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Abstract: We proposed a multi-objective optimization framework for green demand responsive airport 
shuttle scheduling, which simultaneously aims at assigning demand points to selected stops and routing 
airport shuttles to visit these stops in their overlapping time windows to transport all passengers from 
their homes or workplaces to the airport. Our objectives were to minimize total travel time for 
passengers, the punishment expense of violating the time-window as well as carbon emissions for all 
shuttles. Since such issues belongs to the NP-problem, a two-stage Multi-objective ant lion optimizer 
(MOALO)-based algorithm incorporating dynamic programming search method was developed to 
acquire the optimal scheduling schemes. Finally, a case study of airport shuttle service in Tianjin 
Airport, China, was used to demonstrate the validity of the model and algorithm. 
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1. Introduction 

There is a significant rise in the demand for air transportation due to global economic expansion, 
which has resulted in a sizable increase in traffic and passenger flows to the airport [1]. The growing 
demand for air transportation has led to an increasing interest in landside shuttle transit to airports. The 
current airport landside transportation services are primarily conventional shuttle bus and rail traffic 
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fitted in areas with large passenger flow. Nevertheless, this tends to generate large operational expenses 
and low levels of service in areas with low travel demand. With the support of information technology 
and smartphones, various scenarios emerge in the demand-responsive airport shuttle scheduling 
(DRASS), which operates in some low-density areas and offers flexible and personalized shuttle 
services [2]. Such potential advantages are likely to involve decreasing operating expense and carbon 
emissions as well as enhancing service level. 

The DRASS system, where guests make trip requests via the smart phone and the company 
organizes shuttles to provide a shuttle service based on the real-time demand, is a significant part of 
the airport landside shuttle transportation system. Similar to the demand-responsive transit (DRT), 
green DRASS (GDRASS) is now a crucial concern due to raised environmental awareness. Under 
such a circumstance, the route planning of GDRASS decides the economic expense, service level as 
well as carbon emissions. Consequently, GDRASS differs from conventional systems, and studies that 
account for the influence of the environment on airport shuttle (AS) route design are necessary. Travel 
speed of shuttles is considered as a key factor for carbon emissions [3]. There are two primary types 
of studies on minimization of emissions in the DRASS model. The first group of models is on the 
hypothesis of constant AS speed, and the second group of models considers that the AS speed varies 
with time, depending on the road situation. Despite the fact that the first models are not precise, they 
are appropriate in the absence of historical data. Currently, remote vehicle tracking technology is 
utilized to gather extensive historical data under diverse traffic conditions, which is beneficial to 
precisely compute carbon emissions in the second model. Hence, it is meaningful to investigate the 
GDRASS model in a time-dependent environment to minimize pollution and damage to the environment. 

Another significant observation was that traditional DRASS, which assumes that all demand 
points are served by shuttles, provide door-to-door services to passengers. In case of close distances 
between several demand points, the shuttle will cover a huge mileage, resulting in increased travel 
time. Under such circumstances, shuttles serve selected stops instead of demand points and passengers 
at demand points could interchange to selected stops to board the shuttle, which will dramatically 
enhance the level of service and decrease the sum of in-vehicle time for all passengers. Designing 
DRASS routes also requires assigning demand points to stops and selecting the optimal stops as pick-
up sites [4,5]. Consequently, it is necessary to study demand-responsive airport shuttle route design with 
stop selection to weigh the relationship of operating expense, environmental expense and service levels. 

The main contribution of this paper is to investigate a multi-objective optimization model for 
green DRASS with stop location under a time-dependent environment in order to minimize total travel 
time for passengers, carbon emissions and operational expense. Our major aims are concluded as 
below: (i) determination of the optimal design of GDRASS by simultaneously coordinating routing, 
departure time guidance and stop selection to balance service level and environmental conservation; 
(ii) creation of a MOALO-based heuristic approach to gain optimal scheduling schemes in a relatively 
short time. To demonstrate the validity of the GDRASS model and solution algorithm, an example in 
the actual world is presented at last. 

The structure of the rest of this study is shown below: Section 2 provides an overview of relevant 
research regarding green DRASS; Section 3 describes the methodology of green DRASS with stop 
location under a time-dependent environment; Section 4 introduces a MOALO-based heuristic 
algorithm to settle the presented problem. Section 5 proves the applicability of the presented method 
with a practical example; Section 6 concludes the study and plans probable research directions in 
the future.  
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2. Related work 

DRASS refers to assign all passengers in demand points to shuttles departing from various depots 
and plan routes to carry them from shuttle stops to the airport, which can be expressed as a variant of 
the vehicle routing problem (VRP) and the pick-up and delivery problem (PDP). Nevertheless, the 
obvious differences between VRP, PDP and DRASS lead to DRASS solving more problems with 
higher complexity than VRP and PDP. DRASS is more appropriate for areas with low population 
density, particularly those with poor transportation facilities, than fixed-route feeder transit services. 
Obviously, it, possessing a less operational cost and higher level of service, has appealed to many 
scholars from around the world come to study. 

Generally speaking, DRASS need to pick up passengers within predefined time windows, which 
affects the quality of airport shuttle services. Many researchers have studied the airport shuttle 
scheduling with time windows and can be classified into hard time windows [5,6] and soft time 
windows [7–10]. The former requests airport shuttles must provide service to passengers within time 
window constraints, which means that vehicles should arrive at the pick-up locations between the 
earliest time of arrival and the latest time of departure. Sun et al. [5] presented a comprehensive optimal 
model for demand-responsive transportation in collaboration with shared bikes that can transport 
customs from demand points to the intersection of traffic with their service time windows. Xiao et al. [6] 
presented an optimal model for scheduling and route planning of green vehicles with time windows 
that takes carbon emissions into account. Nevertheless, arriving a few minutes late is acceptable if it 
does not affect the passenger’s schedule. In the soft time window model, vehicles are permitted to 
arrive at stops out of the time window by charging a premium according to the time of early or delayed 
arrival. To solve the VRP with general soft time windows, Beheshti et al. [7] developed a new mixed-
column generation-metaheuristic method. Wei et al. [8] presented an optimal model for demand-
responsive airport bus with time-dependent speed. Xia et al. [9] developed a modified tabu searching 
method to settle open VRP with soft time windows. Xu et al. [10] investigated VRP with soft time 
windows based on fuzzy stochastic condition. Evidently, DRT and DRASS with soft time windows 
can enhance operational efficiency and decrease operational expense. 

Currently, a new derivative of DRASS considering the environmental impact has drawn 
widespread attention. In this case, DRASS simultaneously considers the economic and environmental 
expense. In comparison to conventional problems, this will reduce carbon emissions, but add the 
economic expense. Most studies have only concentrated on carbon emissions minimizing vehicle 
routing [11,12]. For example, Zhang et al. [11] developed an environmentally friendly routing issue 
model with expenses of gasoline, carbon emissions and maintaining a vehicle as optimization 
objectives. Li et al. [12] took into account fuel and CO2 emissions and built an emissions-based hybrid 
fixed fleeting vehicle routing model. To decrease the expense of CO2 emission, Wen et al. [13] 
investigated the multiple dispatch centers green vehicle routing issue. Integrated optimization models 
for vehicle routing and carbon emissions are seldom investigated [14]. Carbon emissions are 
determined by a variety of factors, but speed is the most significant one [15]. In previous DRASS 
problems, vehicle speed is usually considered to be constant, with little regard to reflecting real traffic 
conditions. The vehicle velocity is unlikely to remain fixed, and in the actual traffic network is 
continuously varying owing to various road environments at different times of the day [6]. In general, 
hypothetical distributions of fuzzy, grey and stochastic variables are usually acquired by utilizing 
previous datasets [16–18]. Nevertheless, piecewise functions can depict time-dependent speed more 
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accurately in the event of traffic data shortage [19]. As vehicle speed is substituted by the flow of 
traffic, these models are then developed as time-dependent DRASS [20,21]. Additionally, in time-
dependent models, the speed of vehicles can be utilized as an added decision variable, which is 
beneficial in minimizing the total passengers’ waiting time [22,23]. To address the limitation that a 
vehicle departing at a later time may exceed another vehicle that departed earlier, these models are 
built on the basis of the first-in-first-out (FIFO) or queuing theory [24,25]. 

The fundamental hypothesis of classical DRASS is that the pick-up locations are demand points [5]. 
In the case that some demand points are spatially adjacent, their travel time can be long in an actual 
traffic situation. As a matter of fact, a shuttle stop can satisfy the requirements of several neighboring 
demand points, and passengers at each demand point can select a neighboring stop to take the 
shuttle [26,27]. In general, the position of stops performs an essential role in the process of designing 
shuttle routes. Taking the features of the real traffic network into account, the selection of stops is on 
the basis of two principles: (i) reducing the interchange time of passengers between demand points and 
shuttle stops (ii) a high-efficiency shuttle route to service selected stops. Nevertheless, most studies 
have ignored comprehensive optimization of stop location and shuttle routing [2,4,8]. It is apparent 
that the allocation of demand points to selected stops is dictated by the location of the selected stops. 
As a result, coordinating stop location and the shuttle routing process has been generally recognized 
as an essential role in resolving DRASS. 

From a literature review of DRASS, three key issues worth further research: 
1) Most previous researches of DRASS assumed that all demand points were visited by ASs. The 

finding means ignoring the features of the actual traffic network. In real world, passengers at demand 
points are able to interchange to the closest stop to board the shuttle. In the case, integrated stop 
location and shuttle routing can effectively reduce passengers’ total travel time and enhance the service 
level of ASs. 

2) Few literatures have investigated how the time-dependent traffic environment and soft time 
windows affect AS scheduling and route planning, resulting in lacking of a comprehensive scheme that 
trades off carbon emissions and operating expense. 

3) The conventional GRASS solution algorithm cannot directly solve the GDRASS with stop 
location, and a reliable algorithm requires to be developed to address this problem. 

3. Methodology 

3.1. Research framework 

In this study, a GDRASS model is presented for the collaborative optimization of stop location, 
route design and departure time settings, so that all passengers are directed from their demand points 
to the selected stops and passengers at selected stops are conveniently delivered to the airport. 
Ridership and time windows of demand points and the real travel speed/distance matrix between 
demand points, shuttle stops, depots and the airport are the primary inputs of the model. Using a smart 
phone and a public geo-information system (GIS) facility, we are able to acquire the above primary 
input parameters. Each AS that departs from the depot and arrives at the airport, visits the selected sops 
to serve passengers in the boarding time windows. A penalty fee will be charged if an AS is ahead of 
schedule or delayed in arriving at the passenger’s position. Factors that affect the carbon emissions of 
an AS include its speed, load weight as well as mileage [15]. Obviously, the speed of AS on the route 
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is affected by the degree of traffic congestion at different times, and its variation regularity can be 
represented by the sectional function. The primary goal of this research is to allocate all demand points 
to shuttle stops, route each AS departing from a depot, provide the selected stops and arrive at the 
airport, and figure out the times that each AS gets and departs all selected stops. The primary purpose 
of this study was to simultaneously minimize the total travel time of all passengers, the punishment 
expense of violating the time-window as well as carbon emissions. 
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Figure 1. Visual expression of the GDRASS model. 

Figure 1 provides a simple explanation of the GDRASS model. The GDRASS system contains 
one airport (A), five demand points (R1–R5), eight optional stops (O1–O8) and two depots (E1, E2). 
Figure 2 shows the time‐dependent speed on different roads. Time windows are depicted by the 
numbers in brackets around each selected shuttle stop. The number of passengers at each demand point 
is depicted by the number surrounding the circle. The distance between two adjacent selected shuttle 
stops is indicated by the number embedded in the arrow. It takes one minute for all passengers to board 
the shuttle. The results of the optimization consist of three parts. The first part is the stop location, i.e., 
allocating demand points to the selected stops, represented by O1(R1), O2 (R2), O3 (R4, R5) and O4 
(R3). Considering O3 (R4, R5) as an instance, the amount of passengers taking the shuttle at O3 was 
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the sum of those of R4 and R5. The second part is the departure time of shuttles from depots. The third 
part is the routing results. In this example, there are two shuttle routes, represented by (E1 (7:10)–O2 
(7:30, 7:31)–O1 (7:46, 7:47)–A(8 :07)) and (E2 (7:20)–O4 (7:30, 7:31)–O3 (7:55,7:56)–A (8:16)). 
Take the first route as an example for the following explanation: Shuttle 1 leaves depot E1 at 7:10. 
Since the shuttle is traveling at 30 km/h on the road section E1-O2, the shuttle gets to O2 at 7:30 and 
leaves O2 at 7:31 at a speed of 20 km/h after loading 4 passengers. Apparently, the shuttle fails to 
arrive at the stop within the time window and is approximately 5 minutes delayed. Likewise, the shuttle 
gets to O1 at 7:46 and leaves at 7:47 after carrying three passengers. Lastly, it reaches airport A at 8:07 
and unloads 7 passengers. In such a situation, the value of each objective function for all AS routes 
will be simply computed. 

 

Figure 2. Time‐dependent speed on different roads. 

The next assumptions have been investigated in the presented GDRASS model in order to suit 
scenarios in reality well: 

(ⅰ) Only one shuttle stop could be assigned to each demand point, and each stop can only be served 
once by an airport shuttle. 

(ⅱ) The unit expense of carbon emissions, and the unit time punishment expense of shuttles 
visiting the selected stop early or late can be evaluated. 

(ⅲ) The real interchange or travel distance/time matrix linking demand points, shuttle stops, 
depots and the airport along with time-dependent speed on the route can be acquired by using a public 
GIS facility. 

3.2. Model formulation 

3.2.1. Notation 

To simplify the expression of the model, all definitions and notations utilized in the following are 
depicted in Table 1. 
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Table 1. Definitions and notations in the GDRASS model. 

Indices:  

𝑟 Demand point index 

𝑗, 𝑒 Shuttle node (depot, shuttle stop, and airport) index 

s Airport shuttle index 

Sets:  

R Set of demand points 

S Set of ASs 

O Set of optional stops 

E Set of depots 

A Set of airports 

Parameters:  

𝑝  Ridership at demand point r ;∀𝑟 ∈ 𝑅 

Q Upper bound of the AS capacity 

𝐷  Upper bound of the AS mileage 

𝑇  Minimum travel time of shuttle route 

𝐷  The total mileage of the AS s serving shuttle stops; ∀𝑠 ∈ 𝑆 

𝑇  The total travel time of the AS s serving shuttle stops; ∀𝑠 ∈ 𝑆 

𝐺 Maximum interchange distance 

𝑑  
Distance on the basis of the map from the airport, shuttle stops, and depots to 
demand points 𝑟 and 𝑗,∀𝑟, 𝑗 ∈ 𝑅 ∪ 𝑂 ∪ 𝐸 ∪ 𝐴 

𝑣 Average interchange speed 

𝑣 (𝑡 ) 
The piecewise function of travel speed from the shuttle node 𝑗 to 𝑒, associated 
with the time of the AS s serving selected stop 𝑗; ∀s ∈ S ∀𝑗, 𝑒 ∈ 𝐴 ∪ 𝐸 ∪ 𝑂 

𝜔  The weight of the AS s;∀𝑠 ∈ 𝑆 

𝜃 The mean weight of per passenger 
𝑇  Time of arriving shuttle stop 𝑗; ∀𝑗 ∈ 𝑂 
[𝑎 , 𝑙 ] Time window of arriving the selected shuttle stop 𝑗; ∀𝑗 ∈ 𝑂 

𝑐  Punishment expense for early arrival 

𝑐  Punishment expense for late arrival 
𝑐  Unit carbon emission expense 
𝑓  Carbon emission coefficient 

H  A large constant  

Decision variables:  

𝑧  Whether the optional stop 𝑗 is selected as an AS stop;∀𝑗 ∈ 𝑂 

ℎ  Whether the demand point 𝑟 is allocated to an AS stop 𝑗;∀𝑟 ∈ 𝑅, ∀𝑗 ∈ 𝑂 

𝑥  
Whether the AS 𝑠  visits the stop 𝑗  before visiting the stop 𝑒 ; ∀𝑠 ∈ 𝑆, ∀𝑗, 𝑒 ∈

𝐸 ∪ 𝐴 ∪ 𝑂 

𝑦   Whether the AS stop 𝑗 is served by the AS s;∀𝑗 ∈ 𝑂, ∀𝑠 ∈ 𝑆 

𝑡   The time of the AS s serving the AS stop 𝑗;∀𝑗 ∈ 𝐸 ∪ 𝐴 ∪ 𝑂, ∀𝑠 ∈ 𝑆 

𝑝  Ridership at the AS stop 𝑗 allocated to AS s;∀𝑗 ∈ 𝑂, ∀𝑠 ∈ 𝑆 

𝑈  
An auxiliary (real) variable for subroutes removal constraint in route of AS s;∀𝑗 ∈

𝐸 ∪ 𝐴 ∪ 𝑂, ∀𝑠 ∈ 𝑆 
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3.2.2. Formulation 

𝑚𝑖𝑛 𝑓 = ∑ ∑ ℎ ⋅ ∙ 𝑝∀ ∈∀ ∈ + ∑ ∑ 𝑦 ⋅ ∑ ℎ ⋅ 𝑝 ∙ (𝑇 − 𝑡 )∀ ∈∀ ∈∀ ∈   (1) 

𝑚𝑖𝑛 𝑓 = 𝑐 ∙ 𝑓 ∙ ∑ ∑ 𝑥 ∙ 𝐹(𝜔 + 𝑝 , 𝑣 𝑡 , 𝑑 )∀ ∈∀ , ∈ ∪ ∪   (2) 

𝑚𝑖𝑛 𝑓 = ∑ ∑ 𝑦 ∙ 𝑝 ∙ [𝑐 ∙ max 𝑎 − 𝑡 , 0 + 𝑐 ∙ max 𝑡 − 𝑙 , 0 ]∀ ∈∀ ∈   (3) 

ℎ ≤ 𝑧 , ∀𝑟 ∈ 𝑅, ∀𝑗 ∈ 𝑂  (4) 

∑ ℎ = 1, ∀𝑟 ∈ 𝑅∀ ∈   (5) 

 ℎ ∙ 𝑑 ≤ 𝐺, ∀𝑟 ∈ 𝑅, ∀𝑗 ∈ 𝑂  (6) 

𝑦 ≤ 𝑧 , ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝑂  (7) 

∑ 𝑦 ≥ 1,∀ ∈ ∀𝑠 ∈ 𝑆  (8) 

∑ 𝑥 = 1,∀ ∈ ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐴  (9) 

∑ 𝑥 = 0,∀ ∈ ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐴  (10) 

∑ 𝑥 = 0,∀ ∈ ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸  (11) 

∑ 𝑥 = 1, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 ∀ ∈   (12) 

∑ 𝑥 = ∑ 𝑥 = 𝑦 , ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝑂 ∀ ∈ ∪ ∪∀ ∈ ∪ ∪   (13) 

𝑈 − 𝑈 |𝑂 ∪ 𝐸 ∪ 𝐴| ∙ 𝑥 ≥ |𝑂 ∪ 𝐸 ∪ 𝐴| − 1 ∀𝑠 ∈ 𝑆, ∀𝑗, 𝑒 ∈ 𝑂 ∪ 𝐸 ∪ 𝐴  (14) 

𝑡 + 𝑇 +
( )

+ 1 − 𝑥 𝐻 ≤ 𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑗, 𝑒 ∈ 𝑂 ∪ 𝐸 ∪ 𝐴  (15) 

𝑡 + 𝑇 +
( )

− 1 − 𝑥 𝐻 ≥ 𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑗, 𝑒 ∈ 𝑂 ∪ 𝐸 ∪ 𝐴  (16) 

𝑝 + ∑ ℎ ∙ 𝑝 + (1 − 𝑥 )𝐻 ≤ 𝑝∀ ∈ , ∀𝑠 ∈ 𝑆, ∀𝑗, 𝑒 ∈ 𝑂 ∪ 𝐸 ∪ 𝐴  (17) 

𝑝 + ∑ ℎ ∙ 𝑝 − (1 − 𝑥 )𝐻 ≥ 𝑝∀ ∈ , ∀𝑠 ∈ 𝑆, ∀𝑗, 𝑒 ∈ 𝑂 ∪ 𝐸 ∪ 𝐴  (18) 
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𝐷 = ∑ 𝑥∀ , ∈ ∪ ∪ 𝑑 ≤ 𝐷 , ∀𝑠 ∈ 𝑆  (19) 

𝑇 = ∑ 𝑥∀ , ∈ ∪ ∪ 𝑡 ≥ 𝑇    ∀𝑠 ∈ 𝑆  (20) 

where 𝐹(𝜔 + 𝑝 , 𝑣 𝑡 , 𝑑 ) is a carbon emissions function varying with speed of the airport 

shuttle from stop 𝑗 to stop 𝑒 when accounting for changes in traffic conditions. The speed 𝑣 𝑡  

is a piecewise function. 

𝑣 𝑡  and its value is determined by 𝑡 . 𝜔 + 𝑝  represents the sum of shuttle weight and 

passengers weight departing from the stop 𝑗. Utilizing the equation presented by Demir et al. [15,19,28], 

this can be expressed as follows: 

𝐹(𝜔 + 𝑝 , 𝑣 𝑡 , 𝑑 ) = 0.0308𝑑 + 0.8175 + 0.2725 𝜔 + 𝑝 ∙ 𝜃 + 0.0035𝑣 𝑡   (21) 

Objective (1) is to ensure that the total travel time of passengers is minimized. Objective (2) is to 
minimize the expense of carbon emissions. Objective (3) is to minimize the punishment expense of 
violating the time-window. Equations (4) and (5) ensure that passengers at each demand point can only 
interchange to one selected stop. Equation (6) is the interchange distance constraint, i.e., the 
interchange distance does not surpass 𝐺. Equation (7) guarantees that each selected stop is served by 
shuttles. Equation (8) ensures that the minimum number of serviced stops along each shuttle route is 1. 
Equations (9)–(12) ensure that each shuttle starts at the depot and finally ends at the airport. Equation (13) 
represents that every selected stop can only be served by one shuttle. Equation (14) is utilized to 
eliminate the constraint of the sub-tour. Equations (15) and (16) determine the time when the airport 
shuttle b serves the present stop. Equations (17) and (18) compute the number of passengers carried 
by each shuttle when it arrives at each stop. Equations (19) and (20) indicate that the drive mileage 
and travel time for each shuttle must be within the specified range. 

4. Solution method 

The GDRASS is classified as a mixed-integer non-linear problem and it has been considered as 
NP-hard. Exact algorithms tend to have poor performance in terms of computational efficiency. 
Heuristics are frequently utilized by scholars to handle NP-hard problems [2,8,26]. Thus, a two-stage 
MOALO-based heuristic algorithm is presented in this section to solve the proposed model. Figure 3 
exhibits the solution structure of the algorithm [29]. In the first stage, MOALO is utilized to allocate 
demand points to different airport shuttles and determine departure time of each AS. In the second 
stage, the greedy and dynamic programming algorithms are incorporated in MOALO to assign demand 
points to shuttle stops and decide the sequence of each AS visiting selected shuttle stops.  
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Figure 3. Flow diagram of the MOALO‐based two‐stage algorithm. 
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4.1. Coding scheme 

We use the position of the ant 𝑃 = (𝑝 , 𝑝 , ⋯ , 𝑝| |, 𝑝| | , ⋯ , 𝑝| | | |) , which consists of two 
sections, to denote the problem solution. The first section of the position of the ant 𝑋 represents the 
scheme of different ASs service demand points. Therefore, each 𝑝  (1 ≤ 𝑟 ≤ |𝑅|) represents that AS 
𝑥  serves demand point 𝑟. Each element of the second section of the position of the ant 𝑝| |  (1 ≤

𝑠 ≤ |𝑆|) indicates the departure time of the AS b. As an example, a solution consisting of two airport 
shuttles and six demand points is represented as 𝑃 = {2,2,1, 1, 2, 1; 6: 30, 6: 35}, in which the airport 
shuttle 𝑆  departs from the depot at 6:30 and serves demand points 3, 4 and 6; while 𝑆  departs from 
the depot at 6:35 and serves demand points 1, 2 and 5. 

4.2. The solving process of the MOALO‐based two‐stage algorithm 

In MOALO of the first stage, the origin location of the ant and antlion is generated randomly. In 
each iteration, an objective function is utilized to estimate the fitness of each ant and antlion. In the 
evaluation step, demand points are assigned to ASs, and the departure time of per shuttle is calculated. 
Following the preceding steps, the dynamic programming algorithm and greedy algorithm of the 
second stage are employed to allocate demand points to selected stops and decide the order of the 
selected stops for the shuttle service [26]. Thereafter, we are able to acquire the complete scheduling 
scenario and derive the fitness value of the objective function. During the iterative process, each ant 
will choose a random antlion using roulette wheel and the elite from the archive, which will be utilized 
collectively to renew the location of the ant. Then the radius of ants’ random walk around the antlions 
will be renewed. In addition, each iteration requires minimum-maximum normality and a boundary 
checking. After above steps, the position of ants can be renewed by using the elitism mechanism. If 
each ant has finished these operations, evaluate the fitness of all ants. At last, renew the archive and 
examine the status. The optimal solution can be acquired after the end condition of the algorithm is 
satisfied [30]. 

In addition, the presented algorithm adopts punishment function to address optimization problems 
with constraints. The fitness value of an individual who violates the constraint will be replaced by a 
large constant [31]. 

𝐹 = 𝑓 + 𝐻 ∙ ∑ max {ℎ ∙ 𝑑 − 𝐺, 0}∀ ,   (22) 

𝐹 = 𝑓 + 𝐻 ∙ ∑ max ∑ 𝑥 𝑑 − 𝐷∀ , ∪ ∪ , 0 + max 𝑇 − ∑ 𝑥 ∙
( )

, 0∀ , ∪ ∪∀   (23) 

𝐹 = 𝑓 + 𝐻 ∙ ∑ max ∑ 𝑦 𝑝∀ − 𝑄, 0∀ ∈   (24) 

5. Case study 

5.1. Case description  

In the case analysis, an illustrative case of designing GDRASS for Tianjin City in China is used 
to prove the feasibility of the proposed methodology. The GDRASS system in this case consists one 
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airport (A), five depots (E1–E5), 30 demand points (R1–R30) and 45 optional stops (O1–O45). Table 2 
displays the quantity of passengers and their time windows at each demand point. The critical input 
data utilized in the case analysis are listed below: 
1) Number of shuttles: 5. 
2) Maximum capacity of each shuttle: Q = 12 per. 
3) Maximum interchange distance: G = 5 km. 
4) Weight of each shuttle: 𝜔  = 23,000 kg. 
5) Mean weight per passenger: 𝜃 = 60kg. 
6) Punishment expense of early arrival: 𝑐  = 1 CNY/min. 
7) Punishment expense of late arrival: 𝑐  = 3 CNY/min. 
8) Unit carbon emission expense: 𝑐  = 80 CNY/ton. 
9) Carbon emission coefficient: 𝑓 =0.785 kg/liter. 

Table 2. Ridership and time windows of demand points. 

No. 𝑝  [𝑎 , 𝑙 ] No. 𝑝  [𝑎 , 𝑙 ] 

R1 2 [6:30–6:50] R16 2 [7:05–7:10] 
R2 1 [6:30–6:50] R17 1 [7:00–7:25] 
R3 2 [6:30–6:50] R18 3 [6:35–6:55] 
R4 1 [7:00–7:05] R19 2 [6:35–6:55] 
R5 1 [7:00–7:05] R20 2 [6:35–6:55] 
R6 2 [6:55–7:05] R21 2 [6:35–6:55] 
R7 1 [6:55–7:10] R22 1 [6:55–7:15] 
R8 2 [6:35–6:55] R23 3 [7:05–7:20] 
R9 2 [6:457:10] R24 2 [6:55–7:15] 
R10 2 [7:00–7:25] R25 2 [6:35–6:50] 
R11 2 [6:50–7:10] R26 2 [6:35–6:50] 
R12 1 [7:00–7:25] R27 1 [6:35–6:50] 
R13 2 [6:30–6:45] R28 2 [6:45–6:55] 
R14 2 [6:35–6:55] R29 2 [6:35–6:55] 
R15 2 [6:45–7:05] R30 2 [6:55–7:10] 

5.2. Results 

Using the proposed model, we can acquire 10 Pareto optimal solutions in three dimensions, which 
contain route design, stop location and departure time setting. The maximum value of the total travel 
time is 1364 minutes and the minimum value is 1316.1 minutes, that of carbon emission expense are 1.6 
and 1.3 CNY, and that of time window expense are 210 and 190.1 CNY, separately. The pairwise 
relationship between the three objectives is shown in Figure 4. Total travel time and carbon emission 
expense are positively relevant. The primary reasons are that the total in-vehicle time and the total 
expense of carbon emissions are both determined by route mileage and travel speed of AS. With the 
decrease of the total in-vehicle time, the total interchange time increases. However, the sum of the total 
in-vehicle time and the total interchange time decreases, thus the total travel time decreases. Time 
window expense decreases with the increase of carbon emission expense and total in-vehicle time. The 
primary reason is that the reduced total punishment expense of violating time windows of passengers 
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results in ASs requiring more mileages to respond to all selected stops, thereby increasing the total 
expense of carbon emission and total travel time.  

 

Figure 4. Pairwise relationship between the three objectives. 

 

Figure 5. Graphical map of the optimal scheme. 

Tables 3 and 4 illustrate the routing and scheduling results for the optimal scheme (1316.1, 1.3, 210). 
Table 3 provides the assigning results for all demand points to selected stops served by shuttles, 
including the interchange distance and early/delayed arrival time of the AS at each selected stop. 
Normal, late and early arrivals are indicated by zero, positive and negative figures in the fifth column 
of the table, respectively. Table 4 details the arriving and leaving time for five ASs serving their 
selected stops, total travel time of all passengers as well as carbon emissions of each AS. Considering 
the AS of 𝑆  as an instance, the AS departs the depot E1 at 6:27 and gets to the shuttle stop O2 at 6:35. 
Due to the passengers’ time window is [6:30–6:50], the AS reaches the shuttle stop normally. It leaves 
selected stop O2 at 6:36 after picking up 2 passengers in one minute. Then, the AS arrives at the shuttle 
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stop O4 at 6:41 and leaves the shuttle stop at 6:42. The arrival and departure time of O7 is (6:59, 7:00). 
Due to the passengers at demand points R4, R5 and R6 need to interchange to the stop O4 to board the 
shuttle, thus the expense of violating time windows of O7 is the sum of that of R4, R5 and R6 (i.e., 
1 × 1 + 1 × 1 + 0 = 2 CNY). Finally, this AS reaches the airport A at 7:14 to drop off 9 passengers. 
As stated previously, the total travel time of passengers for O2, O4 and O7 are computed as 55.3 
minutes, 90.2 minutes and 71.6 minutes. The mileage of the AS is 19.8 km, and the CO2 emissions are 
2.6 kg. The expense of carbon emissions is 0.2 CNY, and the punishment expense of time window 
violations is 2 CNY. 

Table 3. Results of allocation for all demand points to selected stops served by shuttles. 

Demand point Shuttle stop Allocated AS Interchange distance(km) Early/late time(min) 
R1 O2 

𝑆  

3.3 0 
R2 

O4 
2.4 0 

R3 1.9 0 
R4 

O7 
2.8 -1 

R5 1.3 -1 
R6 1.9 0 
R7 O12 

𝑆  

3.8 0 
R8 

O14 
4.2 0 

R9 2.5 0 
R10 

O15 
1.6 0 

R12 1.3 0 
R11 O17 1.4 7 
R13 

O26 

𝑆  

4.8 0 
R14 3.6 0 
R18 2.8 0 
R15 

O25 
2.2 3 

R16 2.9 -2 
R17 O22 1.5 -4 
R19 

O35 

𝑆  

2.0 0 
R21 1.7 0 
R20 O28 2.6 0 
R22 O33 2.6 0 
R23 O34 2.0 0 
R24 O32 2.4 10 
R25 

O39 

𝑆  

2.3 0 
R27 1.6 0 
R26 

O40 
1.9 2 

R28 2.5 0 
R29 

O43 
2.2 11 

R30 2.6 0 
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Table 4. Routing and scheduling plans. 

AS Sequence of stops served by shuttles 
Total travel 

time (min) 

Carbon 

emissions (kg) 
Mileage (km) 

Number of 

passengers 

𝑆  
E1(6:27)-O2(6:35-6:36)-O4(6:41-

6:42)-O7(6:59-7:00)-A(7:14) 
231.9 2.6 19.8 9 

𝑆  

E2(6:29)-O14(6:45-6:46)-

O12(6:56-6:57)-O15(7:07-7:08)-

O17(7:17-7:18)-A(7:28) 

265.9 3.3 24 10 

𝑆  

E3(6:31)-O26(6:41-6:42)-

O22(6:56-6:57)-O25(7:08-7:09)-

A(7:26) 

340.6 3.9 26.4 12 

𝑆  

E4(6:33)-O28(6:41-6:42)-

O35(6:51-6:52)-O33(7:00-7:01)-

O34(7:17-7:18)-O32(7:25-7:26)-

A(7:39) 

318 3.9 30 12 

𝑆  

E5(6:34)-O39(6:44-6:45)-

O40(6:52-6:53)-O43(7:06-7:07)-

A(7:18) 

159.7 2.9 19.9 11 

Figure 5 provides a graphical map of shuttle routes and passenger guidance. The airport is 
indicated by a red star. All depots are indicated by black squares. All shuttle stops are indicated by blue 
triangles. All demand points are indicated by black dots. The deep blue solid line represents the shuttle 
route of 𝑆 , the green solid line represents the route of 𝑆 , the solid pink line represents the shuttle 
route of 𝑆  , the solid black line represents the shuttle route of 𝑆  , and the light blue solid line 
represents the route of 𝑆 . The red dotted lines between the selected blue triangles and black points 
are utilized to show the interchange paths of passengers.  

 

Figure 6. Comparative results of the two models. 
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In addition, our proposed model is different from the traditional DRASS due to considering the 
stop location and time-dependent speed. Figure 6 illustrates the difference between the traditional 
model and our proposed model. In the proposed model, passengers need to interchange to the selected 
stop from the demand point, thus increasing the total interchange time. However, the amount of 
selected stops served by each shuttle reduced, leading to reduced total route mileage and the total in-
vehicle time for passengers. Since the reduction in total in-vehicle time is greater than the growth in 
total interchange time, the total travel time of the proposed model is shorter than that of the 
conventional one. The presented model reduced carbon emissions by 2.4% in comparison to the 
conventional model. On the one hand, this is due to the reduction in the total route mileages of the 
proposed model. On the other hand, elastic departure time for each shuttle in a time-dependent road 
environment can prevent increased carbon emissions due to road congestion. 

5.3. Sensitive analysis 

Table 5 illustrates the performance comparison of the model for various amounts of airport 
shuttles. As the amount of airport shuttles increases, so do the unnecessary mileages and times, thus 
raising the total mileage of the route as the starting position of the route is the depot and the ending 
position is the airport. Nonetheless, with the increase in the amount of airport shuttles, each AS serves 
fewer stops, which reduces the total in-vehicle time for passengers. Equally, the reduction in the 
amount of stops served by such airport shuttles may result in shuttles getting to stops more quickly, 
thereby adding the total early and late arrival times. Owing to the appropriate demand points and stops 
distribution setting, the total interchange time stays the same for both models. The total travel time 
reduced as the sum of total in-vehicle time and the total interchange time became smaller. Carbon 
emissions increased due to the increasing total route mileages. 

Table 5. Comparative results of various amount of airport shuttles. 

Scenario 
Total travel 

time (min) 

Total 

interchange 

time (min) 

Total in-vehicle 

time (min) 

Carbon 

emissions (kg) 

Time window 

expense (CNY) 

Mileage 

(km) 

5 shuttles 1316.1 179.8 1136.3 16.6 210 120.1 

6 shuttles 1297 179.8 1117.2 17.1 221 134.8 

7 shuttles 1283.5 179.8 1103.7 17.5 229 147.2 

Table 6. Comparative results of various weight factor 𝑐 /𝑐 . 

Scenario Mileage (km) Carbon emissions (kg) Early arrival time (min) Late arrival time (min) 

1:1 121.4 17.0 8 79 

2:1 120.1 16.6 11 73 

3:1 120.1 16.6 12 71 

4:1 117.2 16.3 18 56 

Table 6 analyzes how the weight factor 𝑐 /𝑐  affect the results of the model. With the gradual 
increase in weight coefficient, there will be more early arrivals and fewer delayed arrivals. In addition, 
total mileage and carbon emissions stay unchanged before reaching the boundary value. Once the 
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boundary value is reached, the GDRASS scheme would result in less carbon emissions due to the 
reduction of mileage. The primary reason is that the increase in the weight factor 𝑐 /𝑐  leads to more 
early arrival time and less delayed arrival time, resulting in a decrease in the route mileage. 

5.4. Algorithm validations 

To validate the effectiveness of the proposed algorithm, the solutions of the proposed algorithm 
are compared with other four algorithms: multi-objective artificial bee colony (MOABC) [32], multi-
objective multiverse optimization algorithm (MOMVO) [33], multi-objective particle swarm 
optimization (MOPSO) [34] and nondominated sorting genetic algorithm II (NSGA-II) [26]. 
Hypervolume (HV) is a well-used indicator for evaluating the performance of algorithms [35]. The 
higher the HV value of each algorithm is, the better its convergence and diversity. In this study, HV 
values and computation time are utilized to compare the solution quality and computation speed of 
each algorithm at different problem scales. Table 7 illustrates the comparison results, from which we 
can see: As more demand points are served, the HV value of each algorithm tends to decrease, and the 
computation time of each algorithm is longer. However, the HV value of the proposed algorithm is the 
highest compared with the other four algorithms at different problem scales. The computation time of 
the proposed algorithm is shorter than that of the other four algorithms at all problem scales. In 
conclusion, the proposed algorithm performs better in terms of computing speed and quality of solutions. 

Table 7. Comparison in computation quality and efficiency of different algorithms. 

Scale of the problem Algorithms HV Computation time (s) Increased time (%) 

30 

Proposed 
algorithm 

10.1 132.2 — 

MOABC 9.7 134.4 1.7 
MOMVO 9.1 138.9 5.1 
MOPSO 9.6 136.8 3.5 
NSGA-Ⅱ 9.5 137.3 3.9 

60 

Proposed 
algorithm 

10.0 149.3 — 

MOABC 9.4 155.3 4.0 
MOMVO 9.0 158.4 6.1 
MOPSO 9.5 153.9 3.1 
NSGA-Ⅱ 9.4 156.9 5.1 

120 

Proposed 
algorithm 

9.9 162.8 — 

MOABC 9.3 170.3 4.6 
MOMVO 8.9 173.3 6.4 
MOPSO 9.4 169.9 4.4 
NSGA-Ⅱ 9.3 171.6 5.4 

6. Conclusions 

We proposed a multi-objective optimization model for green demand responsive airport shuttle 
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scheduling with stop location to balance the service level, economic expense and environmental 
expense. The proposed model could simultaneously assign demand points to selected stops and routing 
shuttles to visit these stops in time windows to transport all passengers from their home or work places 
to the airport. Depending on the features of the optimal model, we provided a two-stage MOALO-
based algorithm combining the dynamic programming algorithm and greedy algorithm to obtain the 
Pareto-optimal solutions. The MOALO algorithm was utilized to assign demand points to ASs and 
decide when the AS leave the depot in stage Ӏ. By inserting dynamic programming algorithm and 
greedy algorithm in MOALO, demand points are assigned to selected stops and the order of selected 
stops serviced by each AS is calculated in stage Ⅱ. The practicability and applicability of the presented 
model and algorithm were demonstrated by an actual case. Results revealed that the proposed model 
had a notable decrease of 3.4% in total passenger travel time and 2.4% in carbon emissions in 
comparison to the traditional one. The findings demonstrated that the presented model could optimize 
stop selection and green demand responsive airport shuttle scheduling. Further, sensitivity analysis 
was conducted to explore how the number of shuttle routes and the weight factor 𝑐 /𝑐  impacted the 
performance of the model. 

It is noticeable that the shuttle in the GDRASS model is a gasoline vehicle, rather than an electric 
vehicle (EV). The EV has virtually zero carbon emissions, but it can be charged at any usable stop in 
non-operating times. Under such a circumstance, integrated GDRASS route planning and charging 
stop location requires accounting for the relationship of the building and maintenance costs of charging 
stops and the operating fees of EVs. Therefore, the integration of charging stop location and EV route 
design in the GDRASS model is a worthwhile direction for further studying. 
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