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Abstract: Accurately predicting lane-changing behaviors (lane keeping, left lane change and right 
lane change) in real-time is essential for ensuring traffic safety, particularly in mixed-traffic 
environments with both autonomous and manual vehicles. This paper proposes a fused model that 
predicts vehicle lane-changing behaviors based on the road traffic environment and vehicle motion 
parameters. The model combines the ensemble learning XGBoost algorithm with the deep learning Bi-
GRU neural network. The XGBoost algorithm first checks whether the present environment is safe for 
the lane change and then evaluates the likelihood that the target vehicle will make a lane change. 
Subsequently, the Bi-GRU neural network is used to accurately forecast the lane-changing behaviors 
of nearby vehicles using the feasibility of lane-changing and the vehicle’s motion status as input 
features. The highD trajectory dataset was utilized for training and testing the model. The model 
achieved an accuracy of 98.82%, accurately predicting lane changes with an accuracy exceeding 87% 
within a 2-second timeframe. By comparing with other methods and conducting experimental 
validation, we have demonstrated the superiority of the proposed model, thus, the research 
achievement is of utmost significance for the practical application of autonomous driving technology. 
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1. Introduction  

With the increasing urbanization and continuous improvement of road transportation systems, 
automobiles have become a vital mode of transportation for the general public, providing convenience 
and freedom for commuting. However, these advancements also pose significant challenges to traffic 
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safety. Studies have indicated that driver errors in operation or judgment are among the leading causes 
of traffic accidents, with lane-changing and merging accidents accounting for 18% [1]. Various passive 
safety systems have saved millions of lives, but they are not designed to prevent accidents; instead, 
they aim to protect passengers in the event of an accident [2,3]. Autonomous driving technology has 
emerged as a prominent research focus in academia and industry to reduce and prevent traffic accidents 
and ensure efficient and safe vehicle operation. 

The rapid advancements in deep learning technology and continuous improvement in computer 
performance are fueling the progress of autonomous driving vehicles. Consequently, the road 
environment is gradually evolving into a mixed traffic environment, with the coexistence of manual 
and autonomous vehicles [4]. To ensure the safe operation of autonomous vehicles on the road and 
minimize the negative impact of erratic lane-changing behavior of vehicles on traffic safety, 
autonomous driving algorithms need to accurately and timely predict the lane-changing behaviors of 
surrounding manually driven vehicles [5,6]. 

Due to the different feature selections, existing models can be loosely categorized into two groups. 
The first category involves models that utilize driver behavior and control parameters, including data 
such as driver eye and head rotation parameters captured by onboard cameras, and driver control 
parameters like steering wheel angle and brake pedal position obtained from onboard sensors [7]. For 
example, Xing et al. put out a vision-based intention inference system, which records multi-modal 
information using multiple inexpensive cameras and the VBOX vehicle data gathering system. A 
unique ensemble bi-directional recurrent neural network (RNN) model incorporating Long Short-Term 
Memory (LSTM) units is developed to cope with the time-series driving sequence and the temporal 
behavioral patterns. They deduced an intention 0.5 seconds before the maneuver began with an average 
accuracy of 96.1% using their approach [8]. On the other hand, Schmidt et al. analyzed 3111 lane changes 
performed by 51 drivers in a simulated highway scenario. Their findings indicated that the steering 
wheel angle was the most predictive indicator and the primary sign of lane change preparation [9]. 

Different methods and models were designed and proposed in the studies above to validate the 
correlation between driver behavior, driver control parameters, and the lane-changing process. 
However, data such as the driver’s face, steering wheel angle, and brake pedal position contain 
sensitive information about the driver of a self-propelled vehicle and are limited to simulation 
experiments, making them unsuitable for real-world road environments. Additionally, the data 
collected from onboard sensors is only adequate for predicting the behavior of the ego vehicle and not 
suitable for predicting the actions of surrounding vehicles [10]. In response to this problem, this study 
introduces an ensemble deep learning-based lane-changing behavior prediction method that validates 
the proposed algorithm using vehicle natural trajectory data from the highD dataset. The model 
integrates vehicle motion parameters and surrounding traffic environment features to achieve accurate 
and timely prediction of driver behavior. The main work of this article is as follows: 

(Ⅰ) The highD dataset is analyzed and processed to extract the necessary feature parameters for 
the model, considering the relevant characteristics of lane changing. Effective processing and feature 
extraction from the input data help reduce noise and redundant information, leading to improved 
learning capability of subsequent models. 

(Ⅱ) We propose a model for predicting lane change behavior based on lane change feasibility 
judgment, which involves two steps. In the first stage, the Extreme Gradient Boosting (XGBoost) 
algorithm is used to judge whether the target vehicle can change lanes safely by feeding the model data 
about the target vehicle’s surroundings. The second step involves using a neural network to predict the 
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target vehicle's behavior of changing lanes. The neural network utilizes the target vehicle’s motion 
state information and the result obtained from the first step as inputs. 

(Ⅲ) Our proposed method is compared and evaluated with other models using the same dataset. 
It seems that the results indicate that our model achieves earlier prediction of lane change behavior. 

The structure of this paper is as follows: Section 2 presents the research progress in the field of 
vehicle lane change behavior prediction. Section 3 introduces the structure of the proposed model. 
Section 4 provides an overview of the dataset used in this study and presents the experimental results. 
Finally, Section 5 summarizes the conclusions of this research and suggests future research directions. 

2. Related work 

As research on vehicle lane change behavior advances, researchers have become increasingly 
aware of the significant impact of lane change behavior on road safety and traffic congestion. 
Consequently, it is crucial to study accurate and efficient prediction methods for the lane change 
behavior of neighboring vehicles to enhance the driving safety of autonomous vehicles. 

The field of vehicle lane change behavior prediction has witnessed extensive studies dedicated to 
exploring effective methods and models. These studies have contributed crucially to driver behavior 
research and the enhancement of autonomous vehicle safety. Broadly, these studies can be categorized 
into three groups: generative models, discriminative models, and the increasingly popular neural 
network models. 

2.1. Generative models 

Generative models are probabilistic models that predict lane change behavior by modeling driver 
behavior and generating data samples that adhere to the distribution of driving behavior. Rhder et al. 
presented a lane change intent prediction method based on a hybrid Bayesian network, which was 
trained and tested using data collected on German highways, demonstrating good performance [11]. 
Li et al. presented a lane change behavior prediction method that integrates Hidden Markov Model 
(HMM) and Bayesian Filter (BF) technologies. The algorithm considers the driving style of the driver 
in various scenarios to estimate their lane change intentions [12]. Zhang et al. proposed an intent-based 
adaptive cruise control method based on contextual traffic information. The continuous HMMs 
integrated with the Gaussian Mixture Models (GMMs) are used to model the behavior of lane change 
and lane keeping, respectively. The method achieves a recognition accuracy of over 85% for the target 
vehicle's behavior [13]. Xia et al. proposed a lane change intention prediction model based on HMM. 
The model replicates the human visual system’s selective attention mechanism, simulating how human 
drivers prioritize surrounding vehicles and accurately perceive their lane change intentions [14].  

2.2. Discriminative models 

Whereas generative models focus on describing the lane change process, discriminative methods 
optimize their model parameters specifically for the classification problem. Consequently, it has the 
advantages of simplicity and directness [15]. Zhang et al. proposed a three-step XGBoost-based feature 
learning algorithm for feature selection for lane change prediction [16]. Li et al. utilized the NGSIM 
natural dataset and chose features including vehicle speed, vehicle acceleration, headway distance, 
headway time distance, and vehicle lateral and longitudinal positions as input variables. The author 



6219 

Electronic Research Archive  Volume 31, Issue 10, 6216-6235. 

has demonstrated through experiments that the gradient boosting decision tree(GBDT) model performs 
better than random forest (RF) in predicting vehicle lane change [17]. Kim et al. introduced an open-
set recognition concept that utilizes the support vector machine (SVM) classification algorithm to 
cautiously detect the lane change intentions of surrounding vehicles. The objective is to enhance the 
performance of adaptive cruise control (ACC) and prevent potential accidents [18]. Hu et al. 
investigated the rear-end collision avoidance behavior of drivers in merging scenarios on three-lane 
highways and developed a decision tree-based model for predicting maneuvers. The research collected 
data from 24 participants, conducted 1326 valid trials in a driving simulator, and obtained the 
participants’ personality traits using the revised Eysenck Personality Questionnaire designed for 
Chinese individuals. The model attained a prediction accuracy of 79.2% on the training dataset and 80.3% 
on the testing dataset [19]. Feng et al. introduced an SVM model for recognizing lane change behavior 
using Gridsearch-PSO optimization. In the Matlab environment, the SVM model, optimized through 
parameter optimization using Gridsearch-PSO, exhibited substantial enhancement in recognition 
accuracy compared to the SVM model with default parameters [20]. Das et al. employed the SHRP2 
database, selected vehicle kinematics, machine vision, driver, and road geometry features, trained 
various machine learning algorithms, and performed validation, testing, and comparative analysis. The 
findings demonstrated that the XGBoost model achieved superior overall prediction accuracy and F1 
score compared to other models [21]. 

2.3. Neural network models 

Given the recent achievements of deep learning in domains like image classification and speech 
recognition, numerous researchers have adopted this approach for behavior recognition and 
prediction [22]. Wei et al. introduced a hybrid prediction model based on RNN and Fully Connected 
Neural Networks (FC), which was validated through experiments conducted in real traffic scenarios [23]. 
Guo et al. presented an attention-based Bidirectional Long Short-Term Memory network (AT-BiLSTM) 
for modeling lane-changing intentions in connected environments. The analysis results demonstrated 
the model’s favorable recognition accuracy [24]. To overcome the challenge of data imbalance that 
hinders neural network models in predicting lane change behavior, Shi et al. introduced a layered over-
sampling bagging method. This method generates a wider range of informative instances from the 
minority class, which are then used to train the LSTM model [25]. Xue et al. constructed an integrated 
lane change prediction model incorporating traffic context using machine learning algorithms. The 
model considers the impact of traffic conditions and vehicle types on lane-changing maneuvers and 
was validated on the NGSIM dataset, showcasing its ability to accurately predict the entire lane-
changing process [26]. Wu et al. introduced an Attention-Enhanced Residual Multi-layer Bi-directional 
LSTM model for recognizing drivers’ lane-changing intentions. This model utilizes trajectory features 
and vehicle interaction information and was validated using the highD dataset [27]. Zyner et al. 
presented a vehicle lane-changing intention prediction method that utilizes RNN and validated its 
effectiveness on a roundabout [28]. Chandra et al. introduced TraPHic, a model that combines a CNN-
LSTM hybrid network for predicting the trajectories of traffic participants [29]. Li et al. presented an 
attention-based LSTM model for predicting highway lane-changing behavior. The model considers the 
surrounding vehicle information and the historical trajectory data of the target vehicle [30]. Dang et al. 
redefined the lane-changing prediction problem as lane-changing time prediction, approaching the task 
as a regression problem to estimate the time it takes for a vehicle to complete a lane change. They 
employed LSTM to forecast the duration from the current moment until the vehicle crosses the lane 



6220 

Electronic Research Archive  Volume 31, Issue 10, 6216-6235. 

boundary [31]. Li et al. took into account the dynamic interaction among surrounding vehicles by 
incorporating the sequential motion information of these vehicles as inputs. They integrated the target 
vehicle’s state with this information to judge the congestion level across different lanes. Employing 
RNN, they predicted the lane-changing behavior of highway drivers and designed an intention-aware 
motion planning controller. The feasibility of the proposed intention inference model was empirically 
demonstrated [32]. 

Regarding the above study, although the generative model-based methods have achieved good 
prediction accuracy, most of the existing HMM-based lane-changing behavior prediction methods 
assume that the state of a vehicle at any moment depends only on the state of the previous moment and 
is independent of the state of other moments, which cannot fully exploit the feature information of the 
traffic context, and has limitations in the prediction of lane-changing behavior. Existing XGBoost-
based models and neural network-based models outperform other methods, but related studies rarely 
consider the relationship between the surrounding environment and vehicle lane changing. Therefore, 
this study introduces a lane-changing behavior prediction model that considers the influence of the 
surrounding environment: the information of the surrounding environment is input into the XGBoost 
model to determine the lane-changing feasibility of the target vehicle; a Bi-GRU network is 
constructed to combine the information of the target vehicle and the lane-changing feasibility to predict 
the vehicle’s lane-changing behavior. 

3. Method 

To accurately predict the lane-changing behavior of manually driven vehicles in the presence of 
autonomous vehicles, this paper introduces an ensemble deep learning-based lane-changing behavior 
prediction method. This model incorporates the analysis of the driving environment and motion state 
of manually driven vehicles. The model comprises three modules: a data processing module, a lane-
changing feasibility judgment module, and a lane-changing behavior prediction module. The 
cooperative functioning of these three modules enables precise prediction of the lane-changing 
behavior of neighboring manually driven vehicles and offers decision-making and control guidance 
for autonomous vehicles. The provided Figure 1 depicts the comprehensive structure of the proposed 
lane-changing behavior prediction fusion model in this paper. 

3.1. Data processing 

Figure 2 illustrates a schematic diagram of vehicles driving in high-speed scenarios. The vehicle 
being predicted, referred to as the target vehicle (TV), is depicted in the diagram. The surrounding 
vehicles of the target vehicle are denoted as SVs = {PV, LPV, LAV, LFV, RPV, RAV, RFV}. PV refers 
to the vehicle positioned in front, LPV denotes the vehicle on the left front, LAV represents the vehicle 
on the left side, LFV stands for the vehicle on the left rear, RPV indicates the vehicle on the right front, 
RAV symbolizes the vehicle on the right side, and RFV corresponds to the vehicle on the right rear.  
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Figure 1. The framework of the lane-changing behavior prediction fusion model. 

 

Figure 2. Illustration of driving scene. 

Prior research suggests that drivers commonly evaluate the viability of a lane change by 
considering the relative distance and velocity about surrounding vehicles [33,34]. This study initially 
extracts vehicle trajectory data from the highD dataset. After that, the data processing procedure 
extracts the relevant information about the target vehicle and its surrounding environment, as specified 
in Table 1. The target vehicle information includes vehicle location information, speed, acceleration, 
and vehicle type. The surrounding environment information includes road environment information 
and surrounding vehicle information. The surrounding environment information is used as input by 
the lane change feasibility judgment model to assess whether it is feasible for the target vehicle to 
change lane. The target vehicle's motion state information is then used as input to the lane-changing 
behavior prediction model, and when combined with the results of the lane-changing feasibility 
judgment model, the neural network is used to anticipate the vehicle’s lane-changing behaviors. 
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Table 1. Lane change scenario parameter definitions. 

Parameters Definition 

Target vehicle 
information 

𝑥 Lateral coordinate of the target vehicle 
𝑦 Longitudinal coordinate of the target vehicle 
𝑣 Lateral velocity of the target vehicle 
𝑎 Lateral acceleration of the target vehicle 
𝑇௬௣௘ Type of the target vehicle, 1 for car and -1 for truck 

Road environment 
information 

𝑅௟ 
Left lane indicator, 1 when there is a left lane next to the target 
vehicle, otherwise 0 

𝑅௥ 
Right lane indicator, 1 when there is a right lane next to the 
target vehicle, otherwise 0 

Surrounding vehicle 
information 

𝐷௣/𝑉௣ Difference in distance/velocity between the target vehicle and 
the preceding vehicle in the current lane 

𝐷௣௟/𝑉௣௟ 
Difference in distance/velocity between the target vehicle and 
the leading vehicle in the left lane 

𝐷௣௥/𝑉௣௥ Difference in distance/velocity between the target vehicle and 
the preceding vehicle in the right lane 

𝐷௔௟/𝑉௔௟ 
Difference in distance/velocity between the target vehicle and 
the adjacent vehicle in the left lane 

𝐷௔௥/𝑉௔௥ 
Difference in distance/velocity between the target vehicle and 
the adjacent vehicle in the right lane 

𝐷௙௟/𝑉௙௟ 
Difference in distance/velocity between the target vehicle and 
the following vehicle in the left lane 

𝐷௙௥/𝑉௙௥ Difference in distance/velocity between the target vehicle and 
the following vehicle in the right lane 

3.2. Lane change feasibility judgment model based on XGBoost 

Drivers often judge the plausibility of a lane change in real-world lane change scenarios by 
monitoring the relative distance and speed of other vehicles. The driver will initiate a lane change only 
when they determine that the conditions are favorable while choosing to remain in the original lane if 
the conditions are not met. This module’s goal is to judge whether a lane change for the target vehicle 
is feasible by figuring out whether it has enough time and space to carry out the maneuver. In this 
paper, the surrounding vehicle information and road environment information are selected as input 
values to determine whether the lane change conditions are satisfied. 

Evaluating the feasibility of lane change conditions for vehicles is fundamentally a multi-
classification task. Several weak classifiers are combined in ensemble learning to create a strong 
classifier that builds on the advantages of each weak classifier and performs relatively well. Furthermore, 
the combination of multiple models can mitigate the influence of outliers and data noise [35]. Thus, 
this study adopts the XGBoost algorithm to evaluate the feasibility of lane changes for vehicles.  

XGBoost is an ensemble algorithm that utilizes boosting and is based on Cart decision trees. It 
has gained significant popularity as a machine learning model due to its excellent interpretability and 
efficient parallel processing mechanism [36]. XGBoost is constructed by combining multiple decision 
trees into an additive model. Therefore, the representation of XGBoost is as follows: 

 
1

ˆ ( )
K

i k i
k

y f x


   (1) 

where 𝑥௜ represents the feature value of the i-th sample, 𝑓௞ሺ𝑥௜ሻ represents the output result of the k-th 
decision tree, 𝑦ො௜ represents the prediction result of the i-th sample. 
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In the iterative process, using the forward stepwise algorithm, the prediction result at step t is 
obtained by combining the result of the newly constructed decision tree with the prediction result from 
step (t-1): 

 ( ) ( 1)ˆ ˆ ( )t t
i i t iy y f x    (2) 

The objective of the XGBoost algorithm is to minimize the objective function during training, 
which is defined as follows: 

 ( ) ( 1)
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where the training loss function, 𝑙ሺ𝑦௜, 𝑦ො௜
ሺ௧ିଵሻ ൅ 𝑓௧ሺ𝑥௜ሻሻ, quantifies the difference between the training 

data’s true values and the anticipated values. Given that the judgment of lane change feasibility 
encompasses multi-class classification, the logarithmic loss function is employed. Ωሺ𝑓௧ሻ represents the 
regularization term, which sums up the complexities of all decision trees to control overfitting. 

The regularization term for decision tree complexity is specifically represented as: 

 2

1

1
( )

2

T

t j
j

f T w 


     (4) 

where 𝛾  and 𝜆  are constants, 𝑇  represents the number of leaf nodes in the decision tree, and 𝑤 
represents the leaf weights. As a result, the decision tree’s overall leaf node count as well as its leaf 
weights define the complexity of the loss function. 

3.3. Lane change behavior prediction based on Bi-GRU 

The goal of this work is to construct a Bi-directional Gated Recurrent Unit (Bi-GRU) model for 
forecasting the lane change behavior of the target vehicle by integrating the projected findings from 
the lane change feasibility judgment model and the target vehicle’s motion state information. This 
module can accurately forecast the target car’s lane change behavior, including left lane change, 
staying in the current lane, or right lane change, by learning the driver's behavioral patterns and vehicle 
motion patterns, Figure 3 displays the structure of the model. The target vehicle’s motion status 
information and the XGBoost prediction results are included in the first layer, which is the input layer 
of time series features. The second layer comprises the Bi-GRU layer. Unlike traditional GRU 
networks that propagate information solely in one direction, capturing only the preceding context and 
lacking access to future trajectory information, this study employs a bi-directional GRU network. This 
approach enables comprehensive utilization of traffic context information and enhances data utilization. 
The third layer consists of the fully connected layer, followed by the fourth layer comprising the 
softmax layer. The softmax function is applied to process the output, generating the lane change 
behavior probability matrix. 
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Figure 3. Lane change behavior prediction structure. 

GRU is a specialized type of RNN. Similar to LSTM, GRU is designed to overcome the 
challenges associated with vanishing and exploding gradients during the training of sequential data. 
Unlike LSTM, GRU exhibits a simpler structure (as depicted in Figure 4), offering improved training 
efficiency while maintaining performance, thereby making it well-suited for real-time driving behavior 
prediction tasks. 

 

Figure 4. Structure of GRU unit. 

The input of the GRU unit consists of the current time step’s feature 𝑥௧ and the previous time 
step’s hidden state ℎ௧ିଵ; ℎ௧ᇱ  represents the candidate state at the current time step; ℎ௧ represents the 
hidden state at the current time step; 𝑟௧ and 𝑧௧ denote the reset gate and update gate, respectively.  

In traditional unidirectional GRU, the state is propagated solely from past to future, capturing 
information solely from the previous context and lacking access to the future context. Conversely, Bi-
GRU comprises two GRUs with opposing directions: the lower GRU propagates in chronological order, 
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while the upper GRU propagates in reverse order. Hence, during the propagation process, both the 
previous and subsequent contexts are taken into account. Figure 5 illustrates the structure of Bi-GRU. 

 

Figure 5. Structure of Bi-GRU. 

From Figure 5, as can be observed, the present forward hidden state ℎ௧
௙ and backward hidden 

state ℎ௧
௕ are used to determine the hidden state 𝑦௧ of the Bi-GRU at time t. The forward hidden state 

ℎ௧
௙ at time t is determined by the current input 𝑥௧ and the previous forward hidden state ℎ௧ିଵ

௙ , while 

the backward hidden state ℎ௧
௕ at time t is determined by the current input 𝑥௧ and the next backward 

hidden state ℎ௧ାଵ
௕ . The specific mathematical expressions are as follows: 

 1( , )f f
t t th GRU x h   (5) 

 1( , )b b
t t th GRU x h   (6) 

 ( )f b
t t

f b
t t t th hh f W h W h b    (7) 

where 𝑏௧ is the bias of the hidden state at time t and 𝑊
௛೟
೑ and 𝑊௛೟

್ are the weights of the forward and 

backward hidden states at time t, respectively. 

4. Results and analysis 

4.1. Data preparation 

The Institute of Automotive Engineering at RWTH Aachen University in Germany provided the 
highD open dataset, which was used as the source for the car trajectory data used for this work [37]. 
The dataset comprises post-processed trajectories of 110,000 vehicles captured by drones on six 
distinct highways in the Cologne, Germany area between 2017 and 2018, encompassing a collection 
range of 420 meters. The original dataset has a sampling frequency of 25 Hz; however, in practical 
driving scenarios, such a high level of precision in vehicle information is not always required. To 
minimize computational costs and ensure safety, the experimental data is sampled at a frequency of 5 
Hz. Figure 6 illustrates the shooting locations and scenes depicted in the dataset. 
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Figure 6. The shooting locations and scenes of the highD dataset. 

 

Figure 7. Illustration of the extraction of the target vehicle’s lane-changing time series. 

This study primarily concentrates on vehicles’ voluntary lane-changing behavior on the road and 
does not take into account forced lane changes. Hence, during the data extraction process, only vehicles 
that have engaged in one lane-changing behavior are taken into consideration. Based on the research 
of Xue et al., this paper specifies the lane change moment as the instant at which a vehicle’s lane 
number changes the lane change moment in the data processing stage, and the vehicle’s position at 
that time is utilized as a representation of the lane change point [26]. Lane change duration is defined 
as the time required for continuous lateral moving during the lane change process, nearly 95% of the 
vehicles had a duration of less than 5 seconds before the lane change point [38]. Therefore, this study 
employs the 5 s time series to exclude various noises and irregular behavior. Commencing from the 
lane-changing point, the time series data for the target vehicle’s preceding 5 seconds before the lane-
changing moment is extracted. The motion data of nearby vehicles within a 5-second time window is 
then retrieved using the ID of the target vehicle. Figure 7 shows how to retrieve the target vehicle’s 
lane-changing time series. 

4.2. Model training and result analysis 

4.2.1. Evaluation metrics 

When evaluating the performance of lane-change prediction algorithms for vehicles, accuracy, 
precision, recall, and F1 score are widely regarded as the key metrics [30]. Specifically, accuracy (ACC) 
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denotes the ratio of correctly predicted samples to the total number of samples and can be defined 
as follows: 

 
TP TN

ACC
TP TN FN FP




  
 (8) 

where TP represents the count of samples with true positive labels and positive predicted results, 
whereas FP represents the count of samples with true negative labels but positive predicted results. 
Similarly, TN represents the count of samples with true negative labels and negative predicted results, 
and FN represents the count of samples with true positive labels but negative predicted results. 

Precision (P) is defined as the ratio of correctly identified positive samples to the total number of 
samples predicted as positive. It can be defined as follows: 

 
TP

P
TP FP




 (9) 

Recall (R) represents the proportion of correctly predicted class samples to the total number of 
true samples in that class. It can be defined as follows: 

 
TP

R
TP FN




 (10) 

The F1 score, introduced as a comprehensive evaluation metric, balances the impact of precision 
and recall by calculating their harmonic mean. It provides a more holistic assessment of the model's 
performance. The F1 score is defined as follows: 

 1 2
P R

F
P R


 


 (11) 

4.2.2. Performance analysis of the lane-changing feasibility judgment module 

The data processing stage resulted in the extraction of trajectory data from 1933 vehicles, which 
included lane-keeping trajectory data for 640 vehicles, left lane-changing trajectory data for 632 
vehicles, and right lane-changing trajectory data for 661 vehicles. Among them, 1520 vehicles’ 
trajectory data were chosen as training samples, constituting a training sample size of 38,000. For 
experimental validation, a test data sample size of 10,325 was utilized. The lane-changing feasibility 
judgment model is defined as: 

 { , , , , }ype l r vy v T R R S  (12) 

where y represents the possibilities of three driving behaviors, corresponding to lane-keeping (LK), 
left lane change (LCL), and right lane change (LCR), denoted as 𝑦௅௄, 𝑦௅஼௅ and 𝑦௅஼ோ, respectively. 𝑆௩ 
represents the relative position and velocity between the target vehicle and the surrounding vehicles, 
𝑆௩={𝐷௣, 𝑉௣, 𝐷௣௟, 𝑉௣௟, 𝐷௣௥, 𝑉௣௥, 𝐷௔௟, 𝑉௔௟, 𝐷௔௥, 𝑉௔௥, 𝐷௙௟, 𝑉௙௟, 𝐷௙௥, 𝑉௙௥}. The relative speed and distance 
between the TV and the surrounding vehicle are defined as 0 and 150, respectively, in situations when 
the surrounding vehicle may not be present [39]. 

The predictive performance of the lane change feasibility judgment model relies on its 
hyperparameters, which play a crucial role in model construction. Different hyperparameters can 
produce varying results even with the same model, and adjusting them can enhance the model’s 
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prediction accuracy. In this study, a random search algorithm is employed to fine-tune the model’s 
hyperparameters. Random search is a randomized method that explores hyperparameter combinations 
through random sampling, offering a balance between computational efficiency and the ability to find 
optimal configurations. To evaluate the model’s performance, 5-fold cross-validation is conducted, 
involving dataset partitioning into multiple subsets for training and validation. This approach provides 
a comprehensive understanding of the impact of different parameter combinations. The 
hyperparameters to be optimized are detailed in Table 2. 

Table 2. The hyperparameters that need to be optimized for XGBoost. 

Hyperparameters Explanation of hyperparameters Optimization scope 
Optimal 
hyperparameter 

n_estimators The number of decision trees. [50,300] 300 
learning_rate Learning rate. [0.01,0.3] 0.05 
max_depth Maximum depth of each tree. [3,12] 6 
min_child_weight The minimum leaf weight for each tree. [0,20] 20 

subsample 
The proportion of data used for training each 
tree in relation to the entire training set. 

[0.6,0.9] 0.9 

colsample_bytree 
The proportion of features used when 
training each tree in relation to the total 
number of features. 

[0.5,0.9] 0.6 

reg_alpha 
L1 regularization weight term to prevent 
overfitting of the model. 

[0,1] 1 

reg_lambda 
L2 regularization weight term to prevent 
overfitting of the model. 

[0,1] 0.4 

In order to validate the predictive performance of the lane-change feasibility judgment model, we 
applied the optimal hyperparameters obtained through random search to the XGBoost model. 
Subsequently, the model’s accuracy, precision, recall, and F1 score were calculated using the evaluation 
metrics discussed in the previous section. Table 3 displays the outcomes of the evaluation metrics. 

Table 3. Model performance evaluation. 

Category P (%) R (%) F1 (%) ACC (%) 
LK 87.72 70.07 77.91 

83.20 LCL 79.94 89.25 84.34 
LCR 82.89 90.08 86.33 

The model performance evaluation results presented in Table 3 demonstrate that the optimized 
XGBoost model achieved an overall accuracy of 83.20%. The model shows a precision of 
approximately 80% in predicting left lane changes, whereas the precision for maintaining straight and 
predicting right lane changes both surpass 80%. According to these results, the target vehicle’s lane 
change conditions are accurately identified by the lane change feasibility judgment model. 
Additionally, the recall rates for detecting left and right lane change behaviors approach 90%, which 
is higher than the recall for maintaining straight behavior. This discrepancy may be attributed to cases 
where the conditions for lane change are met but the driver opts to continue driving straight. As a result, 
the model exhibits strong recall in capturing actual lane change behaviors. 

In order to further validate the performance of the lane change feasibility judgment model, this 
study chooses to establish separate lane change feasibility judgment models using the Random Forest 



6229 

Electronic Research Archive  Volume 31, Issue 10, 6216-6235. 

(RF) and AdaBoost algorithms. These algorithms are optimized using the random search algorithm. 
The comparison results of the model performances are presented in Figure 8, while more detailed 
performance metric data can be found in Table 4. 

 

Figure 8. Comparison of the three models’ performance. 

Table 4. Model performance evaluation. 

Algorithms Class name P (%) R (%) F1 (%) ACC (%) Time (s) 

XGBoost 
LK 87.72 70.07 77.91 

83.20 0.047 LCL 79.94 89.25 84.34 
LCR 82.89 90.08 86.33 

RF 
LK 86.07 67.62 75.74 

82.45 0.183 LCL 78.99 89.97 84.12 
LCR 83.01 89.69 86.22 

AdaBoost 
LK 78.25 56.73 65.78 

76.25 0.078 LCL 76.42 85.74 80.81 
LCR 75.00 86.10 80.17 

Upon observing the results in Figure 8, it is evident that the XGBoost model surpasses RF and 
AdaBoost in terms of average precision, average recall, average F1 score, and accuracy. This 
demonstrates the XGBoost model’s effectiveness in judging lane-changing conditions and providing 
precise information for the lane-change prediction module. In real-world driving scenarios, real-time 
judgments on vehicle behavior are essential, necessitating a model with prompt recognition. Table 4 
further supports the conclusion that the XGBoost model, utilizing ensemble learning, not only achieves 
superior prediction accuracy for various lane-changing behaviors but also exhibits higher operational 
efficiency. This implies that the XGBoost model excels not only in performance but also in meeting 
the requirements of real-time processing. 

4.2.3. Performance analysis of the lane-change prediction module 

In this investigation, driving trajectory data from 2352 automobiles were gathered, including 851 
right lane changes, 722 left lane changes, and 779 lane-keeping samples. The training set consisted 

P R F1 ACC
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of 80% of the extracted samples, while the remaining 20% constituted the test set. The feature set, 
denoted as 𝑋 ൌ ሼ𝑥, 𝑦, 𝑎, 𝑣, 𝑦௅௄, 𝑦௅஼௅, 𝑦௅஼ோሽ , represents the lateral and longitudinal position, 
acceleration, velocity, lateral velocity, lane-keeping feasibility, left lane-change feasibility, and right 
lane-change feasibility of the target vehicle. The time series data containing the feature set is input into 
the Bi-GRU neural network model and then processed by the softmax function to obtain the lane-
changing behavior probability matrix: 

 1 2 3{ , , }P p p p  (13) 

where 𝑝ଵ , 𝑝ଶ , and 𝑝ଷ  represent the probability of lane-keeping, left lane-changing, and right lane-
changing, respectively. 

The recognition algorithm utilized in this study is developed using Python 3.9.7 and the 
PyTorch 1.12.1 framework. The network architecture comprises a three-layer Bi-GRU structure with 
a learning rate of 0.001 and a batch size of 64. Gradient descent optimization is performed using the 
Adam algorithm, and the categorical cross-entropy loss function is employed. 

Table 5. Results of the approach for predicting lane change behavior in vehicles. 

Predicted time Evaluation index 
Algorithms 

GRU (A) GRU (B) XGBoost-GRU 

0.5 s 

ACC (%) 94.66% 88.23% 94.66% 
P (%) 94.92% 90.32% 94.69% 
R (%) 94.59% 88.88% 94.79% 
F1 (%) 94.48% 88.33% 94.72% 

1 s 

ACC (%) 89.56% 73.54% 90.53% 
P (%) 89.79% 83.35% 90.99% 
R (%) 89.58% 75.14% 90.94% 
F1 (%) 89.23% 71.60% 90.67% 

1.5 s 

ACC (%) 72.82% 65.90% 88.83% 
P (%) 77.26% 80.68% 89.58% 
R (%) 73.85% 67.82% 89.31% 
F1 (%) 72.38% 61.14% 88.95% 

The primary objective of predicting the lane change behavior of neighboring vehicles is to 
accurately anticipate and forecast their lane change actions. As an integral part of the decision-making 
process in autonomous driving, the lane change prediction system plays a crucial role in making timely 
decisions and allowing sufficient time for their execution. Accurate and proactive lane change behavior 
prediction of adjacent vehicles is crucial to ensuring driving safety for autonomous vehicles. Accuracy, 
Precision, Recall, and F1-score are used in this study to assess the model’s performance. To 
demonstrate the significant impact of the lane change feasibility judgment model’s prediction results 
on the output, two additional lane change prediction models, GRU(A) and GRU(B), are introduced for 
comparative analysis. GRU(A) only makes use of the target vehicle’s trajectory information as features, 
represented by 𝑋ଵ ൌ ሼ𝑥, 𝑦, 𝑎, 𝑣ሽ. On the other hand, GRU(B) employs all the feature data from Table 1 
without undergoing XGBoost processing. The experimental outcomes are presented in Table 5 and 
Figure 9. 
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(a) (b) 

(c) (d) 

Figure 9. Recognition results at different prediction times. 

From Table 5 and Figure 9, it is evident that when the vehicle approaches the lane change point, 
the prediction accuracy of model GRU(A), which utilizes only the target vehicle’s trajectory data as 
input features, is comparable to the suggested model. All evaluation metrics exceed 89% at a prediction 
time of 1 second. However, as the prediction time extends, the accuracy of model GRU(A) declines 
rapidly. This decline can be attributed to the limited input feature data, which fails to provide sufficient 
information to the model. As the prediction time increases, the presence of data noise rises, leading to 
a reduction in model accuracy. On the other hand, excessive input characteristics that introduce 
significant noise and have an impact on the model’s prediction outcomes are the cause of the model 
GRU(B)’s poor prediction accuracy. The XGBoost-GRU model that is suggested in the present work 
uses XGBoost to judge the target vehicle’s surrounding environment data at first. Subsequently, the 
output of XGBoost is utilized as input features for Bi-GRU, effectively leveraging the valuable 
information contained in the data. The proposed model achieves accurate identification of the target 
vehicle’s lane change behavior with high precision. It can detect lane changes as early as 2 seconds 
before they occur, with all evaluation metrics surpassing 86%. Furthermore, the model achieves a 
prediction accuracy of over 90% when predicting lane changes 1 second in advance. Consequently, 
the proposed model offers precise prediction results for autonomous vehicles, contributing to their 
safe driving. 

5. Conclusions 

This article aims to improve the driving safety of autonomous vehicles in areas with complex 
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highway traffic. It introduces a vehicle lane change prediction method that incorporates lane change 
feasibility judgment, comprising a lane change feasibility judgment module and a lane change behavior 
prediction module. The proposed prediction method undergoes training and testing using the highD 
dataset. The lane change feasibility judgment model can be used using the target vehicle’s 
environmental data as input to determine if it is feasible to change lanes. The experimental results 
demonstrate that the XGBoost-based model can accurately evaluate the vehicle’s lane change 
environment, achieving an overall accuracy exceeding 83% in predicting lane change behavior. The 
target vehicle’s lane change behavior can be precisely predicted by the lane change behavior prediction 
module based on GRU by taking into account the prediction findings of the lane change feasibility 
judgment module and the target vehicle’s motion status information. The model outperforms the 
performance of the model that ignores the prediction findings, exhibiting an accuracy in lane change 
behavior prediction that is greater than 87%, specifically 2 seconds before the lane change. The 
proposed method offers valuable information regarding vehicle lane change for autonomous vehicles, 
thereby ensuring enhanced driving safety. 

Given that the dataset utilized in this study was gathered from highways, where the impact of 
surrounding environments on vehicle movement is relatively less pronounced in contrast to urban 
roads, the model’s applicability is constrained. Subsequent research will concentrate on enhancing the 
model's suitability for the intricate road conditions found in urban environments. In addition, in future 
research, we will conduct an in-depth study of the risk of lane changing to understand in detail how it 
affects lane-changing behavior to improve the prediction accuracy of our model. 
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