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Abstract: In this paper, we investigated the dynamics of a pair of VDP (Van der Pol) oscillators
with direct-indirect coupling, which is described by five first-order differential equations. The system
presented three types of equilibria including HSS (homogeneous steady state), IHSS (inhomogeneous
steady state) and NPSS (no-pattern steady state). Employing the corresponding characteristic equations
of the linearized system, we obtained the necessary conditions for the pitchfork and Hopf bifurcations
of the equilibria. Further, we illustrated one-dimensional bifurcation and phase diagrams to verify
theoretical results. The results show that the system exhibited two types of oscillation quenching, i.e.,
amplitude death (AD) for HSS equilibria and oscillation death (OD) for IHSS equilibria. In some
special regions of the parameters, the system proposed multiple types of stable coexistence including
HSS and IHSS equilibria, periodic orbits or quasi-periodic oscillations.
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1. Introduction

Pattern formation and cooperative behaviors of oscillator units linked through different interactions
have become an interesting and important researching topic in a broad range of natural systems. Many
phenomena, such as synchronization, phase locking, amplitude death (AD) and oscillation death (OD),
can be observed in interaction systems between the coupled nonlinear oscillators [1–3].

Depending on stability analysis of an equilibrium state, the system presents stable stationary and
oscillatory with homogeneous or inhomogeneous patterns. There are two types of oscillation quench-
ing, AD and OD. To be specific, AD corresponds to the homogeneous steady state (HSS) [4], which
has potential application in many couplied systems such as lasers [5], oceanography [6], multi-module
floating airports [7], electronic circuits [8, 9] and neuronal systems [10]. By contrast, OD means in-
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homogeneous steady states (IHSS) [11], which has implications in comprehending biological systems,
including neural networks [12], genetic oscillations [13] and cell differentiation [14]. When natural
frequencies of two lasers are close, the injection of light from an uncontrolled diode laser into an
outer cavity has been discovered to result in the halting of oscillation – a phenomenon referred to as
the OD [5]. Further, the coupling model of the common atmosphere between the North Pacific and
North Atlantic can cause decadal variability of two oceans to reach an OD state [6]. In the dual-cell
inhibitory neural network, researchers have also observed that when coupling intensity is weakened,
the periodic activity between two neuronal populations disappears; that is, the OD state appears [12].
In electronic circuits, researchers often use circuit components to construct circuit systems to verify
various homogeneous or inhomogeneous behaviors, including AD and OD states [15].

In this study, the Van der Pol (VDP) oscillators with a direct–indirect coupling scheme will be
presented to reveal complex dynamical behaviors, including oscillation quenching with OD and AD,
periodic oscillation, quasi-periodic orbits and their coexistence. As a matter of fact, there is a long
history of researches on the VDP oscillator, which is a classical model of the self-oscillating system
described by a second-order ordinary differential equation (ODE). A thorough summary for the VDP
oscillator has been conducted in the themonograph by Nayfeh and Mook [16]. The VDP oscillator
model can be implemented in electronic circuits [15], cryptography [17], aeroelasticity [18] and even
quantum mechanics [19]. For the coupling VDP oscillators, some types of coupling schemes have been
applied, which includes weakly coupling with time delay [20], indirect coupling [21], and dynamical
coupling [22]. Further, modal analysis of the coupled system with a large number of VDP oscillators
was carried to obtain the existence of nondegenerate and degenerate modes [23]. However, there are
few researching results on the VDP coupled system with direct–indirect coupling. The corresponding
mathematical model was proposed by Resmi et al. [24], which is

dx11/dt = x12 + d(x21 − x11) + ey,
dx12/dt = a(1 − x2

11)x12 − x11,

dx21/dt = x22 + d(x11 − x21) + ey,
dx22/dt = a(1 − x2

21)x22 − x21,

dy/dt = −ky − e(x11 + x21)/2,

(1.1)

where xi1, xi2 are activities of the i-th oscillator, a is the nonlinear damping ratio, d is the coupling
strength of the direct coupling, the state variable y denotes the indirect coupling of the external envi-
ronment, which is modeled by a one-dimensional over-damped oscillator with damping parameter k
and the parameter e is a coupling strength between systems and environment. Resmi et al. [24] pro-
vided a general stability analysis to obtain the general mechanism of the AD for the direct–indirect
coupling system. They found that the dynamical transitions of the AD fall into two types, continuous
and discontinuous. Ghosh and Banerjee [9] presented a detailed bifurcation analysis and found the
OD and a novel nontrvial AD (NAD) state, which is a nonzero bistable HSS. In this study, we present
a more comprehensive analysis of the direct–indirect coupling VDP system and find more oscillation
quenching states, one trivial equilibrium and three types of coupling-dependent nontrivial equilibria,
i.e., IHSS, HSS, and no-pattern steady state (NPSS). In fact, the NPSS represents a steady state with
neither a symmetrical nor anti-symmetrical steady state. It was also observed in the Lorenz system
with direct-indirect coupling [25], and it may have many applications in many real systems, such as
laser [26] and geomagnetic [27]. Besides, based on the theoretical analysis and numerical simulations,
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we further propose multiple types of stable coexistence including the coexistence of two oscillations,
the coexistence of oscillations and equilibria and the coexistence of multiple equilibria.

This paper is organized as follows. In section one, we propose the VDP oscillator model with
direct-indirect coupling. In section two, the stability of the equilibria and their corresponding bifur-
cations including pitchfork and Hopf bifurcations are presented by theoretical analysis. The system
presents three types of equilibrium, HSS, IHSS and NPSS, in the different regions of the parameters.
In section three, we present numerical analysis in a wide range of parameter regions and illustrate a
two-parameter bifurcation diagram by using the differential equations tool named XPPAUT [28], which
can be easily used for time series analysis, phase space analysis, variable parameter analysis and bifur-
cation analysis, etc. The corresponding one-dimensional bifurcations and time histories for the fixed
parameters are then illustrated to explicate and validate theoretical analyses, and the VDP oscillator
with direct-indirect coupling illustrates multiple complex dynamical behaviors including AD and OD,
periodic and quasi-periodic oscillations, and their stability coexistence. Conclusions and discussions
are given in section four.

2. Stability analysis of the equilibrium

We first perform the equilibrium and its stability of system (1.1). It follows that the coupling VDP
oscillator has one trivial equilibrium O(0, 0, 0, 0, 0) and three types of coupling-dependent nontrivial
equilibria:

(i) IHSS A±(±xA
11,±xA

12,∓xA
11,∓xA

12, 0), is expressed as xA
11 =

√
2ad − 1/

√
2ad and xA

12 =√
2d(2ad − 1)/

√
a.

(ii) HSS B±(±xB
11,±xB

12,±xB
11,±xB

12,∓yB), is expressed as xB
11 =

√
ae2 − k/(e

√
a),xB

12 =

e
√

ae2 − k/(k
√

a) , and yB =
√

ae2 − k/(k
√

a).
(iii) NPSS C±(±xC

11,±xC
12,∓xC

21,∓xC
22,±yC),D± (±xD

11,±xD
12,∓xD

21,∓xD
22,±yD) are expressed as

xC
11 =

(∆1 +
√
∆2)

a(e4 − 4d2k2)

√
∆1 −

√
∆2

a(e2 + 2dk)2 , x
C
21 =

√
∆1 −

√
∆2

a(e2 + 2dk)2 ,

xD
11 =

(∆1 −
√
∆2)

a(e4 − 4d2k2)

√
∆1 +

√
∆2

a(e2 + 2dk2)
, xD

21 =

√
∆1 +

√
∆2

a(e2 + 2dk)2 ,

where ∆1 = ae4−e2k+2d(2ad−1)k2,∆2 = k(e2+2dk(1−4ad))(k(e2+2dk)−2ae4), and xC
12, x

D
12,xC

22,xD
22,

yC, yD are subjected to

xC(D)
12 =

xC(D)
11

a(1 − xC(D)
11

2
)
, xC(D)

22 =
xC(D)

21

a(1 − xC(D)
21

2
)
, y∗ =

e(xC(D)
11 + xC(D)

21 )
2k

.
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Figure 1. The intersection points of the system’s nullclines show a number of equilbria with
the fixed parameters d = 1, k = 1, where O is the trivial equilibrium, A± means the IHSS
equilibrium, B± means the HSS equilibrium and C± and D± are the NPSS equilibria.

In order to illustrate the equilibria of system (1.1), we choose a-e as adjustable parameters for the
fixed d = 1 and k = 1. The nullcline diagrams are exhibited in Figure 1. It follows that the system has
only one trivial equilibrium O for a = 0.3 and e = 1, as shown in Figure 1(a). When a = 0.6 and e = 1,
the system presents three equilibria, which is the trivial equilibrium O and a pair of IHSS equilibrium
A±, as shown in Figure 1(b). Conversely, if a = 0.3 and e = 2, the system has the trivial equilibrium
O and a pair of HSS equilibrium B±, as shown in Figure 1(c). When a = 1, e = 1.05 and a = 0.6,
e = 2 and the system will propose the trivial equilibrium O, a pair of IHSS equilibrium A± and a pair of
HSS equilibrium B±, as shown in Figure 1(d),(e), respectively. Further, when a = 1, e = 2, the system
illustrates nine equilibria, which is the trivial equilibrium O, a pair of IHSS equilibrium A±, a pair of
HSS equilibrium B±, and two pairs of NPSS equilibria C±, D±, as shown in Figure 1(f).

We rewrite these equilibria as (x̄11, x̄12, x̄21, x̄22, ȳ) for analyzing its stability and their bifurcations
including pitchfork and Hopf bifurcations. The Jacobian matrix of system (1.1) at the equilibria
(x̄11, x̄12, x̄21, x̄22, ȳ) is obtained as

J =


−d 1 d 0 e

−1 − 2ax̄11 x̄12 a(1 − x̄2
11) 0 0 0

d 0 −d 1 e
0 0 −1 − 2ax̄21 x̄22 a(1 − x̄2

21) 0
−e/2 0 −e/2 0 −k


. (2.1)

The characteristic equation for the trivial equilibrium O(0, 0, 0, 0, 0) is expressed as follows

(λ2 + (2d − a)λ − 2ad + 1)(λ3 + (k − a)λ2 + (e2 − ak + 1)λ − ae2 + k) = 0. (2.2)
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Based on the characteristic equation (2.2), we analyze the stability of the trivial equilibrium by using
the Routh-Hurwitz criterion [29]. Further, system (1.1) produces a pair of nontrivial equilibrium by a
pitchfork bifurcation of the trivial equilibrium. The necessary conditions for the pitchfork bifurcation,
labeled as PB1 and PB2, can be obtained

PB1 : 1 − 2ad = 0, PB2 : k − ae2 = 0. (2.3)

Moreover, the periodic oscillation surrounding the trivial equilibrium can be obtained by the Hopf
bifurcation. The necessary conditions for the Hopf bifurcation, i.e., HB1 and HB2, can be obtained

HB1 : 2d − a = 0,HB2 : (e2 − ak + 1)(k − a) − k + ae2 = 0. (2.4)

Similarly, for the nontrivial IHSS equilibria A±, we can obtain the corresponding characteris-
tic equation

(2dλ3 + (2dk − 1)λ2 + (8ad2 + 2de2 − 2d − k)λ + 8ad2k − 2dk − e2)
(2dλ2 + (4d2 − 1)λ + 8ad2 − 4d) = 0.

(2.5)

The necessary conditions of the pitchfork bifurcation for the IHSS equilibria A±, i.e., PB3, can
be obtained

PB3 : 8ad2k − 2dk − e2 = 0. (2.6)

The necessary conditions for the Hopf bifurcation points, i.e. HB3 and HB4, can be obtained

HB3 : 4d2 − 1 = 0,HB4 : 2d(8ad2k − 2dk − e2) − (2dk − 1)(8ad2 + 2de2 − 2d − k) = 0. (2.7)

Additional, the corresponding characteristic equation for the nontrivial HSS equilibria B± is

(e2kλ3 + (e2k2 − k2)λ2 + (2ae4 + e4k − e2k − k3)λ + 2ae4k − 2e2k2)
(e2kλ2 + (2de2k − k2)λ + 2ae4 − e2k − 2dk2) = 0.

(2.8)

The necessary conditions of the pitchfork bifurcation for the HSS equilibria B±, PB4, can be ob-
tained

PB4 : 2ae4 − e2k2 − 2dk2 = 0. (2.9)

The necessary conditions for the Hopf bifurcation points, HB5 and HB6, can be obtained

HB5 : 2de2 − k = 0,HB6 : e2k(2ae4 − 2e2k2) − (e2k2 − k2)(2ae4 + e4k − e2k − k3) = 0 (2.10)

Based on the above analyses, we can apply the necessary conditions of the bifurcations to obtain
parameter regions corresponding to different number of the equilibria and periodic oscillation. In the
following section, we will exhibit complex dynamical behaviors by using XPPAUT packages to verify
theoretical results. The system exhibits multiple types of oscillation quenching, i.e., AD and OD,
periodic and quasi-periodic oscillations, and their stability coexistence.
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3. Numbercial simulations

The dynamics of the coupled VDP system with direct–indirect coupling can be presented by time
history and phase diagram for the fixed parameters. To obtain overall perspectives of the dynamical
behaviors in system (1.1), we first present bifurcation sets in different parameter spaces to classfiy the
number of equilibria and periodic oscillation. Then, one-dimensional bifurcations and corresponding
time histories are illustrated to vertify the dynamical classfication by integrating system (1.1) with the
fourth-order Runge-Kutta numerical method in Matlab and XPPAUT.

3.1. Dynamics in a-d spaces

In this subsection, we first present the bifurcation sets in the parameter a − d diagram for e = 1 and
k = 1, as shown in Figure 2. It follows that the parameter a − d diagram is divied into D1 − D9 regions
by the pitchfork bifurcation (labeled as PB) curves and the Hopf bifurcation (HB) curves.

In region D1, system (1.1) proposes a unique trivial equalibrium O(0, 0, 0, 0, 0). With increase of
the parameters from D1 to D2, the system presents a pair of the IHSS equilibria A± by the pitchfork bi-
furcation of the trivial equalibrium (PB1), which PB1 is corresponding to the left equation in Eq (2.2).
Further, the pair of the IHSS equilibria A± loses its stability by the Hopf bifucation (HB4) in correspon-
dence with Eq (2.6). The system exhibits a pair of periodic orbit surrounded by the IHSS equilibria A±

in region D3. Employing the pitchfork bifurcation of the trivial equalibrium (PB2) matching up with
Eq (2.2), a new pair of HSS equilibria B± will be presented in region D4, where the system exhibits a
trivial equilibrium and two pairs of nontrivial equilibria, i.e., IHSS A± and HSS B±. Moreover, when
the parameter crosses the ptichfork bifurcation curve PB4 connecting with Eq (2.8), the pair of HSS
equilibria B± will bifurcate into two new pairs of nontrivial equilibria, the NPSS C±,D± equilibria,
respectively. The system (1.1) proposes nine equilibria, including the trivial equilibria O, the IHSS A±,
HSS B±, and the NPSS C±,D± equilibria, respectively.

To further explore the dynamics of the coupled VDP system (1.1), we exhibit the one-parameter
bifurcation diagram for the fixed parameter d = 1 (along Line 1 in Figure 2), as shown in Figure 3(a).
The corresponding time histories are shown in Figure 3(b) for the fixed parameters a = 0.2, 0.6, 0.8,
1.3, and 1.8, respectively. Here, we present the steady state of the solution for long time iterative
computations and throw away its transient state. The unstable equilibria are presented in the dotted
line. The numerical simulations agree with the theoretical analysis. It should be noticed that system
(1.1) presents stability coexistence with a pair of periodic orbits surrounding the IHSS equilibria A±

in region D3. Further, the pair of periodic orbits will bifurcate into a symmetric periodic orbit by
employing the fold bifurcation of periodic orbit.

Increasing the parameter a along with Line 2, i.e., d = 0.35, the corresponding one-parameter
bifurcation diagram is shown in Figure 4(a). It follows that the trivial equilibrium O(0, 0, 0, 0, 0) loses
its stability by employing the Hopf bifurcation (HB1) corresponding with Eq (2.3), which bifurcates
into a stable periodic oscillation. In Region D9, the stable periodic oscillation becomes unstable and
turns into a stable quasi-periodic oscillation, and then returns to the stable periodic oscillation by
the anti-bifurcation of the quasi-periodic oscillation. Further, the trivial equilibrium O(0, 0, 0, 0, 0)
bifurcates into a pair of nontrivial HSS B± equilibrium by the pitchfork bifurcation (PB2) in region
D8. A further pitchfork bifurcation (PB1) of the trivial equilibrium will induce the pair of nontrivial
IHSS A± equilibrium in region D7. Moreover, a new pitchfork bifurcation (PB3) of the nontrivial IHSS
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A± equilibrium results in two pairs of nontrivial equilibria, i.e., the NPSS C±,D± equilibria for the
parameter region D6, which is corresponding to Eq (2.5).

More one-parameter bifurcation diagrams are shown in Figures 4(b)–4(d) for the fixed parameter
d = 0.18, d = 0.15, and d = 0.1, respectively. It follows that system (1.1) proposes fewer equilibria
with decreasing of the parameter d. When the parameter d = 0.15, the system presents two pairs
of pitchfork bifurcations of the trivial equilibrium, which induces the IHSS equilibria A± and HSS
equilibria B±. Further, there is just a pitchfork bifurcation of the trivial equilibrium surrounded by the
periodic solution for d = 0.1. In addition, system (1.1) proposes a quasi-periodic oscillation in a wide
range of the system parameter a, which is obtained by the quasi-periodic bifurcation of the periodic
oscillation. The phase diagram and Poincaré map are shown in Figure 5(a),(b) for the fixed parameters
d = 0.35, a = 0.8 with e = 1, k = 1. The Poincaré section is chosen as y = 0. All numerical results
including time histories and bifurcation diagrams all agree with theoretical predictions.
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Figure 2. The bifurcation sets in the parameter a − d diagram for e = 1 and k = 1, where
blue solid curve is the pitchfork bifurcation (labeled as PB) and red is for the Hopf bifurcation
(HB). The biurcation curves divide the parameter diagram into different regions with different
equilibria and periodic oscillation.

Electronic Research Archive Volume 31, Issue 11, 6964–6981.



6971

0 0.5 1 1.5 2

a

-2

-1

0

1

2

X
1

1 B
+

B
-

C
+

D
+

D
+

PB
4

A
+

A
-

C
-

HB
4

PB
2O

PB
1

(a)

960 980 1000

t

-2

-1

0

1

2

X
1
1

a=0.2

960 980 1000

t

-2

-1

0

1

2
a=0.6

960 980 1000

t

-2

-1

0

1

2
a=0.8

960 980 1000

t

-2

-1

0

1

2
a=1.3

960 980 1000

t

-2

-1

0

1

2
a=1.8

(b)

Figure 3. (a) The one-parameter bifurcation diagram for d = 1 along with Line 1 in Figure 2,
where red, black and green solid lines represent stable equilibria, unstable equalibria and
stable oscillations, respectively. (b) Time histories for the fixed parameter a, where the dotted
line means the unstable equilibria and the solid line means stable equilibria.
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Figure 5. The phase diagram and Poincaré map with e = 1, k = 1, d = 0.35 and a = 0.8.
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3.2. Dynamics in e-k spaces

Next, we further describe the dynamical behaviors of system (1.1) in the e − k space for the fixed
parameters a = 1 and d = 1. The bifurcation sets are illustrated in Figure 6 by theoretical analysis and
numerical simulation.

To more clearly explore the dynamical behavior of system (1.1), we first choose the parameter k =
1.3 (Line 1 in Figure 6) and exhibit the one-parameter bifurcation diagram, as shown in Figure 7(a). It
follows that system (1.1) proposes the trivial equilibrium and a pair of nontrivial IHSS A± equilibria for
e = 0.5. Further, the system presents a stable periodic oscillation bifurcated from the trivial equilibrium
by the subcritical Hopf bifurcation labeled as HB2, which equals Eq (2.3). In addition, the trivial
equilibrium will bifurcate a new pair of the nontrivial HSS B± equilibrium by the pitchfork bifurcation
PB2 associated with Eq (2.2). The HSS B± will obtain its stability and further bifurcate into two pairs
of NPSS equilibria C±,D± by the PB4. The two pairs of NPSS equilibria C±,D± will be eliminated by
the subcritical pitchfork bifurcation (PB3) of the nontrivial IHSS A± equilibria, matching with Eq (2.5).
The system presents stability coexistence with two pairs of nontrival IHSS A± and HSS B±. Moreover,
the system presents a pair of periodic orbits by the anti-Hopf bifurcation of the IHSS A± equilibria when
the parameter passes through the HB4 curves. After the parameters pass through HB4 connecting with
Eq (2.6), the system obtains four stable equilibria with two stable equilibria for passing through PB3.
The corresponding time histories are shown in Figure 7(b) for the fixed parameters e = 0.5, 1.2, 1.26,
1.3, 2, and 3, respectively.

When we choose k = 0.95, i.e., Line 2 in Figure 6, the one-parameter bifurcation diagram is shown
in Figure 8(a). It follows that the HSS B± equilibria presents a new supercritical anti-Hopf bifurcation
curve HB6. Further, the IHSS A± equilibria have the supercritical anti-Hopf bifurcation curve HB4.
Based on these two Hopf bifurctions, system (1.1) illustrates two pairs of stable periodic orbits. The
corresponding time history is shown in Figure 9(a), where the parameter is fixed as e = 1.2 for k = 0.95.
In addition, more one-parameter bifurcation diagrams are illustrated in Figures 8(b)–8(d) for the fixed
k = 0.75, k = 0.45, and k = 0.3, respectively. It follows that the parameter region of four stable
periodic orbits increases with decreasing the parameter k, as shown in Figure 8(b). Meanwhile, we
find a region of coexistence between a pair of stable periodic orbits and a pair of stable equilibrium.
The time history is shown in Figure 9(b) for e = 1.5 with k = 0.75. Further, the pair of the large
periodic orbit loses its stability by the quasi-periodic bifurcation and translates into a pair of quasi-
periodic oscillation, as shown in Figure 8(c). The system (1.1) proposes a pair of stable quasi-periodic
oscillation. The parameter region having quasi-periodic oscillation increases with decreasing of the
parameter k, as shown in Figure 8(c) for the one-parameter bifurcation diagram with k = 0.3. The
phase diagram and Poincaré map of the quasi-periodic oscillation are illustrated in Figures 9(c) and
9(d), respectively. It should be noticed that the bifurcation curves, including PB and HB, correspond
to different equilibria, i.e., the trivial equilibrium O, and nontrivial equilibria IHSS A± and HSS B±.
For the same equilibrium, there are several intersections of different bifurcation curves, such as PB2-
HB2, PB3-HB4, PB4-HB6. These intersection points are to the pitchfork–Hopf bifurcation, which is
a codimension two bifurcation. The system may present more complex and interesting dynamical
behaviors near the bifurcation points.
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Figure 6. The two-parameter e−k bifurcation diagram with a = 1 and k = 1. Blue lines mean
pitchfork bifurcations labeled as PB and red lines mean Hopf bifurcations labeled as HB.

(a)

(b)

Figure 7. (a) The one-parameter bifurcation diagram for k = 1.3 along with Line 1 in Fig-
ure 6, where red, black, blue and green solid lines mean stable equilibria, unstable equilibria,
unstable oscillations and stable oscillations, respectively. (b) Time histories for the fixed pa-
rameter e, where the dotted line means the unstable equilibria.
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(a) (b)

(c) (d)

Figure 8. The one-parameter bifurcation diagrams with the increasing parameter e for the
fixed parameter k, (a) k = 0.95, (b) k = 0.75, (c) k = 0.45, and (d) k = 0.3, respectively, where
the red solid line means stable equalibria, the black solid line means unstable equalibria, the
blue solid line means unstable oscillations and the green solid line means stable oscillations.
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Figure 9. (a) The time history of two pairs of periodic orbits with e = 1.2 for k = 0.95.
(b) The time history of a pair of periodic orbit and a pair of equilibrium with e = 1.5 for
k = 0.75. (c) The phase diagram of the quasi-periodic oscillation with e = 2 for k = 0.3.(d)
The corresponding Poincaré map of the quasi-periodic oscillation.

4. Conclusions and discussion

In this paper, we investigated the stable equilibria and oscillations with homogeneous or inhomoge-
neous patterns in a pair of VDP oscillators with direct-indirect coupling. The system presented several
types of oscillation quenching such as AD, OD and their stable coexistence. In addition, by employing
the pitchfork and Hopf bifurcations of the trivial and nontrivial equilibria, we illustrated in detail the
dynamical mechanisms of the periodic and quasi-periodic oscillations in the different parameter spaces.
The results show that the coupled VDP oscillator presented two pairs of periodic oscillations by the
anti-Hopf bifurcation of the IHSS and HSS equilibria. Further, the stability coexistence with a pair of
equilibria and a pair of periodic oscillations have been illustrated in some regions of the parameters.

As a matter of fact, in order to demonstrate a steady state and an oscillatory state with homo-
geneous or inhomogeneous patterns, many types of coupling models have been proposed, such as
diffusion coupling [30], mean-field diffusion coupling [31–34], time-delay coupling [35–38], conju-
gate coupling [39, 40], direct and indirect coupling [9, 24, 41], repulsive coupling [42, 43] and indirect
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coupling [44–46]. The system model with direct-indirect coupling was originally proposed by Resmi
et al. [24] and showed that it can induce AD. Detailed bifurcation of the coupled nonlinear oscillator
with the coupling scheme was illustrated in [9], which induced an OD state and an NAD state. Further,
they presented transition scenarios from AD to OD within parameter space by employing experiment
researches. In the present paper, we first reported the multiple types of stable coexistence including
the coexistence of two oscillations, the coexistence of oscillations and equilibria and the coexistence
of multiple equilibria. Meanwhile, we have discussed the dynamic mechanism about generating the
phenomena.

The application of this system model is extensive. For example, direct-indirect coupling can help
understand the light-feeding phase relations on entraining robust circadian rhythms in the periph-
ery [29], where it is associated with phase-filp behavior. In neural networks, it also can help improve
the capacity of efficient reservior computing inspired by the brain [47]. In the realm of biological
nervous systems, the coupling scheme is also of great significance, as nerve cells can interact directly
through electrical synapses or gap junctions, and indirectly through the shared internal environment.
Meanwhile, three types of coexistence mentioned above have been observed in biological networks,
such as genetic networks [48] and slime networks [49]. We believe that it can help us understand the
dynamic behavior in many biological processes, such as cell-to-cell communication. Future research
can be undertaken in order to explore the role of the direct-indirect coupling studied here in inducing
the three types of coexistence in biological systems.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is supported by the National Natural Science Foundation of China under Grant
Nos. 12172212 and 11932015 and the Fundamental Research Funds for the Central Universities (No.
22120220588).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Non-
linear Sciences, Cambridge Nonlinear Science Series, Cambridge University Press, 2010.
https://doi.org/10.1017/CBO9780511755743

2. K. Kaneko, Theory and applications of coupled map lattices, in Nonlinear
Science: Theory and Applications, Wiley–Blackwell, 1993. Available from:
https://cir.nii.ac.jp/crid/1573105973923422464.

Electronic Research Archive Volume 31, Issue 11, 6964–6981.

http://dx.doi.org/https://doi.org/10.1017/CBO9780511755743


6978

3. E. Ott, K. Wiesenfeld, Chaos in Dynamical Systems, Phys. Today, 47 (1994).
https://doi.org/10.1063/1.2808369

4. G. Saxena, A. Prasad, R. Ramaswamy, Amplitude death: the emergence of
stationarity in coupled nonlinear systems, Phys. Rep., 521 (2012), 205–228.
https://doi.org/10.1016/j.physrep.2012.09.003

5. P. Kumar, A. Prasad, R. Ghosh, Stable phase-locking of an external-cavity diode laser sub-
jected to external optical injection, J. Phys. B: At. Mol. Opt. Phys., 41 (2008), 135402.
https://doi.org/10.1088/0953-4075/41/13/135402

6. B. Gallego, P. Cessi, Decadal variability of two oceans and an atmosphere, J. Clim., 14 (2001),
2815–2832. https://doi.org/10.1175/1520-0442(2001)014<2815:DVOTOA>2.0.CO;2

7. H. Zhang, D. Xu, C. Lu, E. Qi, J. Hu, Y. Wu, Amplitude death of a multi-module floating airport,
Nonlinear Dyn.,79 (2015), 2385–2394. https://doi.org/10.1007/s11071-014-1819-x

8. T. Banerjee, D. Biswas, Amplitude death and synchronized states in nonlinear time-
delay systems coupled through mean-field diffusion, Chaos, 23 (2013), 043101.
https://doi.org/10.1063/1.4823599

9. D. Ghosh, T. Banerjee, Transitions among the diverse oscillation quenching states induced by
the interplay of direct and indirect coupling, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 90
(2014), 062908. https://doi.org/10.1103/PhysRevE.90.062908

10. G. B. Ermentrout, N. Kopell, Oscillator death in systems of coupled neural oscillators, SIAM J.
Appl. Math., 50 (1990), 125–146. https://doi.org/10.1137/0150009

11. A. Koseska, E. Volkov, J. Kurths, Oscillation quenching mechanisms: amplitude vs. oscillation
death, Phys. Rep., 531 (2013), 173–199. https://doi.org/10.1016/j.physrep.2013.06.001

12. R. Curtu, Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural
network, Physica D, 239 (2010), 504–514. https://doi.org/10.1016/j.physd.2009.12.010

13. A. Koseska, E. Volkov, J. Kurths, Parameter mismatches and oscillation death in coupled oscilla-
tors, Chaos, 20 (2010), 023132. https://doi.org/10.1063/1.3456937

14. N. Suzuki, C. Furusawa, K. Kaneko, Oscillatory protein expression dynamics en-
dows stem cells with robust differentiation potential, PLoS One, 6 (2011), e27232.
https://doi.org/10.1371/journal.pone.0027232

15. D. Biswas, N. Hui, T. Banerjee, Amplitude death in intrinsic time-delayed chaotic oscillators with
direct–indirect coupling: the existence of death islands, Nonlinear Dyn., 88 (2017), 2783–2795.
https://doi.org/10.1007/s11071-017-3411-7

16. A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, John Wiley & Sons, 2008.

17. A. Anees, Z. Ahmed, A technique for designing substitution box based on van der pol oscillator,
Wireless Pers. Commun., 82 (2015), 1497–1503. https://doi.org/10.1007/s11277-015-2295-4
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