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Abstract: The host population in epidemiology may actually be at risk of more than two infectious
diseases with stochastic complicated interaction, e.g., HIV and HBV. In this paper, we propose a class of
stochastic epidemic model that applies the double epidemic hypothesis and Crowley-Martin incidence
rate in order to explore how stochastic disturbances affect the spread of diseases. While disregarding
stochastic disturbances, we examine the dynamic features of the system in which the local stability
of equilibria are totally determined by the basic reproduction numbers. We focus particularly on the
threshold dynamics of the corresponding stochastic system, and we obtain the extinction and permanency
conditions for a pair of infectious diseases. We find that the threshold dynamics of the deterministic and
stochastic systems vary significantly: (i) disease outbreaks can be controlled by appropriate stochastic
disturbances; (ii) diseases die out when the intensity of environmental perturbations is higher. The effects
of certain important parameters on deterministic and stochastic disease transmission were obtained
through numerical simulations. Our observations indicate that controlling epidemics should improve
the effectiveness of prevention measures for susceptible individuals while improving the effectiveness
of treatment for infected individuals.

Keywords: stochastic epidemic model; double epidemic hypothesis; basic reproduction number;
Crowley-Martin incidence

1. Introduction

Smallpox, cholera, AIDS, COVID-19 and other infectious disease epidemics have wreaked immense
havoc on the economy and way of life of the populace. Many mathematical models have been
developed by researchers to explore the dynamical behavior of infectious diseases and thus control
their transmission and gain a deeper understanding of these diseases [1–6]; among which, higher-
order networks are widely used the spreading dynamics [7–9]. Compartmental models, which were
originally established by Kermack and McKendrick [10], constitute a class of representative infectious
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disease models that includes the S IR model [11], S IS model [12], S IRS model [13], S EIR model [14],
S I1 · · · IkR [15] model and other variations [16–19].

Most epidemic models only concentrate on the transmission of a unique infectious disease; however,
the host population may actually be at risk of more than two infectious diseases with complicated
interaction, and they could occur as parallel, competitive or stimulative. A large percentage of people at
risk for HIV infection is also at risk for HBV infection due to shared mechanisms of transmission [20].
Casalegno et al. [21] discovered that during the first half of fall 2009, in France, rhinovirus interference
slowed the influenza pandemic and affected the transmission of the H1N1 virus. During the COVID-19
pandemic, it was discovered in [22] that the SARS-COV-2 Delta (B.1.617.2) variant had replaced the
Alpha (B.1.1.7) variation on a significant scale, which is related to the Delta version’s earlier invasion
and superior transmissibility. In this paper, we only focus on two epidemics spreading parallelly, and
we assume that an epidemic caused by one virus prevents the occurrence of the other. For related works,
we recommend the references [23–25] and the references therein.

The rate at which new infections emerge, known as the disease incidence, is a crucial variable in
mathematical models of infectious disease dynamics. The incidence rate has different forms which are
commonly used as follows. It is assumed that the exposure rate is proportionate to the whole population
and that the mass-action (bilinear) incidence is βS I [26]. The standard incidence is βS I/N, and it
requires the assumption that the number of people exposed to a sick person per unit time is constant [27].
If the exposure rate is saturation of the susceptible S or infective I, the incidence will be the saturation
incidence βS I/(1 + aS ) or βS I/(1 + aI) [23]. Other incidence forms, such as the nonlinear incidence
rate βS I p/(1 + αS q) and Beddington-DeAngelis incidence βS I/(1 + aS + bI), have been discussed
in [28, 29].

A particular Crowley-Martin functional response function was proposed in 1975 [30], and it is
widely used in prey-predator models [31], eco-epidemic models [32] and epidemic models [33–35]. In
infectious disease models, the Crowley-Martin incidence is represented by βS I/(1 + aS )(1 + bI), which
takes into account the interaction between susceptible and infected populations, where a measures the
preventive effect of susceptible individuals and b measures the treatment effect with respect to infected
individuals.

For these reasons, this paper presents a deterministic epidemic model with the double epidemic
hypothesis and Crowley-Martin nonlinear incidence term. We divided the population into three com-
partments: the susceptible population S , the infected population I1 infected with virus D1 and the
infected population I2 infected with virus D2. In addition, susceptible individuals enter at a rate of
constant N, βi is the rate of transmission from a susceptible person to an infected person, the natural and
causal mortality rates of the population are m and δi respectively, and αi is the rate of infected people
transitioning to the susceptible class. The flowchart of disease transmission and progression is as shown
in Figure 1; we formulate the following dynamical model:

dS
dt

= N −
β1S I1

(1 + a1S ) (1 + b1I1)
−

β2S I2

(1 + a2S ) (1 + b2I2)
+ α1I1 + α2I2 − mS ,

dI1

dt
=

β1S I1

(1 + a1S ) (1 + b1I1)
− (m + α1 + δ1) I1,

dI2

dt
=

β2S I2

(1 + a2S )(1 + b2I2)
− (m + α2 + δ2)I2.

(1.1)

In fact, disease transmission is quite sensitive to disturbances caused by external environmental
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Figure 1. The disease transmission graph for model (1.1).

factors, such as temperature, light, rainstorms and human intervention. These stochastic factors
could have a significant impact on almost all parameters of the model in multiple ways [36–40].
The transmission rate β oscillates around an average value as a result of the environment’s ongoing
oscillations brought on by the impact of white noise β + σḂ(t), where B(t) represents the standard
Brownian motions and σ > 0 is the intensity of environmental fluctuations. Then, we obtain a stochastic
epidemic model as follows:

dS =

(
N −

β1S I1

(1 + a1S )(1 + b1I1)
−

β2S I2

(1 + a2S )(1 + b2I2)
+ α1I1 + α2I2 − mS

)
dt

−
σ1S I1

1 + a1S + b1I1 + a1b1S I1
dB1(t) −

σ2S I2

1 + a2S + b2I2 + a2b2S I2
dB2(t),

dI1 =

(
β1S I1

(1 + a1S )(1 + b1I1)
− (m + α1 + δ1)I1

)
dt +

σ1S I1

(1 + a1S )(1 + b1I1)
dB1(t),

dI2 =

(
β2S I2

(1 + a2S )(1 + b2I2)
− (m + α2 + δ2)I2

)
dt +

σ2S I2

(1 + a2S )(1 + b2I2)
dB2(t).

(1.2)

The following describes how this manuscript is structured. In Section 2, we discuss the dynamics of
deterministic systems, especially for the asymptotic stability of equilibria. In Section 3, we establish the
extinction and persistence conditions of the corresponding stochastic system. In Section 4, through a
number of numerical simulations, we explore the effects of the perturbation strength σi and parameters
ai and bi on the dynamics of the system. The paper ends with a short discussion and conclusion.

2. Dynamics of deterministic system

Prior to investigating the stochastic system, it is also essential to ascertain the dynamical behaviors
of the deterministic system.

For the deterministic system (1.1) or the stochastic system (1.2), we obtain

d
dt

(S + I1 + I2) = N − m (S + I1 + I2) − δ1I1 − δ2I2

≤ N − m (S + I1 + I2) .

This implies that

lim sup
t→∞

(S + I1 + I2) ≤
N
m
.
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We denote

Γ =

{
(S (t), I1(t), I2(t)) ∈ R3

+ : S (t) + I1(t) + I2(t) ≤
N
m
, t ≥ 0

}
;

then, regarding the solutions of system (1.1), Γ is a positively invariant set.
Utilizing the next generation matrix method [41, 42], we can obtain the basic reproduction number:

Ri =
βiN

(m + aiN) (m + αi + δi)
, i = 1, 2.

The equilibrium equation is listed as follows:

N −
β1S I1

(1 + a1S )(1 + b1I1)
−

β2S I2

(1 + a2S )(1 + b2I2)
+ α1I1 + α2I2 − mS = 0,

β1S I1

(1 + a1S )(1 + b1I1)
− (m + α1 + δ1)I1 = 0, (2.1)

β2S I2

(1 + a2S )(1 + b2I2)
− (m + α2 + δ2)I2 = 0.

System (1.1) has four possible equilibria:

(i) disease-free equilibrium E0 =
(

N
m , 0, 0

)
;

(ii) boundary equilibrium E1 =
(
S̄ 1, Ī1, 0

)
, where 0 < S̄ 1 <

N
m , Ī1 > 0;

(iii) boundary equilibrium E2 =
(
S̄ 2, 0, Ī2

)
, where 0 < S̄ 2 <

N
m , Ī2 > 0;

(iv) endemic equilibrium E3 =
(
S ∗, I∗1, I

∗
2

)
, where S ∗, I∗1, I

∗
2 > 0.

By (2.1), when I2 = 0 and I1 , 0, we obtain the boundary equilibrium

E1 =

(
N − (m + δ1)Ī1

m
, Ī1, 0

)
,

and Ī1 is the positive root of
f
(
Ī1

)
= XĪ1

2
+ YĪ1 + Z = 0,

where
X = a1b1(m + δ1) > 0;

when R1 > 1, we have

Y =(m + a1N)
m + δ1

N

(
−

b1N
m + δ1

+
a1N

m + a1N
− R1

)
< 0,

Z =(m + a1N)(R1 − 1) > 0.

If ∆ = Y2 − 4XZ = 0, there exists a unique E1 equilibrium with Ī1 = − Y
2X ; if ∆ = Y2 − 4XZ > 0, then

system (1.1) has two E1 equilibria with Ī1 = −Y±
√

Y2−4XZ
2X .

Similarly, by (2.1), when I1 = 0 and I2 , 0, we obtain the boundary equilibrium

E2 =

(
N − (m + δ2)Ī2

m
, 0, Ī2

)
;
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if R2 > 1 then there may exist one or two-type equilibria E2 as well.
By equilibrium equation (2.1), when Ri > 1, i = 1, 2, the endemic equilibrium E3 =

(
S ∗, I∗1, I

∗
2

)
exists

and satisfies

E3 =

(
N − (m + δ1)I∗1 − (m + δ2)I∗2

m
, I∗1, I

∗
2

)
,

where the relationship between I∗1 and I∗2 satisfies

I∗2 =
(m + α1 + δ1)

(
1 + b1I∗1

) [
m + a1

(
N − (m + δ1)I∗1

)]
− β1

(
N −

(
m + δ1I∗1

))
(m + δ2)

(
a1(m + α1 + δ1)(1 + b1I∗1 − β1)

) .

Theorem 1. 1). If R1 < 1 and R2 < 1, then the disease-free equilibrium E0 is locally asymptotically
stable.
2). If R1 > 1 and equilibrium E1 exists, then the boundary equilibrium E1 is locally asymptotically
stable.
3). If R2 > 1 and equilibrium E2 exists, then the boundary equilibrium E2 is locally asymptotically
stable.
4). IfR1 > 1, R2 > 1 and equilibrium E3 exists, then the endemic equilibrium E3 is locally asymptotically
stable.

The proof is given in Appendix A.

3. Dynamics of stochastic system

3.1. Existence and uniqueness of the positive solution

Lemma 1 ( [43]). For any initial value
(
S (0), I1(0), I2(0)

)
∈ R3

+, there exists a unique solution(
S (t), I1(t), I2(t)

)
to system (1.2) on t ≥ 0, and the solution will remain in R3

+ with probability 1,
i.e.,

(
S (t), I1(t), I2(t)

)
∈ R3

+ for all t ≥ 0 a.s.

Proof. The proof of Lemma 1 is similar to that in Theorem 2.1 of [44]; we therefore omit it here.

Lemma 2 ( [29]). Γ is an almost positive invariant set of system (1.2), that is, if
(
S (0), I1(0), I2(0)

)
∈ Γ,

then P
(
S (t), I1(t), I2(t) ∈ Γ

)
= 1 for all t ≥ 0.

Define the stochastic basic reproduction numbers

Rs
i =

βiN
(m + aiN) (m + αi + δi)

−
σ2

i N2

2(m + aiN)2(m + αi + δi)

=Ri −
σ2

i N2

2(m + aiN)2(m + αi + δi)
, i = 1, 2.

3.2. Extinction and persistence of stochastic system

We focus on disease extinction and persistence in this subsection since stochastic systems have
distinct extinction and persistence conditions compared to deterministic systems. First, the following
lemma is presented to demonstrate the extinction and persistence of diseases.
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Lemma 3 ( [42, 45]). Let
(
S (t), I1(t), I2(t)

)
be a solution of system (1.2) with initial value(

S (0), I1(0), I2(0)
)
∈ R3

+. Then

lim
t→+∞

1
t

∫ t

0

σiS (τ)(
1 + aiS (τ)

)(
1 + biIi(τ)

)dBi(τ) = 0, lim
t→+∞

1
t

∫ t

0
σiS (τ)dBi(τ) = 0, i = 1, 2.

Theorem 2. Suppose that one of the following two assumptions is satisfied:

(H1) σi > σ̂i := max
{√

βi(Nai+m)
N , βi

√
2(m+αi+δi)

}
, i = 1, 2;

(H2) σi ≤

√
βi(Nai+m)

N and Rs
i < 1, i = 1, 2.

Then the solution
(
S (t), I1(t), I2(t)

)
of system (1.2) with any initial value

(
S (0), I1(0), I2(0)

)
∈ Γ satisfies

that

lim
t→+∞

S (t) =
N
m
, lim

t→+∞
I1(t) = lim

t→+∞
I2(t) = 0.

Proof. By using Itô’s formula, we have

d ln Ii(t) =

 βiS
(1 + aiS )(1 + biIi)

−
σ2

i S 2

2
(
(1 + aiS )(1 + biIi)

)2 − (m + αi + δi)
 dt

+
σiS

(1 + aiS )(1 + biIi)
dBi(t), i = 1, 2.

(3.1)

Case 1: Under assumption (H1), integrating both sides of (3.1), we have

ln Ii(t) =

∫ t

0

 βiS (τ)(
1 + aiS (τ)

)(
1 + biIi(τ)

) − σ2
i S 2(τ)

2
(
(1 + aiS (τ))(1 + biIi(τ))

)2

 dτ

− (m + αi + δi)t + Qi(t) + ln Ii(0)

= −
σ2

i

2

∫ t

0

(
S (τ)(

1 + aiS (τ)
)(

1 + biIi(τ)
) − βi

σ2
i

)2

dτ − (m + αi + δi)t

+
β2

i

2σ2
i

t + Qi(t) + ln Ii(0)

≤ − (m + αi + δi)t +
β2

i

2σ2
i

t + ln Ii(0) + Qi(t),

(3.2)

where

Qi(t) =

∫ t

0

σiS (τ)(
1 + aiS (τ)

)(
1 + biIi(τ)

)dBi(τ); (3.3)

dividing both sides of (3.2) by t, we have

ln Ii(t)
t
≤ −

(
m + αi + δi −

β2
i

2σ2
i

)
+

Qi(t)
t

+
ln Ii(0)

t
; (3.4)
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by Lemma 3, we have

lim
t→+∞

Qi(t)
t

= 0;

since σi >
βi

√
2(m+αi+δi)

for i = 1, 2, taking the limit superior on both sides of (3.4) leads to

lim sup
t→+∞

ln Ii(t)
t
≤ −

(
m + αi + δi −

β2
i

2σ2
i

)
< 0.

Thus, lim
t→+∞

Ii(t) = 0 a.s.
Case 2: Under assumption (H2), similar to the calculation in Case 1, we have

ln Ii(t)
t

=
1
t

{∫ t

0

( βiS (τ)
(1 + aiS (τ))(1 + biIi(τ))

−
σ2

i S 2(τ)
2((1 + aiS (τ))(1 + biIi(τ)))2

− (m + αi + δi)
)
dτ + Qi(t) + ln Ii(0)

}
=

1
t

{∫ t

0
Ψ

(
S (τ)

(1 + aiS (τ))(1 + biIi(τ))

)
dτ + Qi(t) + ln Ii(0)

}
,

where the function Υ(x) is defined as

Υ : x 7→ −
1
2
σ2

i x2 + βix − (m + αi + δi).

Take note that Υ(x) increases monotonically for x ∈
[
0, βi

σ2
i

]
and x < N

aiN+m ; thus, whenσi ≤

√
βi(Nai+m)

N ,
we have

ln Ii(t)
t
≤

βiN
m + aiN

−
σ2

i N2

2(m + aiN)2 − (m + αi + δi) +
1
t
(
Qi(t) + ln Ii(0)

)
=(m + αi + δi)

(
Rs

i − 1
)

+
1
t
(
Qi(t) + ln Ii(0)

)
.

(3.5)

Taking the limit superior of both sides of (3.5) leads to

lim sup
t→+∞

ln Ii(t)
t
≤ (m + αi + δi)(Rs

i − 1) < 0;

which implies that lim
t→+∞

Ii(t) = 0, i = 1, 2.
We suppose that 0 < Ii(t) < εi(i = 1, 2) for all t ≥ 0; by the first equation of system (1.2), we have

dS (t)
dt
≥ N − (m + β1ε1 + β2ε2 + σ1ε1|Ḃ1(t)| + σ2ε2|Ḃ2(t)|)S (t). (3.6)

Because ε1 → 0 and ε2 → 0, if we divide (3.6) by the limit inferior on both sides, we have

lim inf
t→+∞

S (t) ≥
N
m
. (3.7)
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Combining this with lim sup
t→+∞

S (t) ≤ N
m , it is easy to see that

lim
t→+∞

S (t) =
N
m

a.s.

We will present the persistence result of system (1.2) in the following theorem, whose proof is given
in Appendix B.

Theorem 3. If we assume that the solution to system (1.2) is
(
S (t), I1(t), I2(t)

)
and that(

S (0), I1(0), I2(0)
)
∈ Γ is the initial value, then we get the following:

(i) The disease I2 becomes extinct and the disease I1 becomes permanent in the mean if Rs
1 > 1,Rs

2 < 1
and the disturbance intensity satisfies that σ2 ≤

√
β2(a2 + m

N ). Additionally, I1 satisfies

lim inf
t→+∞

〈I1(t)〉 ≥
(m + a1N)(m + α1 + δ1)

β1(m + δ1) + b1(m + a1N)(m + α1 + δ1)
(
Rs

1 − 1
)
.

(ii) The disease I1 becomes extinct and the disease I2 becomes permanent in the mean if Rs
1 < 1,Rs

2 > 1
and the disturbance intensity satisfies that σ1 ≤

√
β1(a1 + m

N ). Additionally, I2 satisfies

lim inf
t→+∞

〈I2(t)〉 ≥
(m + a2N)(m + α2 + δ2)

β2(m + δ2) + b2(m + a2N)(m + α2 + δ2)
(Rs

2 − 1).

(iii) If Rs
i > 1, then the two infectious diseases Ii are permanent in mean; moreover, Ii satisfies

lim inf
t→+∞

〈 2∑
i=1

Ii(t)
〉
≥

1
∆max

2∑
i=1

ai(m + αi + δi)(Rs
i − 1),

where

∆max =

2∑
i=1

(
β1 + β2

m
(m + δi) + bi(m + αi + δi)

)
.

4. Simulations

In this section of this paper, we will continue with our investigation of the deterministic system and
the stochastic system by using the numerical method. Before looking at how changes in the environment
influence the spread of diseases and the effect of the parameters ai and bi on the dynamics of the disease,
we first compare the extinction conditions for the same parameter values for the stochastic system and
the deterministic system.

To simulate the behavior of the stochastic system (1.2), we made use of Milstein’s method [45, 46].
Following [23,47], with the exception of σi, the other parameter values of system (1.1) and system (1.2)
were derived as given in Table 1. Then, we chose initial values as

(
S (0), I1(0), I2(0)

)
= (15, 10, 5).
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Table 1. Parameter values of system (1.1) and system (1.2) in numerical simulations.

Parameter Description Value Sources
N Influx of susceptible population 1 [23]
m Rate of natural death 0.1 [23, 47]
β1 Transmission coefficient for virus D1 1.2 [23, 47]
β2 Transmission coefficient for virus D2 1.5 [23, 47]
a1 Preventive effect of virus D1 1 [23]
a2 Preventive effect of virus D2 1.5 [23]
b1 Treatment effect of virus D1 2 [23]
b2 Treatment effect of virus D2 1 [23]
δ1 Rate of virus D1-related death 0.2 [23, 47]
δ2 Rate of virus D2-related death 0.4 [23, 47]
α1 Recovery rate for virus D1 0.9 [23, 47]
α2 Recovery rate for virus D2 0.9 [23, 47]



S k+1 =S k +

(
N −

β1S kI1k

(1 + a1S k)(1 + b1I1k)
−

β2S kI2k

(1 + a2S k)(1 + b2I2k)
+ α1I1k + α2I2k − mS k

)
∆t

−

(
σ1

S kI1k

(1 + a1S k)(1 + b1I1k)
+ σ2

S kI2k

(1 + a2S k)(1 + b2I2k)

) √
∆tξk

−

(
σ2

1

2
(

S kI1k

(1 + a1S k)(1 + b1I1k)
) +

σ2
2

2
(

S kI2k

(1 + a2S k)(1 + b2I2k)
)
) (
ξ2

k − 1
)
∆t,

I1k+1 =
σ1S kI1k

(1 + a1S k)(1 + b1I1k)

√
∆tξk +

σ2
1

2

(
S kI1k

(1 + a1S k)(1 + b1I1k)

) (
ξ2

k − 1
)
∆t + I1k

+

(
β1S kI1k

(1 + a1S k)(1 + b1I1k)
− (m + α1 + δ1)I1k

)
∆t,

I2k+1 =
σ2S kI2k

(1 + a2S k)(1 + b2I2k)

√
∆tξk +

σ2
2

2

(
S kI2k

(1 + a2S k)(1 + b2I2k)

) (
ξ2

k − 1
)
∆t + I2k

+

(
β2S kI2k

(1 + a2S k)(1 + b2I2k)
− (m + α2 + δ2)I2k

)
∆t.

4.1. Extinction conditions of two diseases in deterministic and stochastic systems

In order to investigate the dynamical differences that exist between systems (1.1) and (1.2), we give
five examples for numerical simulations.

Example 1. When I2 is facing extinction in a deterministic system, the stochastic perturbation could
change I1 from prevalence to extinction. When α1 is changed to 0.7, σ1 = σ2 = 1, R1 = 1.091 > 1,Rs

1 =

1.091 − 0.379 = 0.712 < 1,R2 = 0.9375 < 1 and Rs
2 = 0.9375 − 0.3125 = 0.625 < 1. According

to our previous analysis results, disease I1 is prevalent and disease I2 is subject to extinction in the
deterministic system (1.1); however, disease I1 and I2 are both extinct in the stochastic system (1.2) (see
Figure 2(a)).
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(a) (b)

(c) (d)

(e)

Figure 2. Dynamics and behavior comparisons between I1(t) and I2(t) for stochastic and
deterministic systems. (a) R1 > 1,R2 < 1,Rs

1 < 1,Rs
2 < 1; (b) R1 < 1,R2 > 1,Rs

1 < 1,Rs
2 < 1;

(c) R1 > 1,R2 > 1,Rs
1 < 1,Rs

2 > 1; (d) R1 > 1,R2 > 1,Rs
1 > 1,Rs

2 < 1; (e) R1 > 1,R2 >

1,Rs
1 < 1,Rs

2 < 1. The initial value of all solutions is (15,10,5). The time unit is day.
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Example 2. When I1 is subject to extinction in a deterministic system, the stochastic perturbation
could change I2 from a prevalence to extinction condition. When α2 is changed to 0.7, δ2 is 0.2,
a2 = 1.3, σ1 = σ2 = 1, R1 = 0.909 < 1,Rs

1 = 0.909 − 0.416 = 0.496 < 1,R2 = 1.071 > 1 and
Rs

2 = 1.071 − 0.255 = 0.816 < 1. According to our previous analysis results, disease I1 goes to
extinction and disease I2 is persistent in the deterministic system (1.1); also, disease I1 and I2 both go to
extinction in the stochastic system (1.2) (see Figure 2(b)).

Example 3. When I1 and I2 are extinct in a deterministic system, the stochastic perturbation could
change I1 from a prevalence to extinction condition. When δ2 = 0.1, σ1 = 1 and σ2 = 0.1, it follows
that R1 = 1.091 > 1,Rs

1 = 1.091 − 0.413 = 0.678 < 1,R2 = 1.041 > 1 and Rs
2 = 1.041 − 0.001 =

1.04 > 1. According to our previous analysis results, both disease I1 and disease I2 are persistent in the
deterministic system (1.1); disease I1 goes to extinction and I2 is persistent in the stochastic system (1.2)
(see Figure 2(c)).

Example 4. When I1 and I2 are extinct in a deterministic system, the stochastic perturbation could
change I2 from a prevalence to extinction condition. When δ2 = 0.1, σ1 = 0.1 and σ2 = 1, R1 = 1.091 >
1,Rs

1 = 1.091 − 0.0041 = 1.0869 > 1,R2 = 1.041 > 1 and Rs
2 = 1.041 − 0.195 = 0.846 < 1. According

to our previous analysis results, both disease I1 and disease I2 are persistent in the deterministic system;
also, disease I1 is persistent and I2 goes to extinction in the stochastic system (1.2) (see Figure 2(d)).

Example 5. When I1 and I2 are extinct in a deterministic system, the stochastic perturbation could
change I1 and I2 from a prevalence to extinction condition. When δ2 = 0.1, σ1 = 1 and σ2 = 1,
R1 = 1.091 > 1, Rs

1 = 1.091 − 0.413 = 0.678 < 1, R2 = 1.041 > 1 and Rs
2 = 1.041 − 0.195 =

0.846 < 1. According to our previous analysis results, both disease I1 and disease I2 are persistent in the
deterministic system (1.1). In the stochastic system (1.2), both disease I1 and disease I2 go extinct (see
Figure 2(e)).

4.2. The impact of environmental noise

By (H1) in Theorem 2, we can see that when the strengths of the perturbations are large, Rs
i loses

its meaning and the diseases go to extinction. We chose different perturbation strengths for when
σi = 0, 0.3, 0.9 to observe the trend of the disease. When σi is larger, the infectious disease Ii goes to
extinction (see Figure 3). These simulations support our results for (H1) in Theorem 2 well.

4.3. The impact of preventive effect ai and treatment effect bi

It should be noted that ai and bi of the Crowley-Martin incidence are key parameters. In this
subsection, we discuss the effects of parameters ai and bi on the population and trend of infections by
presenting some numerical simulations.

First, we study the influence of preventive effects ai on the population of infective individuals in the
deterministic system (1.1). For the case that the parameters in Table 1 are fixed in Table 1, we chose
five different sets of values for ai. For the deterministic system (1.1), it can be shown that the bigger the
value of ai, the quicker the extinction of disease Ii (see Figure 4). Second, we wanted to investigate the
influence of the parameter ai on the population of infective individuals in the stochastic system (1.2).
We choose the perturbation intensity as σi = 0.3, i = 1, 2. At last, we observed the effect of ai in the
stochastic system (1.2) (see Figure 5). Similarly, we wanted to study the influence of treatment effects bi

on the population of infected individuals in deterministic and stochastic systems (see Figures 6 and 7).
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(a) σi = 0 (b) σi = 0.3 (c) σi = 0.9

(d) σi = 0 (e) σi = 0.3 (f) σi = 0.9

(g) σi = 0 (h) σi = 0.3 (i) σi = 0.9

Figure 3. The evolution of a single path of I1 and I2 for the stochastic system (1.2) when
σi changes. And all other parameters are taken as in Table 1. (a)–(c) Influences of three
different values of parameter σi influence the value of Ii when diseases I1, I2 are persistent
initially; (d)–(f) influence of three different values of parameter σi on the value of Ii when I1

is persistent and I2 goes to extinction initially; (g)–(i) influences of three different values of
parameter σi on the values of Ii when I2 is persistent and I1 goes to extinction initially. The
initial value of all solutions is (15,10,5). The time unit is day.

From the above numerical simulations, we conclude that a larger ai leads to a lower infected
prevalence Ii(t), and it may result in the extinction in deterministic and stochastic systems. This is
because the parameter ai affects Ri and Rs

i . Additionally, we found that the infected population Ii(t) also
decreases when bi increases, but bi cannot lead to extinction.
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(a) αi = 0.2 (b) αi = 0.2

Figure 4. The impact of the preventive effect ai in the deterministic system (1.1). The
preventive effect ai reduces the number of infected individuals and keeps the susceptible
individuals from becoming infected: (a) Influences of five different values of parameter a1 on
the values of I1. (b) Influences of five different values of parameter a2 on the values of I2. The
initial value of all solutions is (15,10,5). The time unit is day.

(c) σi = 0.3, αi = 0.2 (d) σi = 0.3, αi = 0.2

Figure 5. The impact of the preventive effect ai in the stochastic system (1.2). The preventive
effect ai reduces the number of infected individuals and keeps the susceptible individuals from
becoming infected: (c) Influences of five different values of parameter a1 on the values of I1.
(d) Influences of five different values of parameter a2 on the values of I2. The initial value of
all solutions is (15,10,5). The time unit is day.

Electronic Research Archive Volume 31, Issue 10, 6134–6159.



6147

(a) αi = 0.2 (b) αi = 0.2

(c) αi = 0.9 (d) αi = 0.9

Figure 6. The impact of the treatment effect bi in the deterministic system (1.1). The treatment
effect bi reduces the number of infected individuals and keeps the susceptible individuals from
becoming infected: (a) Influences of five different values of parameter b1 on the values of I1.
(b) Influences of five different values of parameter b2 on the values of I2. (c) Influences of five
different values of parameter b1 on the values of I1. (d) Influences of five different values of
parameter b2 on the values of I2. The initial value of all solutions is (15,10,5). The time unit
is day.
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(a) αi = 0.2 (b) αi = 0.2

(c) αi = 0.9 (d) αi = 0.9

Figure 7. The impact of the treatment effect bi in the stochastic system (1.2) when σi = 0.3.
The treatment effect bi reduces the number of infected individuals and keeps the susceptible
individuals from becoming infected: (a) Influences of five different values of parameter b1

on the values of I1. (b) Influences of five different values of parameter b2 on the values of I2.
(c) Influences of five different values of parameter b1 on the values of I1. (d) Influences of
five different values of parameter b2 on the values of I2. The initial value of all solutions is
(15,10,5). The time unit is day.

5. Discussion and conclusions

In this paper, we have proposed and studied a class of stochastic double disease models with Crowley-
Martin incidence. We discussed the existence conditions and stability of the equilibrium points. E0 is
locally asymptotically stable when the basic reproduction number Ri < 1; E1 is locally asymptotically
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stable when R1 > 1 and R2 < 1; E2 is locally asymptotically stable when R2 > 1 and R1 < 1; and E3

is locally asymptotically stable when the basic reproduction number Ri > 1. Subsequently, we have
given the stochastic basic reproduction number R∗i of the stochastic system and proven the stochastic
extinction and persistence of the system. Finally, numerical simulations show that appropriate stochastic
perturbations σi can control the spread of the disease, but larger stochastic perturbations can cause the
disease to go extinct; the protection effect ai can cause the disease to go extinct; the treatment effect bi

can reduce the number of infected individuals, but it cannot cause the disease to go extinct. Therefore,
when treatment is given to infected individuals, protective measures for susceptible individuals are more
necessary to completely eliminate the virus.
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Appendix A : Proof of Theorem 1

Proof. The system (1.1) has the following Jacobian matrix

J =


a11 a12 a13

a21 a22 0
a31 0 a33

 , (A1)

where

a11 = −
β1I1

(1 + a1S )2(1 + b1I1)
−

β2I2

(1 + a2S )2(1 + b2I2)
− m,
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a12 = −
β1S

(1 + a1S )(1 + b1I1)2 + α1,

a13 = −
β2S

(1 + a2S )(1 + b2I2)2 + α2,

a21 =
β1I1

(1 + a1S )2(1 + b1I1)
,

a22 =
β1S

(1 + a1S )(1 + b1I1)2 − (m + α1 + δ1),

a31 =
β2I2

(1 + a2S )2(1 + b2I2)
,

a33 =
β2S

(1 + a2S )2(1 + b2I2)
− (m + α2 + δ2).

Case 1. The evaluation of the Jacobian matrix at E0 is represented by

J(E0) =


−m −

β1N
m+a1N + α1 −

β2N
m+a2N + α2

0 β1N
m+α1N − (m + α1 + δ1) 0

0 0 β2N
m+α2N − (m + α2 + δ2)

 ,
which has the following eigenvalues:

λ1 = − m,

λ2 =
β1N

m + α1N
− (m + α1 + δ1) = (m + α1 + δ1)(R1 − 1),

λ3 =
β2N

m + α2N
− (m + α2 + δ2) = (m + α2 + δ2)(R2 − 1).

If R1 < 1 and R2 < 1, then λ1, λ2 and λ3 < 0. The disease-free equilibrium E0 is locally asymptoti-
cally stable.

Case 2. The evaluation of the Jacobian matrix at E1 is represented by

J(E1) =


a11 a12 a13

a21 a22 0
0 0 a33

 ,
where

a11 = −
β1 Ī1

(1 + a1S̄ 1)2(1 + b1 Ī1)
− m,

a12 = −
β1S̄ 1

(1 + a1S̄ 1)(1 + b1 Ī1)2
+ α1,

a13 = −
β2S̄ 1

1 + a2S̄ 1
+ α2,

a21 =
β1 Ī1

(1 + a1S̄ 1)2(1 + b1 Ī1)
,
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a22 =
β1S̄ 1

(1 + a1S̄ 1)(1 + b1 Ī1)2
− (m + α1 + δ1),

a33 =
β2S̄ 1

1 + a2S̄ 1
− (m + α2 + δ2).

Using the equilibrium equation (2.1)

β1S̄ 1

(1 + a1S̄ 1)(1 + b1 Ī1)
= m + α1 + δ1;

we obtain

a22 =
m + α1 + δ1

1 + b1 Ī1
− (m + α1 + δ1) < 0;

one of the three eigenvalues of matrices J(E1)’s is represented by

λ1 =
β2S̄ 1

1 + a2S̄ 1
− (m + α2 + δ2) < 0,

where R2 < 1 and S̄ 1 <
N
m is used. What follows is the characteristic equation:

λ2 + A1λ + A2 = 0,

where

A1 = − (a11 + a22)

=
β1 Ī1(

1 + a1S̄ 1

)2 (
1 + b1 Ī1

) − β1S̄ 1(
1 + a1S̄ 1

) (
1 + b1 Ī1

)2 + (m + α1 + δ1) + m

=
β1 Ī1(

1 + a1S̄ 1

)2 (
1 + b1 Ī1

) +
β1b1S̄ 1 Ī1(

1 + a1S̄ 1

) (
1 + b1 Ī1

)2 + m

>0,

A2 =a11a22 − a21a12

=

− β1 Ī1(
1 + a1S̄ 1

)2 (
1 + b1 Ī1

) − m


 β1S̄ 1(

1 + a1S̄ 1

) (
1 + b1 Ī1

)2 − (m + α1 + δ1)


=(m + δ1)

β1 Ī1(1 + b1 Ī1) − β1mS̄ 1(1 + a1S̄ 1)(
1 + a1S̄ 1

)2 (
1 + b1 Ī1

)2 + m(m + α1 + δ1)

=
Ī1(m + δ1)(1 + b1 Ī1) + β1mb1S̄ 1 Ī1(1 + a1S )(

1 + a1S̄ 1

)2 (
1 + b1 Ī1

)2

>0.
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By the Routh-Hurwitz condition, if R1 > 1 and R2 < 1, the boundary equilibrium E1 is locally
asymptotically stable. The proof process for Cases 2 and 3 are similar, so they are omitted.

Case 4. The evaluation of the Jacobian matrix at E3 is represented by

J(E3) =


−a21 − a31 − m −a22 − (m + δ1) −a33 − (m + δ2)

β1I∗1
(1+a1S ∗)2(1+b1I∗1)

−
β1b1S ∗I∗1

(1+a1S ∗)(1+b1I∗1)
2 0

β2I∗2
(1+a2S ∗)2(1+b2I∗2)

0 −
β2b2S ∗I∗2

(1+a2S ∗)(1+b2I∗2)
2

 ;

what follows is the characteristic equation:

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 =
β1I∗1

(
1 + b1I∗1 + b1S ∗ + a1b1S ∗2

)
(1 + a1S ∗)2

(
1 + b1I∗1

)2 +
β2I∗2

(
1 + b2I∗2 + b2S ∗ + a2b2S ∗2

)
(1 + a2S ∗)2

(
1 + b2I∗2

)2

:= C1 + C2 + m > 0,

A2 =(−a21 − a31 − m)a22 + (−a21 − a31 − m)a33

+ a22a33 + a33a31 + (m + δ2)a31 + a22a21 + (m + δ1)a21

=a22a33 − a22a31 − a21a33 + a21(m + δ1) − ma22 + a31(m + δ2) − ma33

=
β1β2S ∗I∗1I∗2

(
b1b2S ∗(1 + a1S ∗)(1 + a2S ∗) + b1(1 + a1S ∗)(1 + b2)2 + b2(1 + a2S ∗(1 + b1)2)

)(
(1 + a1S ∗)

(
1 + b1I∗1

)
(1 + a2S ∗)

(
1 + b2I∗2

) )2

+
β1I∗1

(
(1 + b1I∗1)(m + δ1) + mb1S ∗(1 + a1S ∗)

)
(1 + a1S ∗)2

(
1 + b1I∗1

)2 +
β2I∗2

(
(1 + b2I∗2)(m + δ2) + mb2S ∗(1 + a2S ∗)

)
(1 + a2S ∗)2

(
1 + b2I∗2

)2

:=C3 + C4 + C5 > 0,

A3 = − (m + δ1)a21a33 − (m + δ2)a22a31 + ma22a33

=
β1β2b2S ∗I∗1I∗2(m + δ1)

(1 + a1S ∗)2
(
1 + b1I∗1

)
(1 + a2S ∗)

(
1 + b2I∗2

)2 +
β1β2b1S ∗I∗1I∗2(m + δ2)

(1 + a1S ∗)
(
1 + b1I∗1

)2
(1 + a2S ∗)2

(
1 + b2I∗2

)
+

β1β2mb1b2I∗1I∗2S ∗2

(1 + a1S ∗)
(
1 + b1I∗1

)2
(1 + a2S ∗)

(
1 + b2I∗2

)2

>0.

Then

A1A2 − A3 = (C1 + C2 + m) (C3 + C4 + C5) − A3

= (C1 + C22)C5 + C1C3 + C2C4 + m(C3 + C4 + C5) + C1C4 + C2C3 − A3
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:=p + q,

where p > 0 when R1 > 1 and R2 > 1, and we have

q =C1C4 + C2C3 − A3

=
β1β2I∗1I∗2

(
1 + b2I∗2

) (
(1 + b1I∗1)(m + δ1) + mb1S (1 + a1S )

)
+ b1S (1 + a1S )

(
mb2S (1 + a2S )

)(
(1 + a1S ∗)

(
1 + b1I∗1

)
(1 + a2S ∗)

)2

+
β1β2I∗1I∗2(1 + b1I1)

(
(1 + b2I2)(m + δ2) + mb2S (1 + a2S )

)(
(1 + a1S ∗)

(
1 + b1I∗1

)
(1 + a2S ∗)

)2

>0.

When both R1 and R2 are bigger than 1, the Routh-Hurwitz criteria show that the endemic equilibrium
E3 is locally asymptotically stable.

Appendix B : Proof of Theorem 3

Proof. Part (i). It is easy to see from the theorem that lim
t→+∞

I2(t) = 0. Since Rs
1 > 1, there exists a ε small

enough such that 0 < I2(t) < ε for all t large enough; we have

β
(
N − (m + δ1) ε

)
(Na1 + m)(m + α1 + δ1)

−
σ2

1N2

2(Na1 + m)(m + α1 + δ1)
> 1.

On the sides of the system (1.2), dividing by t > 0 and integrating from 0 to t gives

Θ(t) ,
S (t) − S (0)

t
+

I1(t) − I1(0)
t

+
I2(t) − I2(0)

t
= N − m〈S (t)〉 − (m + δ1)〈I1(t)〉 − (m + δ2)〈I2(t)〉
≥ N − m〈S (t)〉 − (m + δ1)〈I1(t)〉 − (m + δ2)ε;

when 〈 f (t)〉 = 1
t

∫ t

0
f (θ)dθ is defined for an integrable function f on [0,+∞), one may get

〈S (t)〉 ≥
N − (m + δ2)ε

m
−

m + δ1

m
〈I1(t)〉 −

Θ(t)
m

.

By using Itô′s formula, it follows that

d
( (

1 + a1
N
m

)
ln I1 + b1

(
1 + a1

N
m

)
I1

)

=


(
1 + a1

N
m

)
β1S

(1 + a1S )(1 + b1I1)
−

(
1 + a1

N
m

)
(m + α1 + δ1) −

(
1 + a1

N
m

)
σ2

1S 2

2(1 + a1S )2(1 + b1I1)2

 dt

+ b1

(
1 + a1

N
m

) (
β1S I1

(1 + a1S )(1 + b1I1)
− (m + α1 + δ1)I1

)
dt

+

(
1 + a1

N
m

)
σ1S

(1 + a1S )(1 + b1I1)
dB1(t) +

b1

(
1 + a1

N
m

)
σ1S I1

(1 + a1S )(1 + b1I1)
dB1(t)
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≥

 β1S
(1 + b1I1)

−

(
1 + a1

N
m

)
(m + α1 + δ1) −

σ2
1

2

(
1 + a1

N
m

) ( N
m + Na1

)2 dt

+ b1

(
1 + a1

N
m

)  β1S I1(
1 + a1

N
m

)
(1 + b1I1)

− (m + α1 + δ1)I1

 dt + σ1S (t)dB1(t)

≥

(
β1S −

(
1 + a1

N
m

)
(m + α1 + δ1) − b1

(
1 + a1

N
m

)
(m + α1 + δ1)I1 −

σ2

2

(
N
m

)2

1 + a1
N
m

)
dt (A2)

+ σ1S dB1(t). (A3)

On the sides of (A3), dividing by t > 0 and integrating from 0 to t gives(
1 + a1

N
m

) ln I1(t) − ln I1(0)
t

+ b1

(
1 + a1

N
m

) I1(t) − I1(0)
t

≥β1〈S (t)〉 −
m + a1N

m
(m + α1 + δ1) − b1

m + a1N
m

(m + α1 + δ1)〈I1(t)〉 −
σ2

1

(
N
m

)2

2(m+a1N)
m

+
Q2

t

≥β1

(N − (m + δ2)ε
m

−
m + δ2

m
〈I1(t)〉 −

Θ(t)
m

)
−

m + a1N
m

(m + α1 + δ1) +
Q2(t)

t

−
b1(m + a1N)

m
(m + α1 + δ1)〈I1(t)〉 −

σ2
1

(
N
m

)2

2(m+a1N)
m

=
m + a1N

m
(m + α1 + δ1)

( β1(N − (N + δ2)ε)
(m + a1N)(m + α1 + δ1)

−
σ2

1( N
m )2

2(m+a1N
m )2(m + α1 + δ1)

− 1
)

−
(β1(m + δ1)

m
+

b1(m + a1N)
m

(m + α1 + δ1)
)
〈I1(t)〉 −

β1Θ(t)
m

+
Q2(t)

t
, (A4)

where Q2(t) =
∫ t

0
σ1S (τ)dB1(τ). It is possible to rewrite the inequality (A4) as

〈I1(t)〉 ≥
1
∆

{
m + a1N

m
(m + α1 + δ1)(

β1(N − (N + δ2)ε)
(m + a1N)(m + α1 + δ1)

−
σ2

1

(
N
m

)2

2
(

m+a1N
m

)2
(m + α1 + δ1)

− 1)

−
β1Θ(t)

m
+

Q2(t)
t
−

1
t

m + a1N
m

[
(ln I1(t) − ln I1(0)) + b1(I1(t) − I1(0))

]}
(A5)

≥



1
∆

{
m + a1N

m
(m + α1 + δ1)(

β1(N − (N + δ2)ε)
(m + a1N)(m + α1 + δ1)

−
σ2

1

(
N
m

)2

2
(

m+a1N
m

)2
(m + α1 + δ1)

− 1)

−
β1Θ(t)

m
+

Q2(t)
t

+
1
t

m + a1N
m

[
ln I1(0) − b1(I1(t) − I1(0))

]}
, 0 < I1(t) < 1,

1
∆

{
a1(m + α1 + δ1)(

β1(N − (N + δ2)ε)
(m + a1N)(m + α1 + δ1)

−
σ2

1

(
N
m

)2

2
(

m+a1N
m

)2
(m + α1 + δ1)

− 1)

−
β1Θ(t)

m
+

Q2(t)
t
−

1
t

m + a1N
m

[
(ln I1(t) − ln I1(0)) + b1(I1(t) − I1(0))

]}
, 1 < I1(t),
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where ∆ =
β1(m+δ1)

m + b1(m + a1N)(m + α1 + δ1).
By Lemma 3, we get that lim

t→+∞

Q2(t)
t = 0. We can observe that I1(t) ≤ N

m ; thus, we have that

lim
t→+∞

I1(t)
t = 0 and lim

t→+∞

ln I1(t)
t = 0 as I1(t) ≥ 1 and lim

t→+∞
Θ(t) = 0.

When the limit inferior of both sides of (A5) are taken into account, we have

lim inf
t→+∞

〈I1(t)〉 ≥

(
1 + a1

N
m

)
(m + α1 + δ1)

∆

(
β1(N − (N + δ2)ε)

m
(
1 + a1

N
m

)
(m + α1 + δ1)

−
σ2

1

(
N
m

)2

2
(
1 + a1

N
m

)2
(m + α1 + δ1)

− 1
)

≥0.

Allowing for ε→ 0, we have

lim inf
t→+∞

〈I1(t)〉 ≥
(m + a1N)(m + α1 + δ1)

β1(m + δ1) + b1(m + a1N)(m + α1 + δ1)
(Rs

1 − 1).

Due to the fact that the methods of proving parts (ii) and (i) are similar, this step will not be repeated.
Part (iii). Take note that

〈S (t)〉 =
N
m
−

m + δ1

m
〈I1(t)〉 −

m + δ2

m
〈I2(t)〉 −

Θ(t)
m

. (A6)

Define

V(t) = ln
[
I(1+a1

N
m )

1 (t)I(1+a2
N
m )

2 (t)
]

+

[
b1(1 + a1

N
m

)I1(t) + b2(1 + a2
N
m

)I2(t)
]
. (A7)

Consequently, V(t) is bounded. We have

D+V(t) =

2∑
i=1

( (
1 + ai

N
m

)
βiS

(1 + aiS )(1 + biIi)
−

(
1 + ai

N
m

)
(m + αi + δi) −

(
1 + ai

N
m

)
σ2

i S 2

2((1 + aiS )(1 + biIi))2

)
dt

+

2∑
i=1

(
1 + ai

N
m

)
σiS

(1 + aiS )(1 + biIi)
dBi(t) +

2∑
i

bi

(
1 + ai

N
m

) ( βiS Ii

(1 + aiS )(1 + biIi)
− (m + αi + δi)Ii

)
dt

+

2∑
i

bi

(
1 + ai

N
m

)
σiS Ii

(1 + aiS )(1 + biIi)
dBi(t)

≥

2∑
i=1

( (
1 + ai

N
m

)
βiS

1 + ai
N
m + biIi + aibi

N
m Ii
−

(
1 + ai

N
m

)
(m + αi + δi) −

(
1 + ai

N
m

)
σ2

i S 2

2((1 + aiS )(1 + biIi))2

)
dt

+

2∑
i=1

(
1 + ai

N
m

)
σiS(

1 + ai
N
m

)
(1 + biIi)

dBi(t) +

2∑
i

bi

(
1 + ai

N
m

) ( βiS Ii(
1 + ai

N
m

)
(1 + biIi)

− (m + αi + δi)Ii

)
dt

+

2∑
i

bi

(
1 + ai

N
m

)
σiS Ii

1 + ai
N
m + biIi + aibi

N
m Ii

dBi(t)

≥

(β1 + β2)S −
2∑
i

(m + αi + δi)(1 + biIi)
(
1 + ai

N
m

)
+

2∑
i=1

σ2
i

(
N
m

)2

2(m+aiN)
m

 dt +

2∑
i

σiS dBi(t). (A8)
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On the sides of (A8), dividing by t > 0 and integrating from 0 to t gives

V(t) − V(0)
t

≥

2∑
i=1

(
βi〈S (t)〉 − (m + αi + δi)

(
1 + ai

N
m

)
(1 + bi〈Ii(t)〉) −

σ2
i ( N

m )2

2(m+aiN)
m

+
Qi

t

)

=(β1 + β2)
N
m
−

2∑
i=1

(m + αi + δi) −
2∑

i=1

σ2
i

(
N
m

)2

2
(
1 + ai

N
m

) − β1 + β2

m
Θ(t) +

2∑
i=1

Qi

t

−

2∑
i=1

(
βi

m
(m + δi) + bi(m + αi + δi)

(
1 + ai

N
m

))
〈Ii(t)〉

≥

2∑
i=1

(
1 + ai

N
m

)
(m + αi + δi)

( βiN
(m + aiN)(m + αi + δi)

−
σ2

i N2

2
(
1 + ai

N
m

)
(m + αi + δi)

− 1
)

− ∆max [〈I1(t)〉 + 〈I2(t)〉] −
2∑

i=1

(
βi

m
Θ(t) −

Qi

t

)
, (A9)

where

Qi(t) =

∫ t

0
σiS (τ)dBi(τ), ∆max =

2∑
i=1

[
β1 + β2

m
(m + δi) + bi(m + αi + δi)

]
.

It is possible to rewrite the inequality (A9) as〈 2∑
i=1

Ii(t)
〉
≥

1
∆max

( 2∑
i=1

(
1 + ai

N
m

)
(m + αi + δi)

( βiN
(m + aiN)(m + αi + δi)

−
σ2

i N2

2
(
1 + ai

N
m

)
(m + αi + δi)

− 1
)

+
V(0) − V(t)

t
−

2∑
i=1

βi

m
Θ(t) +

2∑
i=1

Qi

t

)
. (A10)

By Lemma 3, we have that lim
t→+∞

Qi(t)
t = 0 for i = 1, 2. And we can see that lim

t→+∞
Θ(t) = 0 and

lim
t→+∞

V(t)
t = 0.

Taking the limit inferior of both sides of (A10) yields

lim inf
t→+∞

〈 2∑
i=1

Ii(t)
〉
≥

1
∆max

2∑
i=1

(
1 + ai

N
m

)
(m + αi + δi)(Rs

i − 1) > 0.
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