n
j=1 c1 j

a1

1
eγ1

>
γ

eγ1
≥ A1.

Similarly, it follows that

B2 >
a1

(a1a2 − b1b2)e

n∑
j=1

c2 j

γ
2 j

>
γ

eγ2
≥ A2.

Proof. Let x = (x1, x2)T be arbitrary positive ω-periodic solution of (2.1) under the initial condition
(1.2). For i = 1, 2, we define

xi = max
1≤k≤ω

xi(k) and xi = min
1≤k≤ω

xi(k).

Then xi ≤ xi(k) ≤ xi for k ∈ Z+. We can rewrite system (2.1) into
x1(k+1)= (1−λa1(k))x1(k) + λb1(k)x2(k) + λ

∑n
j=1 c1 j(k)x1(k−τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k)),

x2(k+1)= (1−λa2(k))x2(k) + λb2(k)x1(k) + λ
∑n

j=1 c2 j(k)x2(k−τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k)).
(2.4)

Taking the maximum on both sides of the first equation of (2.4) in one period, we have

x1 = max
1≤k≤ω

{x1(k + 1)}

≤ max
1≤k≤ω

{(1 − λa1(k))x1(k)} + λ max
1≤k≤ω

{b1(k)x2(k)}

+ λ max
1≤k≤ω

 n∑
j=1

c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k))


≤ max

1≤k≤ω
{(1 − λa1(k))} max

1≤k≤ω
{x1(k)} + λ max

1≤k≤ω
{b1(k)} max

1≤k≤ω
{x2(k)}

+ λ max
1≤k≤ω

 n∑
j=1

c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k))


≤ (1 − λa1)x1 + λb1x2 + λ max

1≤k≤ω

 n∑
j=1

c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k))

 .
Similarly, we obtain

x2 ≤ (1 − λa2)x2 + λb2x1 + λ max
1≤k≤ω

 n∑
j=1

c2 j(k)x2(k − τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k))

 .
Electronic Research Archive Volume 31, Issue 11, 6982–6999.
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Hence, it leads to

x1 ≤
b1

a1

x2 +
1
a1

max
1≤k≤ω

 n∑
j=1

c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k))


≤

b1

a1

x2 +
1

a1e

n∑
j=1

c1 j

γ
1 j

, (2.5)

and

x2 ≤
b2

a2

x1 +
1
a2

max
1≤k≤ω

 n∑
j=1

c2 j(k)x2(k − τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k))


≤

b1

a2

x1 +
1

a2e

n∑
j=1

c2 j

γ
2 j

. (2.6)

By (2.5) and (2.6), basic computations show that

x1 ≤ 1
/ 1 − b1b2

a1a2

 ×  1
a1e

n∑
j=1

c1 j

r1 j

+
b1

a1a2e

n∑
j=1

c2 j

γ
2 j

 =
a2

(a1a2 − b1b2)e

 n∑
j=1

c1 j

γ
1 j

+
b1

a2

n∑
j=1

c2 j

γ
2 j

 = B1,

x2 ≤ 1
/ 1 − b1b2

a1a2

 ×  1
a2e

n∑
j=1

c2 j

r2 j

+
b2

a1a2e

n∑
j=1

c1 j

γ
1 j

 =
a1

(a1a2 − b1b2)e

 n∑
j=1

c2 j

γ
2 j

+
b2

a1

n∑
j=1

c1 j

γ
1 j

 = B2.

Note that 1 − λai(k) > 0 for all k ∈ Z and i = 1, 2. Multiplying both sides of the two equation of
(2.1) by

∏k
r=0 1/(1 − λa1(r)) and

∏k
r=0 1/(1 − λa2(r)) respectively, we have

x1(k + 1)
k∏

r=0

1
1 − λa1(r)

− x1(k)
k−1∏
r=0

1
1 − λa1(r)

− λb1(k)x2(k)
k∏

r=0

1
1 − λa1(r)

= λ

n∑
j=1

c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k))
k∏

r=0

1
1 − λa1(r)

, (2.7)

and

x2(k + 1)
k∏

r=0

1
1 − λa2(r)

− x2(k)
k−1∏
r=0

1
1 − λa2(r)

− λb2(k)x1(k)
k∏

r=0

1
1 − λa2(r)

= λ

n∑
j=1

c2 j(k)x2(k − τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k))
k∏

r=0

1
1 − λa2(r)

. (2.8)

Choosing natural numbers k1 and k2 such that

τ1 ≤ k1 ≤ τ1 + ω − 1 and x1(k1) = x1,

τ2 ≤ k2 ≤ τ2 + ω − 1 and x2(k2) = x2.

Electronic Research Archive Volume 31, Issue 11, 6982–6999.
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Summing both sides of (2.7) and (2.8) over k ranging from k1 to k1 + ω − 1 and k2 to k2 + ω − 1
respectively, by using xi(ki + ω) = xi(ki) = xi, we obtain

x1

k1−1∏
r=0

1
1 − λa1(r)

k1+ω−1∏
r=k1

1
1 − λa1(r)

− 1


= λ

k1+ω−1∑
s=k1


b1(s)x2(s) +

n∑
j=1

c1 j(s)x1(s − τ1 j(s))e−γ1 j(s)x1(s−τ1 j(s))

 s∏
r=0

1
1 − λa1(r)

 ,
and

x2

k2−1∏
r=0

1
1 − λa2(r)

k2+ω−1∏
r=k2

1
1 − λa2(r)

− 1


= λ

k2+ω−1∑
s=k2


b2(s)x1(s) +

n∑
j=1

c2 j(s)x2(s − τ2 j(s))e−γ2 j(s)x2(s−τ2 j(s))

 s∏
r=0

1
1 − λa2(r)

 .
Note that ai (i = 1, 2) is positive ω-periodic. It follws that

ki+ω−1∏
r=ki

(1 − λai(r)) =

ω−1∏
r=0

(1 − λai(r)). (2.9)

Hence, we obtain

x1 =
λ
∏k1+ω−1

r=0 (1 − λa1(r))

1 −
∏ω−1

r=0 (1 − λa1(r))k1+ω−1∑
s=k1

b1(s)x2(s) +

n∑
j=1

c1 j(s)x1(s − τ1 j(s))e−γ1 j(s)x1(s−τ1 j(s))

 s∏
r=0

1
1 − λa1(r)


=

λ

1 −
∏ω−1

r=0 (1 − λa1(r))
k1+ω−1∑

s=k1


b1(s)x2(s) +

n∑
j=1

c1 j(s)x1(s − τ1 j(s))e−γ1 j(s)x1(s−τ1 j(s))

 k1+ω−1∏
r=s+1

(1 − λa1(r))

 , (2.10)

and

x2 =
λ

1 −
∏ω−1

r=0 (1 − λa2(r))
k2+ω−1∑

s=k2


b2(s)x1(s) +

n∑
j=1

c2 j(s)x1(s − τ2 j(s))e−γ2 j(s)x1(s−τ2 j(s))

 k1+ω−1∏
r=s+1

(1 − λa2(r))

 . (2.11)

Recall that γi = max1≤ j≤n{max1≤k≤ω−1 γi j(k)} for i = 1, 2. We define f1(u) = ue−γ1u and f2(u) = ue−γ2u

for u ≥ 0. Since xi ≤ xi(k) ≤ xi for all k ∈ Z+, it turns out that

xi(s − τi j(s))e−γi j(s)xi(s−τi j(s)) ≥ min
{
fi(xi), fi(xi)

}
for s ≥ τi j for i = 1, 2.
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Note that k1 ≥ τ1. By using (2.3) and (2.10), we have

x1 ≥
λmin

{
f1(x1), f1(x1)

}
1 −

∏ω−1
r=0 (1 − λa1(r))

k1+ω−1∑
s=k1

 n∑
j=1

c1 j(s)
k1+ω−1∏
r=s+1

(1 − λa1(r))


>
λmin

{
f1(x1), f1(x1)

}
1 −

∏ω−1
r=0 (1 − λa1(r))

k1+ω−1∑
s=k1

γa1(s)
k1+ω−1∏
r=s+1

(1 − λa1(r))


=
γmin

{
f1(x1), f1(x1)

}
1 −

∏ω−1
r=0 (1 − λa1(r))

k1+ω−1∑
s=k1

λa1(s)
k1+ω−1∏
r=s+1

(1 − λa1(r))


=
γmin

{
f1(x1), f1(x1)

}
1 −

∏ω−1
r=0 (1 − λa1(r))

k1+ω−1∑
s=k1

(1 − (1 − λa1(s))
) k1+ω−1∏

r=s+1

(1 − λa1(r))


=
γmin

{
f1(x1), f1(x1)

}
1 −

∏ω−1
r=0 (1 − λa1(r))

k1+ω−1∑
s=k1

k1+ω−1∏
r=s+1

(1 − λa1(r)) −
k1+ω−1∏

r=s

(1 − λa1(r))


=
γmin

{
f1(x1), f1(x1)

}
1 −

∏ω−1
r=0 (1 − λa1(r))

k1+ω−1∏
r=k1+ω

(1 − λa1(r)) −
k1+ω−1∏

r=k1

(1 − λa1(r))

 .
Calculating by the same way, from (2.3) and (2.11), we obtain

x2 =
γmin

{
f2(x2), f2(x2)

}
1 −

∏ω−1
r=0 (1 − λa2(r))

k2+ω−1∏
r=k2+ω

(1 − λa2(r)) −
k2+ω−1∏

r=k2

(1 − λa2(r))

 .
Then, it follows from (2.9) that

xi > γmin
{
fi(xi), fi(xi)

}
for i = 1, 2. (2.12)

It is natural to divide the argument into two cases: (i) fi(xi) ≤ fi(xi); (ii) fi(xi) > fi(xi).
Case (i): It follows from (2.12) that xi > γ fi(xi). Specifically, we have

x1 > γ f1(x1) =
γx1

eγ1 x1

and x2 > γ f2(x2) =
γx2

eγ2 x2

,

which imply that x1 > ln γ/γ1 and x2 > ln γ/γ2.

Case (ii): Function fi is unimodal and takes the only peak value at 1/γi. Also, fi monotonically
increases on

[
0, 1/γi

]
and monotonically decreases on

[
1/γi,∞

)
. If xi ≤ 1/1/γi, then we see that

fi(xi) ≤ fi(xi) ≤ fi(1/γi), which is a contradiction. Hence, it follows that xi > 1/γi. Note that xi ≤ Bi.
From (2.12), we obtain

x1 > γ f1(x1) ≥ γ f1(B1) = γB1e−γ1B1

and
x2 > γ f2(x2) ≥ γ f2(B2) = γB2e−γ2B2 .

Thus, we estimate

x1 > min
{

ln γ
γ1

, γB1e−γ1B1
1

}
≥ A1
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and

x2 > min
{

ln γ
γ2

, γB2e−γ2B2
2

}
≥ A2.

Now, it can be concluded that each positive ω-periodic solution x = (x1, x2)T of (2.1) satisfies

A1 < x1 ≤ x1(k) ≤ x1 ≤ B1

and

A2 < x2 ≤ x2(k) ≤ x1 ≤ B2

for k ∈ Z+. The proof is complete.

Suppose that X is a Banach space and L : Dom L ⊂ X → X is a linear operator. The operator L is
called a Fredholm operator of index zero if

(i) dim Ker L = codim Im L < +∞,

(ii) Im L is closed in X.

If L is a Fredholm operator of index zero and P, Q : X → X are continuous projectors satisfying

Im P = Ker L and Ker Q = Im L = Im(I − Q),

where I is the identity operator from X to X, then the restriction LP : Dom L∩Ker P→ Im L is invertible
and has the inverse KP : Im L→ Dom L ∩ Ker P.

Let N : X → X be a continuous operator and Ω an open bounded subset of X. The operator N is
L-compact on Ω if

(i) QN(Ω) is bounded,

(ii) KP(I − Q)N : Ω→ X is compact.

We present the continuation theorem of coincidence degree theory (for example, see [29, 30]) as fol-
lows:

Lemma 2.2. Let L : Dom L ⊂ X → X be a Fredholm operator of index zero and let N : X → X be
L-compact on Ω. Suppose that

(i) every solution x of Lx = λNx satisfies x < ∂Ω for λ ∈ (0, 1);

(ii) QNx , 0 for x ∈ ∂Ω ∩ Ker L and

deg
{
QN, Ω ∩ Ker L, 0

}
, 0.

Then, Lx = Nx has at least one solution in X ∩ Ω.
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3. Positive ω-periodic solution

Theorem 3.1. Suppose that (2.2) and (2.3) hold. If∑ω
k=1

∑n
j=1(ci j(k)∑ω

k=1(ai(k) − bi(k))
> 1 for i = 1, 2, (3.1)

then system (1.1) has at least one positive ω-periodic solution x∗.

Proof. Let X be a set of ω-periodic functions x = (x1, x2)T defined on Z+ and denote the maximum
norm ||x|| = max{max1≤k≤ω |x1(k)|,max1≤k≤ω |x2(k)|} for any x ∈ X. Then, X is a Banach space. More-
over, we define

Lx =

(
(Lx)1(k)
(Lx)2(k)

)
=

(
x1(k + 1) − x1(k)
x2(k + 1) − x2(k)

)
,

and

Nx =

(
(Nx)1(k)
(Nx)2(k)

)
=

(
− a1(k)x1(k) + b1(k)x2(k) +

∑n
j=1 c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k))

− a2(k)x2(k) + b2(k)x1(k) +
∑n

j=1 c2 j(k)x2(k − τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k))

)
.

It is not difficult to show that L is a linear operator from X to X and N is a continuous operator from X
to X.

From the definition of L, we see that

Ker L =
{
x ∈ X : (x1(k), x2(k))T ≡ (c1, c2)T ∈ R2}

and
Im L =

x ∈ X :
ω∑

k=1

x1(k) =

ω∑
k=1

x2(k) = 0

 .
It turns out that dim Ker L = 2 = codim Im L < +∞ and Im L is closed in X. Thus, L is a Fredholm
operator of index zero.

We define P : X → X by

Px =

(
(Px)1

(Px)2

)
=



1
ω

ω∑
k=1

x1(k)

1
ω

ω∑
k=1

x2(k)


and let Q = P. Then, P and Q are two continuous projectors such that Im P = Ker L and Ker Q =

Im L = Im(I − Q).
It can be shown that the restriction LP : Dom L ∩ Ker P → Im L has the inverse KP : Im L →

Dom L ∩ Ker P given by

KPx =

(
(KPx)1

(KPx)2

)
=



k−1∑
s=0

x1(s) −
1
ω

ω−1∑
s=0

s∑
r=0

x1(r)

k−1∑
s=0

x2(s) −
1
ω

ω−1∑
s=0

s∑
r=0

x2(r)


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for x = (x1, x2)T ∈ Im L. In fact, for i = 1, 2, since

(KPx)i(k + ω) − (KPx)i(k) =

k+ω−1∑
s=0

xi(s) −
1
ω

ω−1∑
s=0

s∑
r=0

xi(r) −
k−1∑
s=0

xi(s) +
1
ω

ω−1∑
s=0

s∑
r=0

xi(r)

=

k+ω−1∑
s=k

xi(s) =

ω−1∑
s=0

xi(s) = 0

for all k ∈ Z+, we see that KPx ∈ Dom L . Moreover, it follows that

(PKPx)i =
1
ω

ω∑
k=1

KPxi(k) =
1
ω

ω∑
k=1

 k−1∑
s=0

xi(s) −
1
ω

ω−1∑
s=0

s∑
r=0

xi(r)


=

1
ω

 ω∑
k=1

k−1∑
s=0

xi(s) −
ω

ω

ω−1∑
s=0

s∑
r=0

xi(r)

 =
1
ω

 ω∑
k=1

k−1∑
s=0

xi(s) −
ω∑

k=1

k−1∑
r=0

xi(r)

 = 0.

Hence, KPx ∈ Ker P.
For any x ∈ Im L, one has

(LPKPx)i = (KPx)i(k + 1) − (KPx)i(k)

=

k∑
s=0

xi(s) −
1
ω

ω−1∑
s=0

s∑
r=0

xi(r) −
k−1∑
s=0

xi(s) +
1
ω

ω−1∑
s=0

s∑
r=0

xi(r)

= xi(k) = (Ix)i.

Furthermore, for any x ∈ Dom L ∩ Ker P, one has

(KPLPx)i = KP
(
xi(k + 1) − xi(k)

)
=

k−1∑
s=0

(
xi(s + 1) − xi(s)

)
−

1
ω

ω−1∑
s=0

s∑
r=0

(
xi(r + 1) − xi(r)

)
= xi(k) − xi(0) −

1
ω

ω−1∑
s=0

(
xi(s + 1) − xi(0)

)
= xi(k) −

1
ω

ω∑
s=1

xi(s).

Since x ∈ Ker P = Ker Q = Im L, we see that
∑ω

s=1 xi(s) = 0. Hence, (KPLPx)i = xi(k) = (Ix)i. We
therefore conclude that KP = L−1

P .
We define

Ω =
{
x = (x1, x2)T∈ X : A1 < x1(k) < B1 + 1, A2 < x2(k) < B2 + 1

}
and prove that the operator N defined above is L-compact on Ω. We first check that QN(Ω) is bounded.

Since x1(k) < B1 + 1 and x2(k) < B2 + 1 for k ∈ Z+, we obtain

(QNx)1 =
1
ω

ω∑
k=1

− a1(k)x1(k) + b1(k)x2(k) +

n∑
j=1

c1 j(k)x1(k − τ1 j(k))e−γ1 j(k)x1(k−τ1 j(k))


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<
1
ω

ω∑
k=1

b1(B2 + 1) +
1
e

n∑
j=1

c1 j

γ
1 j


=

b1(B2 + 1) +
1
e

n∑
j=1

c1 j

γ
1 j

 ,
and

(QNx)2 =
1
ω

ω∑
k=1

− a2(k)x2(k) + b2(k)x1(k) +

n∑
j=1

c2 j(k)x2(k − τ2 j(k))e−γ2 j(k)x2(k−τ2 j(k))


<

1
ω

ω∑
k=1

b2(B1 + 1) +
1
e

n∑
j=1

c2 j

γ
2 j


=

b2(B1 + 1) +
1
e

n∑
j=1

c2 j

γ
2 j


for x ∈ Ω. Hence, the operator QN is bounded on Ω.

We next show that KP(I − Q)N : Ω → X is compact. From the definitions of N, QN and Kp, we
obtain

(Kp(I − Q)Nx)1 =

k−1∑
s=0

(− a1(s)x1(s) + b1(s)x2(s))

+

k−1∑
s=0

 n∑
j=1

c1 j(s)x1(s − τ1 j(s))e−γ1 j(s)x1(s−τ1 j(s))


−

(
k
ω
−
ω + 1

2ω

) ω∑
s=1

(− a1(s)x1(s) + b1(s)x2(s))

−

(
k
ω
−
ω + 1

2ω

) ω∑
s=1

 n∑
j=1

c1 j(s)x1(s − τ1 j(s))e−γ1 j(s)x1(s−τ1 j(s))


−

1
ω

ω−1∑
s=0

s∑
r=0

(− a1(r)x1(r) + b1(r)x2(r))

−
1
ω

ω−1∑
s=0

s∑
r=0

 n∑
j=1

c1 j(r)x1(r − τ1 j(r))e−γ1 j(r)x1(r−τ1 j(r))

 .
Meanwhile, we have

(Kp(I − Q)Nx)2 =

k−1∑
s=0

(− a2(s)x2(s) + b2(s)x1(s))

+

k−1∑
s=0

 n∑
j=1

c2 j(s)x2(s − τ2 j(s))e−γ2 j(s)x2(s−τ2 j(s))


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−

(
k
ω
−
ω + 1

2ω

) ω∑
s=1

(− a2(s)x2(s) + b2(s)x1(s))

−

(
k
ω
−
ω + 1

2ω

) ω∑
s=1

 n∑
j=1

c2 j(s)x2(s − τ2 j(s))e−γ2 j(s)x2(s−τ2 j(s))


−

1
ω

ω−1∑
s=0

s∑
r=0

(− a2(r)x2(r) + b2(r)x1(r))

−
1
ω

ω−1∑
s=0

s∑
r=0

 n∑
j=1

c2 j(r)x2(r − τ2 j(r))e−γ2 j(r)x2(r−τ2 j(r))


for x ∈ X. For any bounded subset E ⊂ Ω ⊂ X, it is a subspace of a finite dimensional Banach space
X. Hence, E is closed, and therefore E is compact. By a straightforward calculation, it can be proven
that KP(I − Q)N(E) is relatively compact.

An arbitrary ω-periodic solution of (2.1) corresponds one-to-one to a solution of Lx = λNx with
parameter λ ∈ (0, 1). Proposition 2.1 displays that each positive solution x = (x1, x2)T of Lx = λNx
satisfies that A1 < x1 ≤ B1 and A2 < x2 ≤ B2. It is obvious that if y = (y1, y2)T ∈ ∂Ω, then y is never
a solution of Lx = λNx. Hence, the condition (i) of Lemma 2.2 holds. If x = (x1, x2)T ∈ ∂Ω ∩ Ker L,
then there are four cases to be considered: (1) x = (A1, x2)T , (2) x = (B1 + 1, x2)T , (3) x = (x1, A2)T , (4)
x = (x1, B2 + 1)T .

Case (1): It follows from x1 ≡ A1 that

(QNx)1 =
1
ω

ω∑
k=1

− A1a1(k) + b1(k)x2(k) +

n∑
j=1

ci j(k)A1e−γ1 j(k)A1


≥

A1

ω

ω∑
k=1

−a1(k) +
1

eA1γ1

n∑
j=1

ci j(k)


>

A1

ω

ω∑
k=1

(
−a1(k) +

γ

eA1γ1
a1(k)

)
=

A1

ω

(
γ

eA1γ1
− 1

) ω∑
k=1

a1(k).

Since A1 ≤ ln γ/γ1, we see that eA1γ1 ≤ γ. Hence, (QNx)1 > 0.
Case (2): Because of x1 ≡ B1 + 1, we have

(QNx)1 =
1
ω

ω∑
k=1

− (B1 + 1)a1(k) + b1(k)x2(k) +

n∑
j=1

ci j(k)(B1 + 1)e−γ1 j(k)(B1+1)


≤

1
ω

ω∑
k=1

−a1(B1 + 1) + b1B2 +

n∑
j=1

c1 j

eγ
1 j


= −a1(B1 + 1) + b1B2 +

1
e

n∑
j=1

c1 j

γ
1 j
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= −a1 −
a1a2

(a1a2 − b1b2)e

 n∑
j=1

c1 j

γ
1 j

+
b1

a2

n∑
j=1

c2 j

γ
2 j


+

a1b1

(a1a2 − b1b2)e

 n∑
j=1

c2 j

γ
2 j

+
b2

a1

n∑
j=1

c1 j

γ
1 j

 +
1
e

n∑
j=1

c1 j

γ
1 j

= −a1 < 0.

Similarly, we can show that (QNx)2 > 0 in Case (3) and (QNx)2 < 0 in Case (4). We therefore
conclude that QNx = ((QNx)1, (QNx)2)T , 0 for each x ∈ ∂Ω ∩ Ker L.

Define a continuous operator H : Ω ∩ Ker L × [0, 1]→ X by

H(x, µ) =

(
H1(x, µ)
H2(x, µ)

)
=


− µ

(
Ix1 −

A1 + B1

2

)
+ (1 − µ)(QNx)1

− µ
(
Ix2 −

A2 + B2

2

)
+ (1 − µ)(QNx)2

 .
Recall that the elements of ∂Ω∩Ker L are vectors satisfying x = (A1, x2)T , y = (B1+1, y2)T , z = (z1, A2)T

and w = (w1, B2 + 1)T . For x = (A1, x2)T , we can check that

H1(x, µ) = − µ
(
A1 −

A1 + B1

2

)
+ (1 − µ)(QNx)1 = − µ

(A1 − B1

2

)
+ (1 − µ)(QNx)1 > 0.

Moreover,

H1(y, µ) = − µ
(
B1 + 1 −

A1 + B1

2

)
+ (1 − µ)(QNy)1 = − µ

(
A1 − B1 + 2

2

)
+ (1 − µ)(QNy)1 < 0

for y = (B1+1, y2)T . Hence, H(x, µ) , 0 and H(y, µ) , 0. By similar computations, we have H(z, µ) , 0
and H(w, µ) , 0. Therefore, we see that H(x, µ) , 0 for (x, µ) ∈ ∂Ω ∩ Ker L × [0, 1]. Thus, H is a
homotopic mapping. Using the homotopy invariance, we have

deg
{
QN, Ω ∩ Ker L, 0

}
= deg



− Ix1 +

A1 + B1

2

− Ix2 +
A2 + B2

2

 , Ω ∩ Ker L, 0

 = 1 , 0.

Hence, the condition (ii) of Lemma 2.2 holds. Therefore, the equation Lx = Nx has at least one
solution located in X ∩ Ω. Thus, from Lemma 2.2, we obtain that there is a positive ω-periodic
solution of system (1.1). The proof is now complete.

4. Existence of positive 4-periodic solution

Consider the delay difference system
∆x1(k) = − a1(k)x1(k) + b1(k)x2(k) + c11(k)x1(k − 1)e−γ11(k)x1(k−1) + c12(k)x1(k − 1)e−γ12(k)x1(k−1),

∆x2(k) = − a2(k)x2(k) + b2(k)x1(k) + c21(k)x2(k − 4)e−γ21(k)x2(k−4) + c22(k)x2(k − 4)e−γ22(k)x2(k−4).
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Here, we assume that

a1(k) =


1/2 if k = 1,
2/5 if k = 2,
1/4 if k = 3,
1/5 if k = 4,

a2(k) =


3/4 if k = 1,
3/5 if k = 2,
1/2 if k = 3,
5/6 if k = 4,

b1(k) =


1/5 if k = 1,
1/4 if k = 2,
1/7 if k = 3,
1/6 if k = 4,

b2(k) =


1/20 if k = 1,
1/12 if k = 2,
1/24 if k = 3,
1/18 if k = 4,

c11(k) =


1/2 if k = 1,
3/4 if k = 2,
1/3 if k = 3,
2/3 if k = 4,

c12(k) =


5/6 if k = 1,
4/5 if k = 2,
2/5 if k = 3,
1/6 if k = 4,

c21(k) =


7/8 if k = 1,
4/5 if k = 2,
2/3 if k = 3,
6/7 if k = 4,

c22(k) =


1/4 if k = 1,
1/2 if k = 2,
1/10 if k = 3,
20/21 if k = 4,

γ11(k) =


3 if k = 1,
1 if k = 2,
1.5 if k = 3,
2 if k = 4,

γ12(k) =


10 if k = 1,
4 if k = 2,
3 if k = 3,
5 if k = 4,

γ21(k) =


5 if k = 1,
2 if k = 2,
1 if k = 3,
2.5 if k = 4,

γ22(k) =


2 if k = 1,
1.5 if k = 2,
8 if k = 3,
3 if k = 4.

In addition, ai(k) = ai(k + 4), bi(k) = bi(k + 4), ci j(k) = ci j(k + 4) and γi j(k) = γi j(k + 4) for k ∈ Z,
i = 1, 2 and j = 1, 2. Theorem 3.1 shows that the system has at least one positive 4-periodic solution.

It is clear that ω = 4, ai, bi, ci j, γi j and τi j (1 ≤ i ≤ 2, 1 ≤ j ≤ 2) are ω-periodic discrete functions
satisfying 0 < ai(k) < 1, 0 < bi(k) < 1, ci j(k) > 0 and γi j(k) > 0 for k ∈ Z+. Since a1 = 1/5, a1 = 1/2,
b1 = 1/4 and b2 = 1/12, we see that

a1a1 − b1b2 =
1
5
×

1
2
−

1
4
×

1
12

=
19

240
> 0.

Hence, condition (2.2) is satisfied. Let γ = 11/10 > 1. Then, we can easily check condition (2.3)

(c11(k) + c12(k)) > γa1(k) and (c21(k) + c22(k)) > γa2(k)
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for k = 1, 2, 3, 4. Moreover, it can be calculated that∑4
k=1(c11(k) + c12(k))∑4
k=1(a1(k) − b1(k))

=
1869
248

> 1 and
∑4

k=1(c21(k) + c22(k))∑4
k=1(a2(k) − b2(k))

=
22110
6181

> 1.

Namely, condition (3.1) holds. Therefore, from Theorem 3.1, it turns out that the system has at least
one positive 4-periodic solution.

Figure 1. Graphs of three arbitrary positive solutions of system. The numerical simulations
show that there is a positive 4-periodic solution and this positive 4-periodic solution is locally
asymptotically stable.

5. Conclusions

A discrete Nicholson system that describles the dynamics of two fly species is studied in this paper.
The system considers the mutualism effect between fly species. Continuation theorem of coincidence
degree theory is used effectively to seek sufficient conditions for the existence of a positive periodic
solution. It is easy to check whether these sufficient conditions hold or not by using coefficients. The
positive periodic solution indicates a cycle change in the adult fly populations. From the obtained
result, we found that mutualistic interactions between species plays an important role in adult flies
populations. But the increase in the flies populations resulting from maximum cumulative mutualism
effect only should be less than the death of the flies populations because there is the natural generation
of flies populations. Moreover, to avoid species extinction and maintain the coexistence of two fly
species in a mutually beneficial environment, we see that (i) the adult fly population produced by
maximum daily spawning should exceed a constant multiple of dead fly population for each fly species,
and the multiple is greater than constant 1 and (ii) the total population growth must be maintained more
than the population loss for each fly species. In fact, the third sufficient condition (3.1) of Theorem 3.1
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can be rewritten into the form

ω∑
k=1

 n∑
j=1

(c1 j(k) + b1(k)

 > ω∑
k=1

a1(k) and
ω∑

k=1

 n∑
j=1

(c2 j(k) + b2(k)

 > ω∑
k=1

a2(k).

The left side of each inequality represents the production of one fly species in a period under the
mutualism influence of another, and the right side represents the death of that species in a period.
Hence, statement (ii).
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