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Abstract: High-speed trains (HSTs) positioning is a critical technology that affects the safety and 
operational efficiency of trains. The unique operating environment of HSTs, coupled with the 
limitations of real data collection, poses challenges in obtaining large-scale and diverse positioning 
data. To tackle this problem, we introduce a comprehensive method for generating virtual position data 
for HSTs. Utilizing virtual simulation technology and expert expertise, this method constructs a HST 
operating simulation environment on the Unity 3D platform, effectively simulating a range of 
operating scenarios and complex scenes. Positioning data is collected using virtual sensors, while error 
characteristics are incorporated to emulate real data collection behavior. The contribution of this paper 
lies in providing abundant, reliable, controllable and diverse positioning data for HSTs, thereby 
offering novel insights and data support for the evaluation and optimization of positioning algorithms. 
This method is not only applicable to various routes and scenarios, but also delivers fresh perspectives 
on data generation for research in other domains, boasting a broad scope of application. 

Keywords:  intelligent transportation; high-speed railway; virtual train positioning data; big data; 
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1. Introduction  

High-speed railways play a vital role in modern urbanization and transportation network 
construction [1,2]. They not only transform people’s travel modes and enhance transportation 
efficiency but also drive economic development and urbanization, making them an essential 
transportation tool in contemporary society [3,4]. 

The positioning technology of HSTs is a complex and critical task. Accurate train positioning data 
is of great significance for the safe operation of trains, vehicle condition monitoring, and transportation 
management [5]. However, traditional train positioning methods face many challenges in practical 
applications due to the unique operating environment of HSTs, such as high operating speeds, complex 
terrain and topography and variable weather conditions. Therefore, the development of efficient, 
accurate and practical train positioning methods becomes an important problem that needs to be solved 
in the field of railway transportation. 

In train positioning research, the collection and use of large-scale and high-quality positioning 
datasets are crucial [6]. These datasets not only provide a foundation for the development and 
validation of train positioning algorithms but also serve as valuable reference materials for related 
research in the field of railway transportation [7,8]. However, due to the unique operating environment 
of HSTs and the complexity of data collection, there are limitations in terms of long acquisition cycles, 
high costs and single data types of train positioning datasets. Furthermore, real datasets may be limited 
by factors such as privacy and security, making it difficult for researchers to fully utilize these data for 
in-depth research and analysis. 

Existing research mainly uses measurements or simulations to obtain operational data of 
HSTs [9–12]. The first method involves collecting data using hardware devices in actual engineering. 
Common high-speed train positioning methods include global satellite navigation systems, inertial 
navigation systems, and technologies related to ground equipment and communication signals. 
Michael [13] provided a dataset for various rail vehicle positioning experiments. The data were 
collected using the German Aerospace Center (DLR) research vehicle RailDriVE on a segment of the 
Braunschweig harbor railway. However, the experiment only involved repeated back and forth travel 
on a 1.2 km section at a maximum speed of 25 km/h, resulting in a relatively limited dataset. Winter [14] 
provided a dataset used for rail vehicle positioning experiments. It contains measurements of a 6-DOF 
IMU and two GNSS receivers. The sensors were mounted on a regular rail vehicle during a trip 
about 120 km from Chemnitz to Schwarzenberg and back. However, long acquisition cycles and high 
costs are noteworthy limitations of train positioning datasets. Another method is to construct a 
simulation model of the train to generate virtual train operation data. Cao et al. [15] generated 
simulated train operation data by combining classical train control models, discrete throttle settings, 
empty sections and segmented tunnel resistance, studying the optimization of HSTs running 
trajectories. Maksym et al. [16] collected a large amount of virtual data by simulating the running 
strategies of vehicles on different types of tracks and evaluated the performance of train operation. 
Yang et al. [17] introduced a distributed coupling simulation platform for the maglev transportation 
system and the vehicle-track-girder coupling model, taking into account the complex vehicle structure, 
the guideway structure, and the Proportional Integral Differential (PID) levitation control system. Yu 
et al. [18] studied the distributed data-driven event-triggered model-free adaptive iterative learning 
control of multiple HSTs under iteration-varying topologies, which breaks away from the dependence 
on train dynamics. Based on the above research, the use of computer technology to establish accurate 
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models and algorithms can simulate the operation of trains under different conditions, including 
different speeds, different loads and different route conditions. This helps to evaluate the performance, 
stability and safety of train operation, save time and costs and reduce the risks of actual testing. In 
addition, virtual data effectively avoids the problems of data missing and abnormalities in the actual 
data acquisition process, improving the efficiency of the data preprocessing process. 

To compensate for the limitations of real datasets and promote the development of train 
positioning technology, virtual train data generation methods have become increasingly important. 
Through virtual data generation techniques, researchers can simulate the operation of HSTs under 
different conditions and generate a large number of virtual positioning data with different 
characteristics. These virtual data not only meet the needs of large-scale datasets but also cover a 
variety of operating scenarios, providing a wide range of test bases for the design and optimization of 
train positioning algorithms. 

Therefore, we propose a method for generating large-scale virtual train positioning data for 
general-purpose HSTs. This method utilizes virtual simulation technology to simulate train operations 
in different scenarios of high-speed railways and generate virtual large-scale train operation data. Next, 
performance evaluation indicators are defined, and high-quality virtual data are selected from a large 
amount of virtual operation data. Finally, virtual sensors are used to collect train operation data at a 
certain sampling interval, efficiently obtaining a large, rich and specific dataset of HSTs positioning. 
Specifically, this paper contributes in the following ways: 

(i) Construction of a highly customizable virtual train operation environment for high-speed 
railways by combining scene fusion technology with geographical information data. Train operating 
parameters are set based on expert experience, and a highly realistic virtual simulation system for HSTs 
is built using the Unity 3D engine. 

(ii) Generation of highly continuous and extensively covered virtual train operation curves using 
the proposed model. Multiple evaluation indicators are defined for the operation curves, allowing the 
selection of high-performance curves from the abundant pool of virtual data. 

(iii) Development of virtual sensors and their error characteristic models to simulate the collection 
of positioning data during virtual train operations. Two sets of HSTs positioning datasets, one impacted 
by positioning noise and the other under ideal conditions, are generated as adversarial samples to 
evaluate the accuracy and robustness of HSTs positioning algorithms.  

2. Design of train operation and positioning simulation model  

Constructing a dynamic model of HSTs is an integral aspect of designing a simulation to replicate 
the virtual operational behavior of trains. Furthermore, simulating the error characteristics of the 
sensors is crucial to ensure a close correspondence between the obtained positioning data of HSTs and 
the actual situation. 

2.1. Dynamics model of HSTs 

The HSTs operation model is a complex problem of nonlinear mechanics. During the train 
operation process, considering the relatively small number of vehicles in the train formation and the 
train length compared to the running distance, the train set can be treated as a single point mass model 
for analysis. The existing train dynamics models are typically described by the following system of 
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equations [19–21]. 

⎩
⎪
⎨

⎪
⎧

𝑀𝑎 𝜀 𝐹 𝑡, 𝑣, 𝑎 𝜀 𝐵 𝑡, 𝑣, 𝑎 𝑀 𝑓 𝑣 𝑓 𝑠
𝑎 𝑑𝑣 𝑑𝑡⁄
𝑣 𝑑𝑠 𝑑𝑡⁄
𝑓 𝑣 𝛼𝑣 𝛽𝑣 𝛾
𝑓 𝑠 𝑔 𝑠𝑖𝑛 𝜉 𝑠

       (1) 

where 𝑠, 𝑣, 𝑎, 𝑡 represent the train’s position, velocity, acceleration/deceleration and current time; 𝑀 

represents the total mass of the train; 𝐹, 𝐵 represent the traction force and braking force of the train, 
both of which are related to 𝑡, 𝑣, 𝑎[22]; 𝜀 , 𝜀   represent the relative traction and braking coefficients; 
𝑓 𝑣   represents the Davis equation describing the air and friction resistance between the train’s 
velocity 𝑣, where 𝛼, 𝛽, 𝛾are Davis coefficients[23]; 𝑓 𝑠   represents the resistance generated by the 
track gradient and 𝜉 𝑠   is the gradient at the position 𝑠. 

2.2. Simulation of sensor error characteristics  

The role of train sensors is to monitor and detect the operational status and environmental 
parameters of trains to ensure safe, efficient and punctual railway transport, as shown in Figure 1. We 
utilize speed sensors, acceleration sensors, and transponders to form a virtual multi-sensor module for 
collecting HSTs positioning data. Table 1 provides a technical analysis of the proposed sensors. 

    

Figure 1. Schematic of sensors proposed. 

1) Simulation of system errors 
During the measurement process of train sensors, various errors may occur, which can affect the 

accuracy and reliability of the train positioning data. Common train sensor errors include measurement 
noise, nonlinearity, cross-interference and environmental influence. The measurement deviation 
caused by external environmental factors on the sensors is often approximated as zero-mean Gaussian 
white noise [24]. In this study, the train operation data is simulated with zero-mean Gaussian noise to 
represent the sensor system noise error, as shown in Eq (2). 

 𝑋 ~𝑁 𝜇, 𝜎                              (2) 
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where 𝑋 𝑎 , 𝑣 , 𝑠   represents the vehicle state information at each sampling point, including 
acceleration, speed and distance traveled. 𝜇 is the average of 𝑋 , . . . , 𝑋 , 𝑋 , and 𝜎  is the 
variance of 𝑋 , . . ., 𝑋 , 𝑋 . 
2) Simulation of wheel diameter error 

As the operation time of a vehicle progresses, the wheels experience wear and tear. If the wheel 
diameter is set according to the factory parameters, it will inevitably introduce errors. Additionally, 
traction and braking during train operation accelerate the wear of the wheels. To simulate the wheel 
diameter error, a wheel diameter error coefficient 𝛾 is introduced for the virtual speed sensor and 
virtual acceleration sensor. Assuming the actual speed is represented as 𝑣 , the measured speed𝑣 can 
be expressed by Eq (3). 

 𝑣 , . . . , 𝑣 , 𝑣 𝑣 , . . . , 𝑣 , 𝑣 ∗ 1 𝛾          (3) 

where the variable 𝛾 represents the degree of wear on the train wheels, which ranges from 0 to 1. 

Table 1. Analysis of sensor positioning technology. 

Technique Characteristic Main advantages Main disadvantages 

Speed sensor Continuously

1) Easy speed measurement and signal 

processing, less affected by the environment 

2) High measurement accuracy at high speeds

1) Influenced by wheel counting 

errors and wheel wear 

2) Positioning error accumulates 

with distance due to speed 

integration 

Acceleration 

sensor 
Continuously

1) All-weather and high autonomy 

2) Can continuously receive multi-

dimensional train operation information with 

high output frequency 

1) Existence of drift and inherent 

errors 

2) Errors accumulate with time, 

long-term accuracy 

requirements cannot be met 

Balise Point-based 

1) Large amount of information transmission, 

provides absolute position information. 

2) Less affected by the environment 

1) High deployment quantity 

2) High cost 

3) Simulation of wheel idling and sliding errors 
During the operation of HSTs, the wheels may experience idling and sliding due to factors such 

as the wheel-rail adhesion coefficient and the instantaneous acceleration of the train. When the traction 
of the train exceeds the maximum static friction force between the wheels and rails, the contact state 
between them is suspended [25]. The idling phenomenon of the train wheels mainly occurs during the 
acceleration stage when the train starts. The wheels will idle due to the excessive traction of the train. 
When idling occurs, the position for measuring idling can be expressed by Eq (4). 

 𝑆 𝑆 𝑆                               (4) 

where 𝑆  represents the position measurement value calculated by the train’s sensors, 𝑆  represents 
the actual position value of the train and 𝑆  represents the position error. 

The error of wheel idling in the train is simulated during the starting and acceleration phases by 
incorporating the idling ratio 𝛼. Assuming the actual speed is 𝑣 , the measured speed 𝑣  can be 
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expressed by Eq (5). 

 𝑣 , . . . , 𝑣 , 𝑣 𝑣 , . . . , 𝑣 , 𝑣 ∗ 1 𝛼            (5) 

where 𝛼 represents a value between 0 and 1, simulating the extent of wheel idling.  
The phenomenon of wheel sliding in the train mainly occurs during the braking phase, where the 

excessive braking force causes relative motion between the train wheels and the tracks, resulting in the 
occurrence of sliding. When sliding occurs, the measurement position of the train can be represented 
by Eq (6). 

 𝑆 𝑆 𝑆                                   (6) 

where 𝑆  represents the position measurement value calculated by the train’s sensors, 𝑆  represents 
the actual position value of the train and 𝑆  represents the position error. 

During the deceleration phase, the error in wheel sliding speed in the train is simulated by 
incorporating the sliding ratio 𝛽. Assuming the actual speed is 𝑣 , the measured speed 𝑣  can be 
expressed by Eq (7). 

 𝑣 , . . . , 𝑣 , 𝑣 𝑣 , . . . , 𝑣 , 𝑣 ∗ 1 𝛽            (7) 

where 𝛽 represents a value between 0 and 1, simulating the extent of wheel slidding.  
The balise is a correction device used in the train positioning process to correct cumulative errors 

and provide the train with absolute position at regular intervals distributed along the track. During the 
experiments, the HSTs accumulates errors as it runs on the track and the cumulative error at the end of 
the train’s entire journey is estimated by Eq (8). 

 𝛤 ∑ 𝑠 𝑡 𝑚 𝑡                               (8) 

where s 𝑡   represents the train position measured when passing each transponder, while 𝑚 𝑡  
represents the actual train position. 

2.3. Building a virtual simulation model for trains based on unity 3D 

In the research on HSTs positioning, the construction of a virtual simulation model is crucial for 
simulating the real train operating environment and generating realistic virtual positioning data, as 
shown in Figure 2. By utilizing the powerful capabilities and flexibility of the Unity 3D engine, we 
can build highly customizable and diverse virtual train operating environments, providing strong 
support for subsequent positioning algorithm validation and performance evaluation. 

In this framework, the virtual HSTs model and virtual sensor model are connected to the Unity 
3D virtual simulation module for model configuration. Furthermore, in the Unity 3D virtual simulation, 
the construction and configuration of the HSTs model, track and route model and environmental 
model are carried out sequentially. The HSTs behavior control module receives external parameter 
inputs to simulate the train's operating behavior. Finally, HSTs positioning data is acquired through 
virtual sensors. 
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Figure 2. Framework of virtual simulation model. 

3. Methodology for generating virtual HSTs positioning dataset 

In this section, a virtual operational simulation model for HSTs is developed by integrating 
geometric, dynamic and environmental models. Leveraging the power of big data and virtual 
simulation technologies, a virtual positioning dataset for HSTs is generated. The detailed process is 
illustrated in Figure 3. 

The virtual running curves serve as the foundation for generating virtual positioning data, which 
accurately depict the train’s position and operational status within the virtual environment. In the 
virtual simulation environment, a large amount of virtual running data for HSTs is generated by 
simulating their operational processes, including acceleration, deceleration and turning. Subsequently, 
the virtual positioning data for the HSTs are simulated, considering the error characteristics observed 
during the data acquisition process of real-world positioning sensors. 

During its operation, the high-speed train undergoes multiple processes of acceleration, 
deceleration and uniform motion. According to expert experience, the train line is divided into several 
sections while setting the maximum and minimum running speed limits for each section. Figure 4 
shows the schematic diagram of the virtual operating curve. Before the n-th section, each section 
includes the process from constant speed operation to constant speed operation. The n-th section 
contains two constant speed changes and one constant speed driving process. In each operating section, 
specific acceleration limits 𝑎 ~𝑎  and speed limits 𝑣 ~𝑣  are set for the train. By 
setting the value interval within the acceleration and speed range, there are 𝑢  type of acceleration 
value and 𝑢  type of speed value in each section. When we combine the generation conditions of 
each section, we will get a large number of train operating curves. 
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Figure 3. Flowchart of positioning data generation. 

 

Figure 4. Illustration of HSTs operating curve based on interval speed limit. 

The simulation of various operating scenarios for HSTs enables the acquisition of a diverse set of 
operating curve data. By considering both train energy consumption and passenger comfort, the 
performance of virtual train running curves can be comprehensively evaluated [26,27]. The objective 
of curves screening is to select the optimal train operation scheme for the train operation curve with a 
cycle of 1 s, and establish performance evaluation standards based on train comfort and energy 
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consumption. The virtual operating curve selection process is illustrated in Figure 5. First, the given 
target arrival time 𝑇 𝑇 , 𝑇 , … , 𝑇 ,  is used to divide the actual arrival time dataset into 𝑚 

subsets 𝑋 𝑋 , 𝑋 , … , 𝑋 ,    based on the train travel curve. Then, the performance scores of all 
virtual running curves in each subset are calculated using evaluation indicators. Finally, the running 
curve with the highest performance score is selected within each subset. 

 

Figure 5. Virtual operating curve selection process. 

4. Experimental simulation and analysis 

4.1. Evaluation metrics 

1) Train running energy consumption: 𝜓 
The speed and running distance mainly influence the study of energy consumption of HSTs, and 

the energy consumption of trains is calculated to compare the advantages and disadvantages of train 
running curve performance by Eqs (9) and (10). 

 𝜓 𝑚𝑖𝑛 ∑ 𝐾 𝐶     (9) 

 𝑉     (10) 

where 𝜓 is the energy consumption, kJ/(t·km); 𝑉  is the average speed in the i-th running section; 
𝑋  is the distance of the i-th running section; 𝐾 and 𝐶 denote the constants related to the train; 𝑡  
is the variable speed time of the i-th running section; 𝑡  is the uniform speed time of the i-th 
running section. 
2) Passenger comfort: 𝜂  

Comfort is an important indicator to measure the feeling of passengers riding on board. Because 
the acceleration must be adjusted during HSTs according to different route conditions, the acceleration 
changes must be controlled within a specific range to protect the passengers’ feelings. Therefore, the 
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comfort level is also an essential basis for measuring the performance of the train running curve by 
Eq (11). 

𝜂
∑ | |

                                     (11) 

where 𝛥|𝑎 |denotes the acceleration change value of the i-th segment. 
3) The performance of running curves: 𝜉  

In order to select a small number of high-quality running curves from a large number of virtual 
train running curves that do not miss the running characteristics, we first classify each running curve 
in its unit moment. Next, the curve performance was evaluated by assigning a weighting of 50% each 
to 𝜓 and 𝜂. Finally, the optimal train running curve is filtered at each running time. In addition, to 
avoid the magnitude influence of 𝜓 and 𝜂, it is necessary to normalize these two indicators. The 
specific processing process is shown in Eqs (12) and (13). 

 𝑥∗                                    (12) 

where 𝑥∗  is the normalized index value, 𝑥  is the index value before normalization, 𝑥   is the 
minimum value of the index value and 𝑥  is the maximum value of the index value. 

 𝜉 𝑚𝑖𝑛 ∑ 0.5 𝐸𝐶 0.5 𝛿    (13) 

where 𝜉  represents the quantified index with the ability to assess the performance of the running 
curve; 𝑇 𝑡 , . . . , 𝑡  represents the range of the total time distribution of the train operation.  
4) Data evaluation metrics for positioning 

The data collection process for positioning involves periodically acquiring HSTs operation data 
with a sampling period of 𝑡 . The collected data is then processed to simulate sensor error 
characteristics. To assess the performance of the virtual sensor model, metrics such as Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), Maximum Error (ME) 
and Standard Deviation of Error (SDE) are used to analyze the data before and after introducing noise. 
The specific content can be found in Eqs (14)–(18). 

 𝑀𝐴𝐸 ∑ 𝑋 𝑋                           (14) 

 𝑀𝑆𝐸 ∑ 𝑋 𝑋                          (15) 

 𝑅𝑀𝑆𝐸 ∑ 𝑋 𝑋                       (16) 

 𝑀𝐸 𝑚𝑎𝑥 |𝑋 𝑋 |                          (17) 

 𝑆𝐷𝐸 𝑠𝑡𝑑 𝑋 𝑋                          (18) 

where 𝑋 𝑎 , 𝑣 , 𝑠   represents the true train positioning data, and 𝑋 𝑎 , 𝑣 , 𝑠  
represents the train positioning data measured by the sensors. 
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4.2. Simulation description 

We present a study on virtual simulation for cross-sea high-speed railways. By constructing highly 
realistic and diverse virtual operating environments, the operation of cross-sea high-speed railways is 
simulated, and a large-scale virtual positioning dataset is generated. In order to ensure safe and efficient 
train operation, the majority of the track consists of straight segments with some curved sections as 
required. The train’s trajectory is constrained by the track, and the HSTs is assumed to operate mainly 
in the horizontal plane, disregarding pitch, roll and vertical velocity changes. To simulate the scenario 
effectively, the CRH3 type EMU is chosen as the representative train model. The virtual track covers 
a distance of approximately 150 km, with Station A as the starting point and Station B as the endpoint, 
featuring a cross-sea tunnel that spans 135 km in length. Three operating scenarios are designed to 
examine the train’s performance at maximum speeds of 250, 350 and 400 km/h, as detailed in Table 2. 

Table 2. Simulation scenarios for the HSTs. 

Simulation 

scheme 

Maximum 

speed (km/h) 

Weather 

conditions 

Division of 

track sections 

Length 

(km) 

Speed limit 

sections (km/h) 

Acceleration limit 

sections (m/s²) 

Scheme 1 250 
Rain/Snowy 

Weather 

1 35 (120, 150) (0.2, 0.4) 

2 80 (220, 250) (0.2, 0.4) 

3 35 (120, 150) (-0.2, -0.4) 

Scheme 2 350 
Sunny 

Weather 

1 15 (120, 150) (0.2, 0.6) 

2 20 (200, 230) (0.2, 0.6) 

3 80 (320, 350) (0.2, 0.6) 

4 35 (220, 250) (-0.2, -0.6) 

Scheme 3 400 
Sunny 

Weather 

1 30 (170, 200) (0.3, 0.9) 

2 80 (370, 400) (0.3, 0.9) 

3 20 (280, 310) (-0.3, -0.9) 

4 20 (200, 230) (-0.3, -0.9) 

Scheme 1 focuses on simulating the operation of HSTs under rainy/snowy conditions with a 
maximum operating speed of 250 km/h. The track is divided into three sections: the first one 
encompasses the downhill segment from Station A to the underwater tunnel, the second consists of the 
long-distance underwater tunnel where the train can reach its maximum speed, and the third entails the 
segment from the tunnel exit to Station B. The acceleration and speed ranges are determined for each 
section based on expert knowledge, with a speed interval of 5 km/h and an acceleration interval of 0.1 m/s². 

Scheme 2 concentrates on simulating the operation of HSTs in clear weather conditions with a 
maximum operating speed of 350 km/h. The track is divided into four sections: the first 35 km is 
divided into two segments, ensuring continuous acceleration to enable the train to reach its maximum 
speed in the third section, which is the long-distance underwater tunnel. The acceleration and speed 
ranges are established for each section, with a speed interval of 5 km/h and an acceleration interval 
of 0.2 m/s². 

Scheme 3 also focuses on simulating HSTs operation in clear weather conditions with a maximum 
operating speed of 400 km/h. The track is divided into four sections: unlike schemes 1 and 2, the first 
section simulates the train's downhill travel at a speed limit of 200 km/h. The second section consists 
of the long-distance underwater tunnel where the train operates at its maximum speed. Finally, the 
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third and fourth sections simulate the train’s deceleration in segments. The train’s speed limit 
parameters are determined based on scheme 2. 

4.3. Simulation results 

4.3.1. Generation and selection of running curves 

The three schemes generated a significant number of virtual operating curves for HSTs. As shown 
in Figure 6, the time distribution of the generated virtual operating curves follows a normal distribution 
and exhibits continuity in terms of train running curve time, with numerous operating curves 
corresponding to each second. To select representative and high-performance curves, it is necessary to 
utilize statistical indicators to analyze the optimal curve corresponding to each operating duration. 

  

(a) Scheme 1      (b) Scheme 2                  (c) Scheme 3 

Figure 6. Distribution of running curve time. 

The simulation data for Scheme 1 is presented in Table 3, for Scheme 2 in Table 4 and for Scheme 3 
in Table 5. Scheme 1 generated 17,496 virtual running curves, with travel times ranging from 2873 
seconds to 3590 seconds, encompassing a total of 718 consecutive time points. Following curve 
performance evaluation, 718 curves were selected. Scheme 2 generated 314,928 virtual running curves, 
with travel times ranging from 1982 seconds to 2642 seconds, encompassing a total of 661 consecutive 
time points. After curve performance evaluation, 661 curves were selected. Scheme 3 generated 314,928 
virtual running curves, with travel times ranging from 1813 seconds to 2289 seconds, encompassing a 
total of 477 consecutive time points. After curve performance evaluation, 477 curves were selected. 
All three sets of schemes successfully filtered the optimal virtual running curves at each runtime, 
maintaining continuity before and after the selection process. 

To better understand the performance differences between different operation schemes of HSTs, 
the average travel times for the three schemes were measured at 3222.7 seconds, 2304.8 seconds 
and 2042.0 seconds. These results show that as the maximum speed of the trains increases, the travel 
time can effectively decrease. However, it is important to note that average energy consumption rates 
and comfort levels also vary accordingly. Specifically, average energy consumption rates increase 
by 59.1 and 10.8% while average comfort levels decrease by 37.5 and 28.0%. These numbers indicate 
a trade-off between travel time, energy consumption and comfort levels. 
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Table 3. Simulation curve selection for scheme 1. 

Indicator Before selection After selection 
Runtime range (s) 2873–3590 2873–3590 
Number of curves 17,496 718 
Energy range (kJ/(t·km)) 79.1–86.6 79.3–86.8 
Comfort range 0.6–1.25 0.6–1.25 
Average travel time (s) 3222.7 3232.0 
Average energy (kJ/(t·km)) 82.7 79.8 
Average comfort 0.8 1.1 

Table 4. Simulation curve selection for scheme 2. 

Indicator Before selection After selection 
Runtime range (s) 1982–2642 1982–2642 
Number of curves 314,928 661 
Energy range (kJ/(t·km)) 124.5–138.9 124.5–137.2 
Comfort range 0.3–1 0.3–1 
Average travel time (s) 2304.8 2309.5 
Average energy (kJ/(t·km)) 131.6 128.8 
Average comfort 0.5 0.6 

Table 5. Simulation curve selection for scheme 3. 

Indicator Before selection After selection 
Runtime range (s) 1813–2289 1813–2289 
Number of curves 314,928 477 
Energy range (kJ/(t·km)) 137.9–153.8 138.0–152.3 
Comfort range 0.25–0.67 0.25–0.67 
Average travel time (s) 2042.0 2050.4 
Average energy (kJ/(t·km)) 145.8 142.4 
Average comfort 0.36 0.45 

To further examine the impact of selection steps on the performance of the virtual train running 
curve, the average travel times of the three groups of train operation schemes after selection increased 
slightly by 0.3, 0.2 and 0.4% compared to before selection. This slight increase can be attributed to the 
removal of curves with high acceleration variation rates, which affects the overall travel time. However, 
in terms of energy consumption and comfort levels, the filtered operating curves show improvements 
compared to the pre-selection curves, with energy consumption optimized by 3.5, 2.1 and 2.3%, and 
comfort level improvements of 37.5, 20.0 and 25.0%. Figure 7 shows the speed-distance curves of 
virtual operation for HSTs after selection. 

To highlight the advantages of the virtual data generation method in terms of data quantity and 
diversity, a comparison was made with existing methods [28]. The proposed method achieved 
significant breakthroughs in speed limits and section lengths, resulting in a 34% increase in the 
quantity of virtual data. Moreover, the method allows for extracting high-performance curves from 
numerous virtual running curves, providing greater flexibility to adjust the ideal virtual schemes and 
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train speed limits according to actual needs. This demonstrates the superior performance of the 
proposed method compared to existing methods. 

   
(a) Scheme 1 (local)            (b) Scheme 2 (local) 

 
(c) Scheme 3 (local) 

Figure 7. Speed-distance curves of virtual operation for HSTs after selection. 

4.3.2. Generation of positioning data 

In this study, one of the HSTs operation curves from Scheme Three was selected to demonstrate 
the measurement process of positioning data using a sampling period of 0.1 seconds. To simulate 
realistic measurement errors, we introduced environmental noise, wheel diameter errors and 
idling/slidding errors. The environmental noise was set to follow a Gaussian distribution 
𝑋 ~𝑁 0,0.05 , the wheel diameter error coefficient 𝛾 was set to 0.02 and both the idling ratio 𝛼 and 
slidding ratio 𝛽 were set to 0.005. 
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(a) Speed data at each time step          (b) Acceleration data at each time step 

 

(c) Position data at each time step         (d) Accumulated error in train position 

 
(e) Train position correction with balise 

Figure 8. Results of HSTs positioning data. 

The experimental results are shown in Figure 8. Figure 8(a) illustrates the relationship between 
acceleration and time during HSTs operation. Due to the introduction of environmental noise, the 
acceleration curve may exhibit fluctuations and jitter, reflecting the influence of noise interference on 
sensor data. Figure 8(b) shows the relationship between speed and time during HSTs operation. Due 
to the introduction of wheel diameter errors and idling/slidding errors, the speed curve may exhibit 
fluctuations or instability. Wheel diameter errors may cause speed measurement deviations, while 
idling/slidding errors may cause speed instability. Figure 8(c) reflects the difference between the actual 
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position and the measured position of the HSTs. Due to the introduction of error terms in the virtual 
model, including system noise, wheel diameter errors and idling/slidding errors, the measurement of 
the HSTs position gradually accumulates deviations. Figure 8(d) reflects the continuous accumulation 
of errors in measuring the position of the HSTs without the use of virtual balise. According to the 
current experimental parameters, the position error reaches 6 kilometers. Figure 8(e) reflects the 
correction of the train position after setting virtual balise at every kilometer. Position errors above zero 
indicate wheel idling during acceleration, influenced by wheel diameter errors and system errors, 
resulting in a measured train position greater than the actual position. During deceleration, position 
errors below zero indicate wheel sliding, which leads to a measured train position that is smaller than 
the actual position. These errors interact each other with wheel diameter errors and system errors, 
resulting in a lower error peak during deceleration compared to acceleration. 

Table 6 evaluates the measurement results of the HSTs positioning data. Since only system errors 
were introduced to the acceleration sensor in the experiment, the values of MAE, RMSE and ME are 
low, indicating that the acceleration measurement results are less affected by errors. Regarding the 
evaluation of speed data, the values of MAE and RMSE are relatively small, indicating higher accuracy 
of the speed sensor's measurements. However, the value of ME is large, indicating significant 
deviations in speed measurements when the train's wheels slidding or idle. As for the evaluation 
metrics of position data, their values are all large. This is due to the combined influence of 
measurement errors in speed and acceleration sensors, leading to significant cumulative errors in the 
measurement data of the train’s position. 

Table 6. Analysis of HSTs positioning data with noise. 

Metric Speed Acceleration Distance 
MAE 1.84 0.04 20.30 
MSE 4.54 0.0025 638.34 
RMSE 2.13 0.05 25.26 
ME 8.20 0.2 94.05 
SDE 1.58 0.05 16.60 

In conclusion, by analyzing the experimental results generated from the virtual positioning dataset, 
we can evaluate the performance of the virtual sensor error model and the accuracy of the generated 
positioning dataset. These results are of important reference value for optimizing the sensor error 
model and improving measurement accuracy, and provide useful data foundation for the design and 
testing of train operation and control systems. 

5. Conclusions 

To address the need for acquiring HSTs positioning data, we propose a method for generating 
virtual positioning big data for general HSTs. By combining virtual simulation technology with expert 
knowledge to set vehicle operation parameters, diverse route schemes and a large-scale dataset of 
virtual train positioning data are generated. During the data acquisition process, an error model for 
virtual sensors is introduced to simulate the error characteristics in data collection. By setting different 
noise models and error parameters, a HSTs positioning dataset with error characteristics is generated. 
Additionally, adversarial samples are constructed by comparing with ideal data to assess the accuracy 
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and robustness of positioning algorithms in future research. However, there are limitations in the 
experiment, such as considering only train energy consumption and passenger comfort as evaluation 
criteria during the virtual train trajectory selection process. Future research could define more 
performance metrics to comprehensively evaluate the performance of virtual train trajectories. 
Furthermore, introducing more types of virtual sensor noise can make the virtual train positioning data 
more closely resemble real-world data characteristics. 

The proposed method of generating virtual positioning big data for HSTs based on virtual schemes 
and virtual sensors provides an innovative solution to the challenge of obtaining real data. By 
constructing a large-scale and diverse virtual positioning dataset, this approach provides strong support 
for research and development in HSTs positioning technology. In the future, we will further explore 
and optimize virtual data generation algorithms to be applicable to a wider range of train positioning 
schemes and promote the intelligent development of railway transportation. 
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