Electronic
Research Archive

Research article

Dynamic analysis of a stochastic epidemic model incorporating the double epidemic hypothesis and Crowley-Martin incidence term

Wenxuan Li and Suli Liu*
College of Mathematics, Jilin University, Changchun 130012, China
* Correspondence: Email: liusuli@jlu.edu.cn; Tel: +8615143080243.

Abstract

The host population in epidemiology may actually be at risk of more than two infectious diseases with stochastic complicated interaction, e.g., HIV and HBV. In this paper, we propose a class of stochastic epidemic model that applies the double epidemic hypothesis and Crowley-Martin incidence rate in order to explore how stochastic disturbances affect the spread of diseases. While disregarding stochastic disturbances, we examine the dynamic features of the system in which the local stability of equilibria are totally determined by the basic reproduction numbers. We focus particularly on the threshold dynamics of the corresponding stochastic system, and we obtain the extinction and permanency conditions for a pair of infectious diseases. We find that the threshold dynamics of the deterministic and stochastic systems vary significantly: (i) disease outbreaks can be controlled by appropriate stochastic disturbances; (ii) diseases die out when the intensity of environmental perturbations is higher. The effects of certain important parameters on deterministic and stochastic disease transmission were obtained through numerical simulations. Our observations indicate that controlling epidemics should improve the effectiveness of prevention measures for susceptible individuals while improving the effectiveness of treatment for infected individuals.

Keywords: stochastic epidemic model; double epidemic hypothesis; basic reproduction number; Crowley-Martin incidence

1. Introduction

Smallpox, cholera, AIDS, COVID-19 and other infectious disease epidemics have wreaked immense havoc on the economy and way of life of the populace. Many mathematical models have been developed by researchers to explore the dynamical behavior of infectious diseases and thus control their transmission and gain a deeper understanding of these diseases [1-6]; among which, higherorder networks are widely used the spreading dynamics [7-9]. Compartmental models, which were originally established by Kermack and McKendrick [10], constitute a class of representative infectious
disease models that includes the S IR model [11], S IS model [12], SIRS model [13], SEIR model [14], $S I_{1} \cdots I_{k} R$ [15] model and other variations [16-19].

Most epidemic models only concentrate on the transmission of a unique infectious disease; however, the host population may actually be at risk of more than two infectious diseases with complicated interaction, and they could occur as parallel, competitive or stimulative. A large percentage of people at risk for HIV infection is also at risk for HBV infection due to shared mechanisms of transmission [20]. Casalegno et al. [21] discovered that during the first half of fall 2009, in France, rhinovirus interference slowed the influenza pandemic and affected the transmission of the H1N1 virus. During the COVID-19 pandemic, it was discovered in [22] that the SARS-COV-2 Delta (B.1.617.2) variant had replaced the Alpha (B.1.1.7) variation on a significant scale, which is related to the Delta version's earlier invasion and superior transmissibility. In this paper, we only focus on two epidemics spreading parallelly, and we assume that an epidemic caused by one virus prevents the occurrence of the other. For related works, we recommend the references [23-25] and the references therein.

The rate at which new infections emerge, known as the disease incidence, is a crucial variable in mathematical models of infectious disease dynamics. The incidence rate has different forms which are commonly used as follows. It is assumed that the exposure rate is proportionate to the whole population and that the mass-action (bilinear) incidence is $\beta S I$ [26]. The standard incidence is $\beta S I / N$, and it requires the assumption that the number of people exposed to a sick person per unit time is constant [27]. If the exposure rate is saturation of the susceptible S or infective I, the incidence will be the saturation incidence $\beta S I /(1+a S)$ or $\beta S I /(1+a I)$ [23]. Other incidence forms, such as the nonlinear incidence rate $\beta S I^{p} /\left(1+\alpha S^{q}\right)$ and Beddington-DeAngelis incidence $\beta S I /(1+a S+b I)$, have been discussed in [28,29].

A particular Crowley-Martin functional response function was proposed in 1975 [30], and it is widely used in prey-predator models [31], eco-epidemic models [32] and epidemic models [33-35]. In infectious disease models, the Crowley-Martin incidence is represented by $\beta S I /(1+a S)(1+b I)$, which takes into account the interaction between susceptible and infected populations, where a measures the preventive effect of susceptible individuals and b measures the treatment effect with respect to infected individuals.

For these reasons, this paper presents a deterministic epidemic model with the double epidemic hypothesis and Crowley-Martin nonlinear incidence term. We divided the population into three compartments: the susceptible population S, the infected population I_{1} infected with virus D_{1} and the infected population I_{2} infected with virus D_{2}. In addition, susceptible individuals enter at a rate of constant N, β_{i} is the rate of transmission from a susceptible person to an infected person, the natural and causal mortality rates of the population are m and δ_{i} respectively, and α_{i} is the rate of infected people transitioning to the susceptible class. The flowchart of disease transmission and progression is as shown in Figure 1; we formulate the following dynamical model:

$$
\begin{align*}
\frac{\mathrm{d} S}{\mathrm{dt}} & =N-\frac{\beta_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\frac{\beta_{2} S I_{2}}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)}+\alpha_{1} I_{1}+\alpha_{2} I_{2}-m S, \\
\frac{\mathrm{~d} I_{1}}{\mathrm{dt}} & =\frac{\beta_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\left(m+\alpha_{1}+\delta_{1}\right) I_{1}, \tag{1.1}\\
\frac{\mathrm{~d} I_{2}}{\mathrm{dt}} & =\frac{\beta_{2} S I_{2}}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)}-\left(m+\alpha_{2}+\delta_{2}\right) I_{2} .
\end{align*}
$$

In fact, disease transmission is quite sensitive to disturbances caused by external environmental

Figure 1. The disease transmission graph for model (1.1).
factors, such as temperature, light, rainstorms and human intervention. These stochastic factors could have a significant impact on almost all parameters of the model in multiple ways [36-40]. The transmission rate β oscillates around an average value as a result of the environment's ongoing oscillations brought on by the impact of white noise $\beta+\sigma \dot{B}(t)$, where $B(t)$ represents the standard Brownian motions and $\sigma>0$ is the intensity of environmental fluctuations. Then, we obtain a stochastic epidemic model as follows:

$$
\left\{\begin{align*}
\mathrm{d} S= & \left(N-\frac{\beta_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\frac{\beta_{2} S I_{2}}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)}+\alpha_{1} I_{1}+\alpha_{2} I_{2}-m S\right) \mathrm{d} t \\
& -\frac{\sigma_{1} S I_{1}}{1+a_{1} S+b_{1} I_{1}+a_{1} b_{1} S I_{1}} \mathrm{~d} B_{1}(t)-\frac{\sigma_{2} S I_{2}}{1+a_{2} S+b_{2} I_{2}+a_{2} b_{2} S I_{2}} \mathrm{~d} B_{2}(t), \tag{1.2}\\
\mathrm{d} I_{1}= & \left(\frac{\beta_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\left(m+\alpha_{1}+\delta_{1}\right) I_{1}\right) \mathrm{d} t+\frac{\sigma_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)} \mathrm{d} B_{1}(t), \\
\mathrm{d} I_{2}= & \left(\frac{\beta_{2} S I_{2}}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)}-\left(m+\alpha_{2}+\delta_{2}\right) I_{2}\right) \mathrm{d} t+\frac{\sigma_{2} S I_{2}}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)} \mathrm{d} B_{2}(t) .
\end{align*}\right.
$$

The following describes how this manuscript is structured. In Section 2, we discuss the dynamics of deterministic systems, especially for the asymptotic stability of equilibria. In Section 3, we establish the extinction and persistence conditions of the corresponding stochastic system. In Section 4, through a number of numerical simulations, we explore the effects of the perturbation strength σ_{i} and parameters a_{i} and b_{i} on the dynamics of the system. The paper ends with a short discussion and conclusion.

2. Dynamics of deterministic system

Prior to investigating the stochastic system, it is also essential to ascertain the dynamical behaviors of the deterministic system.

For the deterministic system (1.1) or the stochastic system (1.2), we obtain

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left(S+I_{1}+I_{2}\right) & =N-m\left(S+I_{1}+I_{2}\right)-\delta_{1} I_{1}-\delta_{2} I_{2} \\
& \leq N-m\left(S+I_{1}+I_{2}\right) .
\end{aligned}
$$

This implies that

$$
\limsup _{t \rightarrow \infty}\left(S+I_{1}+I_{2}\right) \leq \frac{N}{m} .
$$

We denote

$$
\Gamma=\left\{\left(S(t), I_{1}(t), I_{2}(t)\right) \in \mathbb{R}_{+}^{3}: S(t)+I_{1}(t)+I_{2}(t) \leq \frac{N}{m}, t \geq 0\right\}
$$

then, regarding the solutions of system (1.1), Γ is a positively invariant set.
Utilizing the next generation matrix method [41,42], we can obtain the basic reproduction number:

$$
\mathcal{R}_{i}=\frac{\beta_{i} N}{\left(m+a_{i} N\right)\left(m+\alpha_{i}+\delta_{i}\right)}, \quad i=1,2 .
$$

The equilibrium equation is listed as follows:

$$
\begin{align*}
& N-\frac{\beta_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\frac{\beta_{2} S I_{2}}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)}+\alpha_{1} I_{1}+\alpha_{2} I_{2}-m S=0, \\
& \frac{\beta_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\left(m+\alpha_{1}+\delta_{1}\right) I_{1}=0, \tag{2.1}\\
& \frac{\beta_{2} S I_{2}}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)}-\left(m+\alpha_{2}+\delta_{2}\right) I_{2}=0 .
\end{align*}
$$

System (1.1) has four possible equilibria:
(i) disease-free equilibrium $E_{0}=\left(\frac{N}{m}, 0,0\right)$;
(ii) boundary equilibrium $E_{1}=\left(\bar{S}_{1}, \bar{I}_{1}, 0\right)$, where $0<\bar{S}_{1}<\frac{N}{m}, \bar{I}_{1}>0$;
(iii) boundary equilibrium $E_{2}=\left(\bar{S}_{2}, 0, \bar{I}_{2}\right)$, where $0<\bar{S}_{2}<\frac{N}{m}, \bar{I}_{2}>0$;
(iv) endemic equilibrium $E_{3}=\left(S^{*}, I_{1}^{*}, I_{2}^{*}\right)$, where $S^{*}, I_{1}^{*}, I_{2}^{*}>0$.

By (2.1), when $I_{2}=0$ and $I_{1} \neq 0$, we obtain the boundary equilibrium

$$
E_{1}=\left(\frac{N-\left(m+\delta_{1}\right) \bar{I}_{1}}{m}, \bar{I}_{1}, 0\right),
$$

and \bar{I}_{1} is the positive root of

$$
f\left(\bar{I}_{1}\right)=X \bar{I}_{1}^{2}+Y \bar{I}_{1}+Z=0
$$

where

$$
X=a_{1} b_{1}\left(m+\delta_{1}\right)>0
$$

when $\mathcal{R}_{1}>1$, we have

$$
\begin{aligned}
& Y=\left(m+a_{1} N\right) \frac{m+\delta_{1}}{N}\left(-\frac{b_{1} N}{m+\delta_{1}}+\frac{a_{1} N}{m+a_{1} N}-\mathcal{R}_{1}\right)<0, \\
& Z=\left(m+a_{1} N\right)\left(\mathcal{R}_{1}-1\right)>0 .
\end{aligned}
$$

If $\Delta=Y^{2}-4 X Z=0$, there exists a unique E_{1} equilibrium with $\bar{I}_{1}=-\frac{Y}{2 X}$; if $\Delta=Y^{2}-4 X Z>0$, then $\operatorname{system}(1.1)$ has two E_{1} equilibria with $\bar{I}_{1}=\frac{-Y \pm \sqrt{Y^{2}-4 X Z}}{2 X}$.

Similarly, by (2.1), when $I_{1}=0$ and $I_{2} \neq 0$, we obtain the boundary equilibrium

$$
E_{2}=\left(\frac{N-\left(m+\delta_{2}\right) \bar{I}_{2}}{m}, 0, \bar{I}_{2}\right) ;
$$

if $\mathcal{R}_{2}>1$ then there may exist one or two-type equilibria E_{2} as well.
By equilibrium equation (2.1), when $\mathcal{R}_{i}>1, i=1,2$, the endemic equilibrium $E_{3}=\left(S^{*}, I_{1}^{*}, I_{2}^{*}\right)$ exists and satisfies

$$
E_{3}=\left(\frac{N-\left(m+\delta_{1}\right) I_{1}^{*}-\left(m+\delta_{2}\right) I_{2}^{*}}{m}, I_{1}^{*}, I_{2}^{*}\right),
$$

where the relationship between I_{1}^{*} and I_{2}^{*} satisfies

$$
I_{2}^{*}=\frac{\left(m+\alpha_{1}+\delta_{1}\right)\left(1+b_{1} I_{1}^{*}\right)\left[m+a_{1}\left(N-\left(m+\delta_{1}\right) I_{1}^{*}\right)\right]-\beta_{1}\left(N-\left(m+\delta_{1} I_{1}^{*}\right)\right)}{\left(m+\delta_{2}\right)\left(a_{1}\left(m+\alpha_{1}+\delta_{1}\right)\left(1+b_{1} I_{1}^{*}-\beta_{1}\right)\right)}
$$

Theorem 1. 1). If $\mathcal{R}_{1}<1$ and $\mathcal{R}_{2}<1$, then the disease-free equilibrium E_{0} is locally asymptotically stable.
2). If $\mathcal{R}_{1}>1$ and equilibrium E_{1} exists, then the boundary equilibrium E_{1} is locally asymptotically stable.
3). If $\mathcal{R}_{2}>1$ and equilibrium E_{2} exists, then the boundary equilibrium E_{2} is locally asymptotically stable.
4). If $\mathcal{R}_{1}>1, \mathcal{R}_{2}>1$ and equilibrium E_{3} exists, then the endemic equilibrium E_{3} is locally asymptotically stable.

The proof is given in Appendix A.

3. Dynamics of stochastic system

3.1. Existence and uniqueness of the positive solution

Lemma 1 ([43]). For any initial value $\left(S(0), I_{1}(0), I_{2}(0)\right) \in \mathbb{R}_{+}^{3}$, there exists a unique solution $\left(S(t), I_{1}(t), I_{2}(t)\right)$ to system (1.2) on $t \geq 0$, and the solution will remain in \mathbb{R}_{+}^{3} with probability 1 , i.e., $\left(S(t), I_{1}(t), I_{2}(t)\right) \in \mathbb{R}_{+}^{3}$ for all $t \geq 0$ a.s.

Proof. The proof of Lemma 1 is similar to that in Theorem 2.1 of [44]; we therefore omit it here.
Lemma 2 ([29]). Γ is an almost positive invariant set of system (1.2), that is, if $\left(S(0), I_{1}(0), I_{2}(0)\right) \in \Gamma$, then $\mathbb{P}\left(S(t), I_{1}(t), I_{2}(t) \in \Gamma\right)=1$ for all $t \geq 0$.

Define the stochastic basic reproduction numbers

$$
\begin{aligned}
\mathcal{R}_{i}^{s} & =\frac{\beta_{i} N}{\left(m+a_{i} N\right)\left(m+\alpha_{i}+\delta_{i}\right)}-\frac{\sigma_{i}^{2} N^{2}}{2\left(m+a_{i} N\right)^{2}\left(m+\alpha_{i}+\delta_{i}\right)} \\
& =\mathcal{R}_{i}-\frac{\sigma_{i}^{2} N^{2}}{2\left(m+a_{i} N\right)^{2}\left(m+\alpha_{i}+\delta_{i}\right)}, \quad i=1,2 .
\end{aligned}
$$

3.2. Extinction and persistence of stochastic system

We focus on disease extinction and persistence in this subsection since stochastic systems have distinct extinction and persistence conditions compared to deterministic systems. First, the following lemma is presented to demonstrate the extinction and persistence of diseases.

Lemma 3 ($[42,45])$. Let $\left(S(t), I_{1}(t), I_{2}(t)\right)$ be a solution of system (1.2) with initial value $\left(S(0), I_{1}(0), I_{2}(0)\right) \in \mathbb{R}_{+}^{3}$. Then

$$
\lim _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \frac{\sigma_{i} S(\tau)}{\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)} \mathrm{d} B_{i}(\tau)=0, \quad \lim _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \sigma_{i} S(\tau) \mathrm{d} B_{i}(\tau)=0, \quad i=1,2
$$

Theorem 2. Suppose that one of the following two assumptions is satisfied:
$\left(\mathrm{H}_{1}\right) \sigma_{i}>\hat{\sigma}_{i}:=\max \left\{\sqrt{\frac{\beta_{i}\left(N a_{i}+m\right)}{N}}, \frac{\beta_{i}}{\sqrt{2\left(m+\alpha_{i}+\delta_{i}\right)}}\right\}, \quad i=1,2$;
$\left(\mathrm{H}_{2}\right) \sigma_{i} \leq \sqrt{\frac{\beta_{i}\left(N a_{i}+m\right)}{N}}$ and $\mathcal{R}_{i}^{s}<1, \quad i=1,2$.
Then the solution $\left(S(t), I_{1}(t), I_{2}(t)\right)$ of system (1.2) with any initial value $\left(S(0), I_{1}(0), I_{2}(0)\right) \in \Gamma$ satisfies that

$$
\lim _{t \rightarrow+\infty} S(t)=\frac{N}{m}, \quad \lim _{t \rightarrow+\infty} I_{1}(t)=\lim _{t \rightarrow+\infty} I_{2}(t)=0 .
$$

Proof. By using Itô's formula, we have

$$
\begin{align*}
\mathrm{d} \ln I_{i}(t)= & \left(\frac{\beta_{i} S}{\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)}-\frac{\sigma_{i}^{2} S^{2}}{2\left(\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)\right)^{2}}-\left(m+\alpha_{i}+\delta_{i}\right)\right) \mathrm{d} t \tag{3.1}\\
& +\frac{\sigma_{i} S}{\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)} \mathrm{d} B_{i}(t), \quad i=1,2 .
\end{align*}
$$

Case 1: Under assumption $\left(\mathrm{H}_{1}\right)$, integrating both sides of (3.1), we have

$$
\begin{align*}
\ln I_{i}(t)= & \int_{0}^{t}\left(\frac{\beta_{i} S(\tau)}{\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)}-\frac{\sigma_{i}^{2} S^{2}(\tau)}{2\left(\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)\right)^{2}}\right) \mathrm{d} \tau \\
& -\left(m+\alpha_{i}+\delta_{i}\right) t+Q_{i}(t)+\ln I_{i}(0) \\
= & -\frac{\sigma_{i}^{2}}{2} \int_{0}^{t}\left(\frac{S(\tau)}{\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)}-\frac{\beta_{i}}{\sigma_{i}^{2}}\right)^{2} \mathrm{~d} \tau-\left(m+\alpha_{i}+\delta_{i}\right) t \tag{3.2}\\
& +\frac{\beta_{i}^{2}}{2 \sigma_{i}^{2}} t+Q_{i}(t)+\ln I_{i}(0) \\
\leq & -\left(m+\alpha_{i}+\delta_{i}\right) t+\frac{\beta_{i}^{2}}{2 \sigma_{i}^{2}} t+\ln I_{i}(0)+Q_{i}(t),
\end{align*}
$$

where

$$
\begin{equation*}
Q_{i}(t)=\int_{0}^{t} \frac{\sigma_{i} S(\tau)}{\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)} \mathrm{d} B_{i}(\tau) \tag{3.3}
\end{equation*}
$$

dividing both sides of (3.2) by t, we have

$$
\begin{equation*}
\frac{\ln I_{i}(t)}{t} \leq-\left(m+\alpha_{i}+\delta_{i}-\frac{\beta_{i}^{2}}{2 \sigma_{i}^{2}}\right)+\frac{Q_{i}(t)}{t}+\frac{\ln I_{i}(0)}{t} \tag{3.4}
\end{equation*}
$$

by Lemma 3, we have

$$
\lim _{t \rightarrow+\infty} \frac{Q_{i}(t)}{t}=0
$$

since $\sigma_{i}>\frac{\beta_{i}}{\sqrt{2\left(m+\alpha_{i}+\delta_{i}\right)}}$ for $i=1,2$, taking the limit superior on both sides of (3.4) leads to

$$
\limsup _{t \rightarrow+\infty} \frac{\ln I_{i}(t)}{t} \leq-\left(m+\alpha_{i}+\delta_{i}-\frac{\beta_{i}^{2}}{2 \sigma_{i}^{2}}\right)<0
$$

Thus, $\lim _{t \rightarrow+\infty} I_{i}(t)=0$ a.s.
Case 2: Under assumption $\left(\mathrm{H}_{2}\right)$, similar to the calculation in Case 1, we have

$$
\begin{aligned}
\frac{\ln I_{i}(t)}{t}= & \frac{1}{t}\left\{\int _ { 0 } ^ { t } \left(\frac{\beta_{i} S(\tau)}{\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)}-\frac{\sigma_{i}^{2} S^{2}(\tau)}{2\left(\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)\right)^{2}}\right.\right. \\
& \left.\left.-\left(m+\alpha_{i}+\delta_{i}\right)\right) \mathrm{d} \tau+Q_{i}(t)+\ln I_{i}(0)\right\} \\
= & \frac{1}{t}\left\{\int_{0}^{t} \Psi\left(\frac{S(\tau)}{\left(1+a_{i} S(\tau)\right)\left(1+b_{i} I_{i}(\tau)\right)}\right) \mathrm{d} \tau+Q_{i}(t)+\ln I_{i}(0)\right\},
\end{aligned}
$$

where the function $\Upsilon(x)$ is defined as

$$
\Upsilon: x \mapsto-\frac{1}{2} \sigma_{i}^{2} x^{2}+\beta_{i} x-\left(m+\alpha_{i}+\delta_{i}\right)
$$

Take note that $\Upsilon(x)$ increases monotonically for $x \in\left[0, \frac{\beta_{i}}{\sigma_{i}^{2}}\right]$ and $x<\frac{N}{a_{i} N+m} ;$ thus, when $\sigma_{i} \leq \sqrt{\frac{\beta_{i}\left(N a_{i}+m\right)}{N}}$, we have

$$
\begin{align*}
\frac{\ln I_{i}(t)}{t} & \leq \frac{\beta_{i} N}{m+a_{i} N}-\frac{\sigma_{i}^{2} N^{2}}{2\left(m+a_{i} N\right)^{2}}-\left(m+\alpha_{i}+\delta_{i}\right)+\frac{1}{t}\left(Q_{i}(t)+\ln I_{i}(0)\right) \tag{3.5}\\
& =\left(m+\alpha_{i}+\delta_{i}\right)\left(\mathcal{R}_{i}^{s}-1\right)+\frac{1}{t}\left(Q_{i}(t)+\ln I_{i}(0)\right)
\end{align*}
$$

Taking the limit superior of both sides of (3.5) leads to

$$
\limsup _{t \rightarrow+\infty} \frac{\ln I_{i}(t)}{t} \leq\left(m+\alpha_{i}+\delta_{i}\right)\left(\mathcal{R}_{i}^{s}-1\right)<0
$$

which implies that $\lim _{t \rightarrow+\infty} I_{i}(t)=0, i=1,2$.
We suppose that $0<I_{i}(t)<\varepsilon_{i}(i=1,2)$ for all $t \geq 0$; by the first equation of system (1.2), we have

$$
\begin{equation*}
\frac{\mathrm{d} S(t)}{\mathrm{d} t} \geq N-\left(m+\beta_{1} \varepsilon_{1}+\beta_{2} \varepsilon_{2}+\sigma_{1} \varepsilon_{1}\left|\dot{B}_{1}(t)\right|+\sigma_{2} \varepsilon_{2}\left|\dot{B}_{2}(t)\right|\right) S(t) \tag{3.6}
\end{equation*}
$$

Because $\varepsilon_{1} \rightarrow 0$ and $\varepsilon_{2} \rightarrow 0$, if we divide (3.6) by the limit inferior on both sides, we have

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} S(t) \geq \frac{N}{m} \tag{3.7}
\end{equation*}
$$

Combining this with $\limsup _{t \rightarrow+\infty} S(t) \leq \frac{N}{m}$, it is easy to see that

$$
\lim _{t \rightarrow+\infty} S(t)=\frac{N}{m} \text { a.s. }
$$

We will present the persistence result of system (1.2) in the following theorem, whose proof is given in Appendix B.

Theorem 3. If we assume that the solution to system (1.2) is $\left(S(t), I_{1}(t), I_{2}(t)\right)$ and that $\left(S(0), I_{1}(0), I_{2}(0)\right) \in \Gamma$ is the initial value, then we get the following:
(i) The disease I_{2} becomes extinct and the disease I_{1} becomes permanent in the mean if $\mathcal{R}_{1}^{s}>1, \mathcal{R}_{2}^{s}<1$ and the disturbance intensity satisfies that $\sigma_{2} \leq \sqrt{\beta_{2}\left(a_{2}+\frac{m}{N}\right)}$. Additionally, I_{1} satisfies

$$
\liminf _{t \rightarrow+\infty}\left\langle I_{1}(t)\right\rangle \geq \frac{\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}{\beta_{1}\left(m+\delta_{1}\right)+b_{1}\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}\left(\mathcal{R}_{1}^{s}-1\right) .
$$

(ii) The disease I_{1} becomes extinct and the disease I_{2} becomes permanent in the mean if $\mathcal{R}_{1}^{s}<1, \mathcal{R}_{2}^{s}>1$ and the disturbance intensity satisfies that $\sigma_{1} \leq \sqrt{\beta_{1}\left(a_{1}+\frac{m}{N}\right)}$. Additionally, I_{2} satisfies

$$
\liminf _{t \rightarrow+\infty}\left\langle I_{2}(t)\right\rangle \geq \frac{\left(m+a_{2} N\right)\left(m+\alpha_{2}+\delta_{2}\right)}{\beta_{2}\left(m+\delta_{2}\right)+b_{2}\left(m+a_{2} N\right)\left(m+\alpha_{2}+\delta_{2}\right)}\left(\mathcal{R}_{2}^{s}-1\right) .
$$

(iii) If $\mathcal{R}_{i}^{s}>1$, then the two infectious diseases I_{i} are permanent in mean; moreover, I_{i} satisfies

$$
\liminf _{t \rightarrow+\infty}\left\langle\sum_{i=1}^{2} I_{i}(t)\right\rangle \geq \frac{1}{\Delta_{\max }} \sum_{i=1}^{2} a_{i}\left(m+\alpha_{i}+\delta_{i}\right)\left(\mathcal{R}_{i}^{s}-1\right),
$$

where

$$
\Delta_{\max }=\sum_{i=1}^{2}\left(\frac{\beta_{1}+\beta_{2}}{m}\left(m+\delta_{i}\right)+b_{i}\left(m+\alpha_{i}+\delta_{i}\right)\right) .
$$

4. Simulations

In this section of this paper, we will continue with our investigation of the deterministic system and the stochastic system by using the numerical method. Before looking at how changes in the environment influence the spread of diseases and the effect of the parameters a_{i} and b_{i} on the dynamics of the disease, we first compare the extinction conditions for the same parameter values for the stochastic system and the deterministic system.

To simulate the behavior of the stochastic system (1.2), we made use of Milstein's method [45, 46]. Following [23,47], with the exception of σ_{i}, the other parameter values of system (1.1) and system (1.2) were derived as given in Table 1. Then, we chose initial values as $\left(S(0), I_{1}(0), I_{2}(0)\right)=(15,10,5)$.

Table 1. Parameter values of system (1.1) and system (1.2) in numerical simulations.

Parameter	Description	Value	Sources
N	Influx of susceptible population	1	$[23]$
m	Rate of natural death	0.1	$[23,47]$
β_{1}	Transmission coefficient for virus D_{1}	1.2	$[23,47]$
β_{2}	Transmission coefficient for virus D_{2}	1.5	$[23,47]$
a_{1}	Preventive effect of virus D_{1}	1	$[23]$
a_{2}	Preventive effect of virus D_{2}	1.5	$[23]$
b_{1}	Treatment effect of virus D_{1}	2	$[23]$
b_{2}	Treatment effect of virus D_{2}	1	$[23]$
δ_{1}	Rate of virus D_{1}-related death	0.2	$[23,47]$
δ_{2}	Rate of virus D_{2}-related death	0.4	$[23,47]$
α_{1}	Recovery rate for virus D_{1}	0.9	$[23,47]$
α_{2}	Recovery rate for virus D_{2}	0.9	$[23,47]$

$$
\left\{\begin{aligned}
S_{k+1}= & S_{k}+\left(N-\frac{\beta_{1} S_{k} I_{1 k}}{\left(1+a_{1} S_{k}\right)\left(1+b_{1} I_{1 k}\right)}-\frac{\beta_{2} S_{k} I_{2 k}}{\left(1+a_{2} S_{k}\right)\left(1+b_{2} I_{2 k}\right)}+\alpha_{1} I_{1 k}+\alpha_{2} I_{2 k}-m S_{k}\right) \Delta t \\
& -\left(\sigma_{1} \frac{S_{k} I_{1 k}}{\left(1+a_{1} S_{k}\right)\left(1+b_{1} I_{1 k}\right)}+\sigma_{2} \frac{S_{k} I_{2 k}}{\left(1+a_{2} S_{k}\right)\left(1+b_{2} I_{2 k}\right)}\right) \sqrt{\Delta t \xi_{k}} \\
& -\left(\frac{\sigma_{1}^{2}}{2}\left(\frac{S_{k} I_{1 k}}{\left(1+a_{1} S_{k}\right)\left(1+b_{1} I_{1 k}\right)}\right)+\frac{\sigma_{2}^{2}}{2}\left(\frac{S_{k} I_{2 k}}{\left(1+a_{2} S_{k}\right)\left(1+b_{2} I_{2 k}\right)}\right)\right)\left(\xi_{k}^{2}-1\right) \Delta t, \\
I_{1 k+1}= & \frac{\sigma_{1} S_{k} I_{1 k}}{\left(1+a_{1} S_{k}\right)\left(1+b_{1} I_{1 k}\right)} \sqrt{\Delta t \xi_{k}}+\frac{\sigma_{1}^{2}}{2}\left(\frac{S_{k} I_{1 k}}{\left(1+a_{1} S_{k}\right)\left(1+b_{1} I_{1 k}\right)}\right)\left(\xi_{k}^{2}-1\right) \Delta t+I_{1 k} \\
& +\left(\frac{\beta_{1} S_{k} I_{1 k}}{\left(1+a_{1} S_{k}\right)\left(1+b_{1} I_{1 k}\right)}-\left(m+\alpha_{1}+\delta_{1}\right) I_{1 k}\right) \Delta t, \\
I_{2 k+1}= & \frac{\sigma_{2} S_{k} I_{2 k}}{\left(1+a_{2} S_{k}\right)\left(1+b_{2} I_{2 k}\right)} \sqrt{\Delta t \xi_{k}}+\frac{\sigma_{2}^{2}}{2}\left(\frac{S_{k} I_{2 k}}{\left(1+a_{2} S_{k}\right)\left(1+b_{2} I_{2 k}\right)}\right)\left(\xi_{k}^{2}-1\right) \Delta t+I_{2 k} \\
& +\left(\frac{\beta_{2} S_{k} I_{2 k}}{\left(1+a_{2} S_{k}\right)\left(1+b_{2} I_{2 k}\right)}-\left(m+\alpha_{2}+\delta_{2}\right) I_{2 k}\right) \Delta t .
\end{aligned}\right.
$$

4.1. Extinction conditions of two diseases in deterministic and stochastic systems

In order to investigate the dynamical differences that exist between systems (1.1) and (1.2), we give five examples for numerical simulations.

Example 1. When I_{2} is facing extinction in a deterministic system, the stochastic perturbation could change I_{1} from prevalence to extinction. When α_{1} is changed to $0.7, \sigma_{1}=\sigma_{2}=1, \mathcal{R}_{1}=1.091>1, \mathcal{R}_{1}^{s}=$ $1.091-0.379=0.712<1, \mathcal{R}_{2}=0.9375<1$ and $\mathcal{R}_{2}^{s}=0.9375-0.3125=0.625<1$. According to our previous analysis results, disease I_{1} is prevalent and disease I_{2} is subject to extinction in the deterministic system (1.1); however, disease I_{1} and I_{2} are both extinct in the stochastic system (1.2) (see Figure 2(a)).

Figure 2. Dynamics and behavior comparisons between $I_{1}(t)$ and $I_{2}(t)$ for stochastic and deterministic systems. (a) $\mathcal{R}_{1}>1, \mathcal{R}_{2}<1, \mathcal{R}_{1}^{s}<1, \mathcal{R}_{2}^{s}<1$; (b) $\mathcal{R}_{1}<1, \mathcal{R}_{2}>1, \mathcal{R}_{1}^{s}<1, \mathcal{R}_{2}^{s}<1$; (c) $\mathcal{R}_{1}>1, \mathcal{R}_{2}>1, \mathcal{R}_{1}^{s}<1, \mathcal{R}_{2}^{s}>1$; (d) $\mathcal{R}_{1}>1, \mathcal{R}_{2}>1, \mathcal{R}_{1}^{s}>1, \mathcal{R}_{2}^{s}<1$; (e) $\mathcal{R}_{1}>1, \mathcal{R}_{2}>$ $1, \mathcal{R}_{1}^{s}<1, \mathcal{R}_{2}^{s}<1$. The initial value of all solutions is (15,10,5). The time unit is day.

Example 2. When I_{1} is subject to extinction in a deterministic system, the stochastic perturbation could change I_{2} from a prevalence to extinction condition. When α_{2} is changed to $0.7, \delta_{2}$ is 0.2 , $a_{2}=1.3, \sigma_{1}=\sigma_{2}=1, \mathcal{R}_{1}=0.909<1, \mathcal{R}_{1}^{s}=0.909-0.416=0.496<1, \mathcal{R}_{2}=1.071>1$ and $\mathcal{R}_{2}^{s}=1.071-0.255=0.816<1$. According to our previous analysis results, disease I_{1} goes to extinction and disease I_{2} is persistent in the deterministic system (1.1); also, disease I_{1} and I_{2} both go to extinction in the stochastic system (1.2) (see Figure 2(b)).

Example 3. When I_{1} and I_{2} are extinct in a deterministic system, the stochastic perturbation could change I_{1} from a prevalence to extinction condition. When $\delta_{2}=0.1, \sigma_{1}=1$ and $\sigma_{2}=0.1$, it follows that $\mathcal{R}_{1}=1.091>1, \mathcal{R}_{1}^{s}=1.091-0.413=0.678<1, \mathcal{R}_{2}=1.041>1$ and $\mathcal{R}_{2}^{s}=1.041-0.001=$ $1.04>1$. According to our previous analysis results, both disease I_{1} and disease I_{2} are persistent in the deterministic system (1.1); disease I_{1} goes to extinction and I_{2} is persistent in the stochastic system (1.2) (see Figure 2(c)).

Example 4. When I_{1} and I_{2} are extinct in a deterministic system, the stochastic perturbation could change I_{2} from a prevalence to extinction condition. When $\delta_{2}=0.1, \sigma_{1}=0.1$ and $\sigma_{2}=1, \mathcal{R}_{1}=1.091>$ $1, \mathcal{R}_{1}^{s}=1.091-0.0041=1.0869>1, \mathcal{R}_{2}=1.041>1$ and $\mathcal{R}_{2}^{s}=1.041-0.195=0.846<1$. According to our previous analysis results, both disease I_{1} and disease I_{2} are persistent in the deterministic system; also, disease I_{1} is persistent and I_{2} goes to extinction in the stochastic system (1.2) (see Figure 2(d)).

Example 5. When I_{1} and I_{2} are extinct in a deterministic system, the stochastic perturbation could change I_{1} and I_{2} from a prevalence to extinction condition. When $\delta_{2}=0.1, \sigma_{1}=1$ and $\sigma_{2}=1$, $\mathcal{R}_{1}=1.091>1, \mathcal{R}_{1}^{s}=1.091-0.413=0.678<1, \mathcal{R}_{2}=1.041>1$ and $\mathcal{R}_{2}^{s}=1.041-0.195=$ $0.846<1$. According to our previous analysis results, both disease I_{1} and disease I_{2} are persistent in the deterministic system (1.1). In the stochastic system (1.2), both disease I_{1} and disease I_{2} go extinct (see Figure 2(e)).

4.2. The impact of environmental noise

By $\left(\mathrm{H}_{1}\right)$ in Theorem 2, we can see that when the strengths of the perturbations are large, \mathcal{R}_{i}^{s} loses its meaning and the diseases go to extinction. We chose different perturbation strengths for when $\sigma_{i}=0,0.3,0.9$ to observe the trend of the disease. When σ_{i} is larger, the infectious disease I_{i} goes to extinction (see Figure 3). These simulations support our results for $\left(\mathrm{H}_{1}\right)$ in Theorem 2 well.

4.3. The impact of preventive effect a_{i} and treatment effect b_{i}

It should be noted that a_{i} and b_{i} of the Crowley-Martin incidence are key parameters. In this subsection, we discuss the effects of parameters a_{i} and b_{i} on the population and trend of infections by presenting some numerical simulations.

First, we study the influence of preventive effects a_{i} on the population of infective individuals in the deterministic system (1.1). For the case that the parameters in Table 1 are fixed in Table 1, we chose five different sets of values for a_{i}. For the deterministic system (1.1), it can be shown that the bigger the value of a_{i}, the quicker the extinction of disease I_{i} (see Figure 4). Second, we wanted to investigate the influence of the parameter a_{i} on the population of infective individuals in the stochastic system (1.2). We choose the perturbation intensity as $\sigma_{i}=0.3, i=1,2$. At last, we observed the effect of a_{i} in the stochastic system (1.2) (see Figure 5). Similarly, we wanted to study the influence of treatment effects b_{i} on the population of infected individuals in deterministic and stochastic systems (see Figures 6 and 7).

Figure 3. The evolution of a single path of I_{1} and I_{2} for the stochastic system (1.2) when σ_{i} changes. And all other parameters are taken as in Table 1. (a)-(c) Influences of three different values of parameter σ_{i} influence the value of I_{i} when diseases I_{1}, I_{2} are persistent initially; (d)-(f) influence of three different values of parameter σ_{i} on the value of I_{i} when I_{1} is persistent and I_{2} goes to extinction initially; (g)-(i) influences of three different values of parameter σ_{i} on the values of I_{i} when I_{2} is persistent and I_{1} goes to extinction initially. The initial value of all solutions is $(15,10,5)$. The time unit is day.

From the above numerical simulations, we conclude that a larger a_{i} leads to a lower infected prevalence $I_{i}(t)$, and it may result in the extinction in deterministic and stochastic systems. This is because the parameter a_{i} affects \mathcal{R}_{i} and \mathcal{R}_{i}^{s}. Additionally, we found that the infected population $I_{i}(t)$ also decreases when b_{i} increases, but b_{i} cannot lead to extinction.

(a) $\alpha_{i}=0.2$

(b) $\alpha_{i}=0.2$

Figure 4. The impact of the preventive effect a_{i} in the deterministic system (1.1). The preventive effect a_{i} reduces the number of infected individuals and keeps the susceptible individuals from becoming infected: (a) Influences of five different values of parameter a_{1} on the values of I_{1}. (b) Influences of five different values of parameter a_{2} on the values of I_{2}. The initial value of all solutions is $(15,10,5)$. The time unit is day.

Figure 5. The impact of the preventive effect a_{i} in the stochastic system (1.2). The preventive effect a_{i} reduces the number of infected individuals and keeps the susceptible individuals from becoming infected: (c) Influences of five different values of parameter a_{1} on the values of I_{1}. (d) Influences of five different values of parameter a_{2} on the values of I_{2}. The initial value of all solutions is $(15,10,5)$. The time unit is day.

Figure 6. The impact of the treatment effect b_{i} in the deterministic system (1.1). The treatment effect b_{i} reduces the number of infected individuals and keeps the susceptible individuals from becoming infected: (a) Influences of five different values of parameter b_{1} on the values of I_{1}. (b) Influences of five different values of parameter b_{2} on the values of I_{2}. (c) Influences of five different values of parameter b_{1} on the values of I_{1}. (d) Influences of five different values of parameter b_{2} on the values of I_{2}. The initial value of all solutions is $(15,10,5)$. The time unit is day.

Figure 7. The impact of the treatment effect b_{i} in the stochastic system (1.2) when $\sigma_{i}=0.3$. The treatment effect b_{i} reduces the number of infected individuals and keeps the susceptible individuals from becoming infected: (a) Influences of five different values of parameter b_{1} on the values of I_{1}. (b) Influences of five different values of parameter b_{2} on the values of I_{2}. (c) Influences of five different values of parameter b_{1} on the values of I_{1}. (d) Influences of five different values of parameter b_{2} on the values of I_{2}. The initial value of all solutions is $(15,10,5)$. The time unit is day.

5. Discussion and conclusions

In this paper, we have proposed and studied a class of stochastic double disease models with CrowleyMartin incidence. We discussed the existence conditions and stability of the equilibrium points. E_{0} is locally asymptotically stable when the basic reproduction number $\mathcal{R}_{i}<1 ; E_{1}$ is locally asymptotically
stable when $\mathcal{R}_{1}>1$ and $\mathcal{R}_{2}<1 ; E_{2}$ is locally asymptotically stable when $\mathcal{R}_{2}>1$ and $\mathcal{R}_{1}<1$; and E_{3} is locally asymptotically stable when the basic reproduction number $\mathcal{R}_{i}>1$. Subsequently, we have given the stochastic basic reproduction number \mathcal{R}_{i}^{*} of the stochastic system and proven the stochastic extinction and persistence of the system. Finally, numerical simulations show that appropriate stochastic perturbations σ_{i} can control the spread of the disease, but larger stochastic perturbations can cause the disease to go extinct; the protection effect a_{i} can cause the disease to go extinct; the treatment effect b_{i} can reduce the number of infected individuals, but it cannot cause the disease to go extinct. Therefore, when treatment is given to infected individuals, protective measures for susceptible individuals are more necessary to completely eliminate the virus.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Suli Liu was supported by the National Natural Science Foundation of China (Grant number 12301627), the Science and Technology Research Projects of the Education Office of Jilin Province, China (JJKH20211033KJ) and the Technology Development Program of Jilin Province, China (20210508024RQ).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Y. Xu, X. Sun, H. Hu, Extinction and stationary distribution of a stochastic SIQR epidemic model with demographics and non-monotone incidence rate on scale-free networks, J. Appl. Math. Comput., 68 (2021), 3367-3395. https://doi.org/10.1007/s12190-021-01645-3
2. R. Zhao, Q. Liu, M. Sun, Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks, J. Appl. Math. Comput., 68 (2021), 813-838. https://doi.org/10.1007/s12190-021-01550-9
3. S. Bera, S. Khajanchi, T. K. Roy, Stability analysis of fuzzy HTLV-I infection model: a dynamic approach, J. Appl. Math. Comput., 69 (2022), 171-199. https://doi.org/10.1007/s12190-022-01741-y
4. H. Guo, M. Li, Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72 (2012), 261-279. https://doi.org/10.1137/110827028
5. Y. Cai, S. Zhao, Y. Niu, Z. Peng, K. Wang, D. He, et al., Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China, J. Theor. Biol., 508 (2021), 110453. https://doi.org/10.1016/j.jtbi.2020.110453
6. X. Guan, F. Yang, W. Wang, Global stability of an influenza A model with vaccination, Appl. Math. Lett., 134 (2022), 0893-9659. https://doi.org/10.1016/j.aml.2022.108322
7. Y. Nie, X. Zhong, T. Lin, W. Wang, Pathogen diversity in meta-population networks, Chaos Solitons Fractals, 166 (2023), 112909. https://doi.org/10.1016/j.chaos.2022.112909
8. Y. Nie, W. Li, L. Pan, T. Lin, W. Wang, Markovian approach to tackle competing pathogens in simplicial complex, Appl. Math. Comput., 417 (2022), 126773. https://doi.org/10.1016/j.amc.2021.126773
9. Y. Nie, X. Zhong, T. Lin, W. Wang, Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions, Appl. Math. Comput., 432 (2022), 127380. https://doi.org/10.1016/j.amc.2022.127380
10. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700-721. https://doi.org/10.1098/rspa.1927.0118
11. X. Zhang, M. Liu, Dynamical analysis of a stochastic delayed SIR epidemic model with vertical transmission and vaccination, Adv. Contin. Discrete Modelss, 1 (2022). https://doi.org/10.1186/s13662-022-03707-7
12. Q. Li, Z. Lin, A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment, Math. Biosci. Eng., 16 (2019), 3094-3110. https://doi.org/10.3934/mbe. 2019153
13. Q. Pan, J. Huang, H. Wang, An SIRS model with nonmonotone incidence and saturated treatment in a changing environment, J. Math. Biol., 85 (2022). https://doi.org/10.1007/s00285-022-01787-3
14. L. Yang, Y. Li, Periodic traveling waves in a time periodic SEIR model with nonlocal dispersal and delay, Discrete Contin. Dyn. Syst. B, 28 (2023), 5087-5104. https://doi.org/10.3934/dcdsb. 2023056
15. A. Franceschetti, A. Pugliese, D. Breda, Multiple endemic states in age-structured SIR epidemic models, Math. Biosci. Eng., 9 (2012), 577-599. https://doi.org/10.3934/mbe.2012.9.577
16. C. Zhang, J. Gao, H. Sun, J. Wang, Dynamics of a reaction diffusion SVIR model in a spatial heterogeneous environment, Physica A, 533 (2019), 122049. https://doi.org/10.1016/j.physa.2019.122049
17. G. Liu, S. Liu, M. Y. Li, A discrete state-structured model on networks withtwo transmission modes: Global dynamics analysis, Discrete Contin. Dyn. Syst. B, 28 (2023), 3414-3427. https://doi.org/10.3934/dcdsb. 2022224
18. S. Liu, G. Liu, H. Li, Discrete state-structured epidemic models with distributed delays, Int. J. Biomath., 15 (2022), 2250040. https://doi.org/10.1142/S1793524522500401
19. S. Liu, M. Y. Li, Epidemic models with discrete state structures, Physica D, 422 (2021), 132903. https://doi.org/10.1016/j.physd.2023.133884
20. L. Weldemhret, Epidemiology and challenges of HBV/HIV co-infection amongst HIVinfected patients in endemic areas, HIV/AIDS-Res. Palliative Care, 13 (2021), 485-490. https://doi.org/10.2147/hiv.s273649
21. J. S. Casalegno, M. Ottmann, M. B. Duchamp, V. Escuret, G. Billaud, E. Frobert, et al.,Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France, Clin. Microbiol. Infect., 16 (2010), 326-329. https://doi.org/10.1111/j.1469-0691.2010.03167.x
22. Y. Liu, A. Feng, S. Zhao, W. Wang, D. He, Large-scale synchronized replacement of Alpha (B.1.1.7) variant by the Delta (B.1.617.2) variant of SARS-COV-2 in the COVID-19 pandemic, Math. Biosci. Eng., 19 (2022), 3591-3596. https://doi.org/10.3934/mbe. 2022165
23. A. Miao, X. Wang, T. Zhang, W. Wang, B. S. A. Pradeep, Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis, Adv. Differ. Equations, 2017 (2017). https://doi.org/10.1186/s13662-017-1289-9
24. Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Threshold behavior in a stochastic delayed SIS epidemic model with vaccination and double diseases, J. Franklin Inst., 356 (2019), 7466-7485. https://doi.org/10.1016/j.jfranklin.2018.11.055
25. J. Zhang, Y. Chu, W. Du, Y. Chang, X. An, Stability and hopf bifurcation in a delayed SIS epidemic model with double epidemic hypothesis, Int. J. Nonlinear Sci., 19 (2018), 561-571. https://doi.org/10.1515/ijnsns-2016-0122
26. W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics-I, Bull. Math. Biol., 53 (1991), 33-55. https://doi.org/10.1007/bf02464423
27. Z. Hu, S. Liu, H. Wang, Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Anal. Real World Appl., 9 (2008), 2302-2312. https://doi.org/10.1016/j.nonrwa.2007.08.009
28. Y. Yang, D. Xiao, Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models, Discrete Contin. Dyn. Syst. B, 13 (2010), 195-211. https://doi.org/10.3934/dcdsb.2010.13.195
29. Y. Cai, J. Li, Y. Kang, K. Wang, W. Wang, The fluctuation impact of human mobility on the influenza transmission, J. Franklin Inst., 357 (2020), 8899-8924. https://doi.org/10.1016/j.jfranklin.2020.07.002
30. P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthological Soc., 8 (1989), 211-221. https://doi.org/10.2307/1467324
31. J. P. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 45-69. https://doi.org/10.1016/j.cnsns.2015.06.008
32. H. Huo, F. Zhang, H. Xiang, Spatiotemporal dynamics for impulsive eco-epidemiological model with Crowley-Martin type functional response, Math. Biosci. Eng., 19 (2022), 12180-12211. https://doi.org/10.3934/mbe. 2022567
33. A. Mohsen, H. Husseiny, K. Hattaf, The awareness effect of the dynamical behavior of SIS epidemic model with Crowley-Martin incidence rate and holling type III treatment function, Int. J. Nonlinear Anal. Appl., 12 (2021), 1083-1097. https://doi.org/10.22075/ijnaa.2021.5177
34. A. Kumar, Dynamic behavior of an SIR epidemic model along with time delay; Crowley-Martin type incidence rate and holling type II treatment rate, Int. J. Nonlinear Sci., 20 (2019), 757-771. https://doi.org/10.1515/ijnsns-2018-0208
35. Y. Liu, C. Wu, Global dynamics for an HIV infection model with Crowley-Martin functional response and two distributed delays, J. Syst. Sci. Complexity, 31 (2017), 385-395. https://doi.org/10.1007/s11424-017-6038-3
36. W. Wang, Modeling adaptive behavior in influenza transmission, Math. Modell. Nat. Phenom., 7 (2012), 253-262. https://doi.org/10.1051/mmnp/20127315
37. F. Wang , Z. Liu, Dynamical behavior of a stochastic SIQS model via isolation with regimeswitching, J. Appl. Math. Comput., 69 (2022), 2217-2237. https://doi.org/10.1007/s12190-022-01831-x
38. M. Mehdaoui, A. L. Alaoui, M. Tilioua, Dynamical analysis of a stochastic non-autonomous SVIR model with multiple stages of vaccination, J. Appl. Math. Comput., 69 (2022), 2217-2206. https://doi.org/10.1007/s12190-022-01828-6
39. S. He, S. Tang, L. Rong, A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Math. Biosci. Eng., 17 (2020), 2792-2804. https://doi.org/10.3934/mbe. 2020153
40. A. Gray, X. Mao, D. Jiang, Y. Zhao, The threshold of a stochastic SIRS epidemic model in a population with varying size, Discrete Contin. Dyn. Syst. - Ser. B, 20 (2015), 1277-1295. https://doi.org/10.3934/dcdsb.2015.20.1277
41. M. T. Anche, M. D. Jong, P. Bijma, On the definition and utilization of heritable variation among hosts in reproduction ratio R0 for infectious diseases, Heredity, 113 (2014), 364-374. https://doi.org/10.1038/hdy.2014.38
42. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. https://doi.org/10.1016/s0025-5564(02)00108-6
43. R. Z. Khas'miniskii, Stochastic Stability of Differential Equations, Springer Berlin Heidelberg, 1980. https://doi.org/10.1007/978-94-009-9121-7
44. Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Phys. A, 551 (2020), 124152. https://doi.org/10.1016/j.physa.2020.124152
45. X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 2008. https://doi.org/10.1533/9780857099402
46. P. E. Kloeden, E. Platen, Higher-order implicit strong numerical schemes for stochastic differential equations, J. Stat. Phys., 66 (1992), 283-314. https://doi.org/10.1007/bf01060070
47. X. Meng, S. Zhao, T. Feng, T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227-242. https://doi.org/10.1016/j.jmaa.2015.07.056

Appendix A : Proof of Theorem 1

Proof. The system (1.1) has the following Jacobian matrix

$$
J=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{A1}\\
a_{21} & a_{22} & 0 \\
a_{31} & 0 & a_{33}
\end{array}\right),
$$

where

$$
a_{11}=-\frac{\beta_{1} I_{1}}{\left(1+a_{1} S\right)^{2}\left(1+b_{1} I_{1}\right)}-\frac{\beta_{2} I_{2}}{\left(1+a_{2} S\right)^{2}\left(1+b_{2} I_{2}\right)}-m
$$

$$
\begin{aligned}
& a_{12}=-\frac{\beta_{1} S}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)^{2}}+\alpha_{1}, \\
& a_{13}=-\frac{\beta_{2} S}{\left(1+a_{2} S\right)\left(1+b_{2} I_{2}\right)^{2}}+\alpha_{2}, \\
& a_{21}=\frac{\beta_{1} I_{1}}{\left(1+a_{1} S\right)^{2}\left(1+b_{1} I_{1}\right)}, \\
& a_{22}=\frac{\beta_{1} S}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)^{2}}-\left(m+\alpha_{1}+\delta_{1}\right), \\
& a_{31}=\frac{\beta_{2} I_{2}}{\left(1+a_{2} S\right)^{2}\left(1+b_{2} I_{2}\right)}, \\
& a_{33}=\frac{\beta_{2} S}{\left(1+a_{2} S\right)^{2}\left(1+b_{2} I_{2}\right)}-\left(m+\alpha_{2}+\delta_{2}\right) .
\end{aligned}
$$

Case 1. The evaluation of the Jacobian matrix at E_{0} is represented by

$$
J\left(E_{0}\right)=\left(\begin{array}{ccc}
-m & -\frac{\beta_{1} N}{m+a_{1} N}+\alpha_{1} & -\frac{\beta_{2} N}{m+\alpha_{2} N}+\alpha_{2} \\
0 & \frac{\beta_{1} N}{m+\alpha_{1} N}-\left(m+\alpha_{1}+\delta_{1}\right) & 0 \\
0 & 0 & \frac{\beta_{2} N}{m+\alpha_{2} N}-\left(m+\alpha_{2}+\delta_{2}\right)
\end{array}\right)
$$

which has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{1}=-m \\
& \lambda_{2}=\frac{\beta_{1} N}{m+\alpha_{1} N}-\left(m+\alpha_{1}+\delta_{1}\right)=\left(m+\alpha_{1}+\delta_{1}\right)\left(\mathcal{R}_{1}-1\right), \\
& \lambda_{3}=\frac{\beta_{2} N}{m+\alpha_{2} N}-\left(m+\alpha_{2}+\delta_{2}\right)=\left(m+\alpha_{2}+\delta_{2}\right)\left(\mathcal{R}_{2}-1\right)
\end{aligned}
$$

If $\mathcal{R}_{1}<1$ and $\mathcal{R}_{2}<1$, then λ_{1}, λ_{2} and $\lambda_{3}<0$. The disease-free equilibrium E_{0} is locally asymptotically stable.

Case 2. The evaluation of the Jacobian matrix at E_{1} is represented by

$$
J\left(E_{1}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right),
$$

where

$$
\begin{aligned}
& a_{11}=-\frac{\beta_{1} \bar{I}_{1}}{\left(1+a_{1} \bar{S}_{1}\right)^{2}\left(1+b_{1} \bar{I}_{1}\right)}-m \\
& a_{12}=-\frac{\beta_{1} \overline{S_{1}}}{\left(1+a_{1} \bar{S}_{1}\right)\left(1+b_{1} \bar{I}_{1}\right)^{2}}+\alpha_{1} \\
& a_{13}=-\frac{\beta_{2} \overline{S_{1}}}{1+a_{2} \overline{S_{1}}}+\alpha_{2} \\
& a_{21}=\frac{\beta_{1} \bar{I}_{1}}{\left(1+a_{1} \overline{S_{1}}\right)^{2}\left(1+b_{1} \bar{I}_{1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& a_{22}=\frac{\beta_{1} \overline{S_{1}}}{\left(1+a_{1} \overline{S_{1}}\right)\left(1+b_{1} \bar{I}_{1}\right)^{2}}-\left(m+\alpha_{1}+\delta_{1}\right), \\
& a_{33}=\frac{\beta_{2} \overline{S_{1}}}{1+a_{2} \overline{S_{1}}}-\left(m+\alpha_{2}+\delta_{2}\right) .
\end{aligned}
$$

Using the equilibrium equation (2.1)

$$
\frac{\beta_{1} \overline{S_{1}}}{\left(1+a_{1} \overline{S_{1}}\right)\left(1+b_{1} \bar{I}_{1}\right)}=m+\alpha_{1}+\delta_{1}
$$

we obtain

$$
a_{22}=\frac{m+\alpha_{1}+\delta_{1}}{1+b_{1} \bar{I}_{1}}-\left(m+\alpha_{1}+\delta_{1}\right)<0 ;
$$

one of the three eigenvalues of matrices $J\left(E_{1}\right)$'s is represented by

$$
\lambda_{1}=\frac{\beta_{2} \overline{S_{1}}}{1+a_{2} \overline{S_{1}}}-\left(m+\alpha_{2}+\delta_{2}\right)<0
$$

where $\mathcal{R}_{2}<1$ and $\overline{S_{1}}<\frac{N}{m}$ is used. What follows is the characteristic equation:

$$
\lambda^{2}+A_{1} \lambda+A_{2}=0
$$

where

$$
\begin{aligned}
A_{1} & =-\left(a_{11}+a_{22}\right) \\
& =\frac{\beta_{1} \bar{I}_{1}}{\left(1+a_{1} \overline{S_{1}}\right)^{2}\left(1+b_{1} \bar{I}_{1}\right)}-\frac{\beta_{1} \overline{S_{1}}}{\left(1+a_{1} \overline{S_{1}}\right)\left(1+b_{1} \bar{I}_{1}\right)^{2}}+\left(m+\alpha_{1}+\delta_{1}\right)+m \\
& =\frac{\beta_{1} \bar{I}_{1}}{\left(1+a_{1} \overline{S_{1}}\right)^{2}\left(1+b_{1} \bar{I}_{1}\right)}+\frac{\beta_{1} b_{1} \overline{S_{1} \bar{I}_{1}}}{\left(1+a_{1} \overline{S_{1}}\right)\left(1+b_{1} \bar{I}_{1}\right)^{2}}+m \\
& >0, \\
A_{2}= & a_{11} a_{22}-a_{21} a_{12} \\
& =\left(-\frac{\beta_{1} \bar{I}_{1}}{\left(1+a_{1} \overline{S_{1}}\right)^{2}\left(1+b_{1} \bar{I}_{1}\right)}-m\right)\left(\frac{\beta_{1} \overline{S_{1}}}{\left(1+a_{1} \overline{S_{1}}\right)\left(1+b_{1} \bar{I}_{1}\right)^{2}}-\left(m+\alpha_{1}+\delta_{1}\right)\right) \\
= & \left(m+\delta_{1}\right) \frac{\beta_{1} \bar{I}_{1}\left(1+b_{1} \bar{I}_{1}\right)-\beta_{1} m \overline{S_{1}}\left(1+a_{1} \overline{S_{1}}\right)}{\left(1+a_{1} \overline{S_{1}}\right)^{2}\left(1+b_{1} \bar{I}_{1}\right)^{2}}+m\left(m+\alpha_{1}+\delta_{1}\right) \\
= & \frac{\bar{I}_{1}\left(m+\delta_{1}\right)\left(1+b_{1} \bar{I}_{1}\right)+\beta_{1} m b_{1} \overline{S_{1} \bar{I}_{1}\left(1+a_{1} S\right)}}{\left(1+a_{1} \bar{S}_{1}\right)^{2}\left(1+b_{1} \bar{I}_{1}\right)^{2}}
\end{aligned}
$$

>0.

By the Routh-Hurwitz condition, if $\mathcal{R}_{1}>1$ and $\mathcal{R}_{2}<1$, the boundary equilibrium E_{1} is locally asymptotically stable. The proof process for Cases 2 and 3 are similar, so they are omitted.

Case 4. The evaluation of the Jacobian matrix at E_{3} is represented by

$$
J\left(E_{3}\right)=\left(\begin{array}{ccc}
-a_{21}-a_{31}-m & -a_{22}-\left(m+\delta_{1}\right) & -a_{33}-\left(m+\delta_{2}\right) \\
\frac{\beta_{1} I_{1}^{*}}{\left(1+a_{1} S^{*}\right)^{2}\left(1+b_{1} I_{1}^{*}\right)} & -\frac{\beta_{1} b_{1} S^{*} I_{1}^{*}}{\left(1+a_{1} S^{*}\right)\left(1+b_{1} I_{1}^{*}\right)^{2}} & 0 \\
\frac{\beta_{2} I_{2}^{*}}{\left(1+a_{2} S^{*}\right)^{2}\left(1+b_{2} I_{2}^{*}\right)} & 0 & -\frac{\beta_{2} b_{2}{ }^{*} I_{2}^{*}}{\left(1+a_{2} S^{*}\right)\left(1+b_{2} I_{2}^{*}\right)^{2}}
\end{array}\right) ;
$$

what follows is the characteristic equation:

$$
\lambda^{3}+A_{1} \lambda^{2}+A_{2} \lambda+A_{3}=0
$$

where

$$
\begin{aligned}
\mathrm{A}_{1} & =\frac{\beta_{1} I_{1}^{*}\left(1+b_{1} I_{1}^{*}+b_{1} S^{*}+a_{1} b_{1} S^{* 2}\right)}{\left(1+a_{1} S^{*}\right)^{2}\left(1+b_{1} I_{1}^{*}\right)^{2}}+\frac{\beta_{2} I_{2}^{*}\left(1+b_{2} I_{2}^{*}+b_{2} S^{*}+a_{2} b_{2} S^{* 2}\right)}{\left(1+a_{2} S^{*}\right)^{2}\left(1+b_{2} I_{2}^{*}\right)^{2}} \\
& :=C_{1}+C_{2}+m>0
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{2}= & \left(-a_{21}-a_{31}-m\right) a_{22}+\left(-a_{21}-a_{31}-m\right) a_{33} \\
& +a_{22} a_{33}+a_{33} a_{31}+\left(m+\delta_{2}\right) a_{31}+a_{22} a_{21}+\left(m+\delta_{1}\right) a_{21} \\
= & a_{22} a_{33}-a_{22} a_{31}-a_{21} a_{33}+a_{21}\left(m+\delta_{1}\right)-m a_{22}+a_{31}\left(m+\delta_{2}\right)-m a_{33} \\
= & \frac{\beta_{1} \beta_{2} S^{*} I_{1}^{*} I_{2}^{*}\left(b_{1} b_{2} S^{*}\left(1+a_{1} S^{*}\right)\left(1+a_{2} S^{*}\right)+b_{1}\left(1+a_{1} S^{*}\right)\left(1+b_{2}\right)^{2}+b^{2}\left(1+a_{2} S^{*}\left(1+b_{1}\right)^{2}\right)\right)}{\left(\left(1+a_{1} S^{*}\right)\left(1+b_{1} I_{1}^{*}\right)\left(1+a_{2} S^{*}\right)\left(1+b_{2} I_{2}^{*}\right)\right)^{2}} \\
& +\frac{\beta_{1} I_{1}^{*}\left(\left(1+b_{1} I_{1}^{*}\right)\left(m+\delta_{1}\right)+m b_{1} S^{*}\left(1+a_{1} S^{*}\right)\right)}{\left(1+a_{1} S^{*}\right)^{2}\left(1+b_{1} I_{1}^{*}\right)^{2}}+\frac{\beta_{2} I_{2}^{*}\left(\left(1+b_{2} I_{2}^{*}\right)\left(m+\delta_{2}\right)+m b_{2} S^{*}\left(1+a_{2} S^{*}\right)\right)}{\left(1+a_{2} S^{*}\right)^{2}\left(1+b_{2} I_{2}^{*}\right)^{2}} \\
= & C_{3}+C_{4}+C_{5}>0,
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{3}= & -\left(m+\delta_{1}\right) a_{21} a_{33}-\left(m+\delta_{2}\right) a_{22} a_{31}+m a_{22} a_{33} \\
= & \frac{\beta_{1} \beta_{2} b_{2} S^{*} I_{1}^{*} I_{2}^{*}\left(m+\delta_{1}\right)}{\left(1+a_{1} S^{*}\right)^{2}\left(1+b_{1} I_{1}^{*}\right)\left(1+a_{2} S^{*}\right)\left(1+b_{2} I_{2}^{*}\right)^{2}}+\frac{\beta_{1} \beta_{2} b_{1} S^{*} I_{1}^{*} I_{2}^{*}\left(m+\delta_{2}\right)}{\left(1+a_{1} S^{*}\right)\left(1+b_{1} I_{1}^{*}\right)^{2}\left(1+a_{2} S^{*}\right)^{2}\left(1+b_{2} I_{2}^{*}\right)} \\
& +\frac{\beta_{1} \beta_{2} m b_{1} b_{2} I_{1}^{*} I_{2}^{*} S^{* 2}}{\left(1+a_{1} S^{*}\right)\left(1+b_{1} I_{1}^{*}\right)^{2}\left(1+a_{2} S^{*}\right)\left(1+b_{2} I_{2}^{*}\right)^{2}}
\end{aligned}
$$

>0.
Then

$$
\begin{aligned}
\mathrm{A}_{1} \mathrm{~A}_{2}-\mathrm{A}_{3} & =\left(C_{1}+C_{2}+m\right)\left(C_{3}+C_{4}+C_{5}\right)-A_{3} \\
& =\left(C_{1}+C_{22}\right) C_{5}+C_{1} C_{3}+C_{2} C_{4}+m\left(C_{3}+C_{4}+C_{5}\right)+C_{1} C_{4}+C_{2} C_{3}-A_{3}
\end{aligned}
$$

$$
:=p+q,
$$

where $p>0$ when $\mathcal{R}_{1}>1$ and $\mathcal{R}_{2}>1$, and we have

$$
\begin{aligned}
q= & C_{1} C_{4}+C_{2} C_{3}-A_{3} \\
= & \frac{\beta_{1} \beta_{2} I_{1}^{*} I_{2}^{*}\left(1+b_{2} I_{2}^{*}\right)\left(\left(1+b_{1} I_{1}^{*}\right)\left(m+\delta_{1}\right)+m b_{1} S\left(1+a_{1} S\right)\right)+b_{1} S\left(1+a_{1} S\right)\left(m b_{2} S\left(1+a_{2} S\right)\right)}{\left(\left(1+a_{1} S^{*}\right)\left(1+b_{1} I_{1}^{*}\right)\left(1+a_{2} S^{*}\right)\right)^{2}} \\
& +\frac{\beta_{1} \beta_{2} I_{1}^{*} I_{2}^{*}\left(1+b_{1} I_{1}\right)\left(\left(1+b_{2} I_{2}\right)\left(m+\delta_{2}\right)+m b_{2} S\left(1+a_{2} S\right)\right)}{\left(\left(1+a_{1} S^{*}\right)\left(1+b_{1} I_{1}^{*}\right)\left(1+a_{2} S^{*}\right)\right)^{2}}
\end{aligned}
$$

>0.
When both \mathcal{R}_{1} and \mathcal{R}_{2} are bigger than 1, the Routh-Hurwitz criteria show that the endemic equilibrium E_{3} is locally asymptotically stable.

Appendix B : Proof of Theorem 3

Proof. Part (i). It is easy to see from the theorem that $\lim _{t \rightarrow+\infty} I_{2}(t)=0$. Since $\mathcal{R}_{1}^{s}>1$, there exists a ε small enough such that $0<I_{2}(t)<\varepsilon$ for all t large enough; we have

$$
\frac{\beta\left(N-\left(m+\delta_{1}\right) \varepsilon\right)}{\left(N a_{1}+m\right)\left(m+\alpha_{1}+\delta_{1}\right)}-\frac{\sigma_{1}^{2} N^{2}}{2\left(N a_{1}+m\right)\left(m+\alpha_{1}+\delta_{1}\right)}>1 .
$$

On the sides of the system (1.2), dividing by $t>0$ and integrating from 0 to t gives

$$
\begin{aligned}
\Theta(t) & \triangleq \frac{S(t)-S(0)}{t}+\frac{I_{1}(t)-I_{1}(0)}{t}+\frac{I_{2}(t)-I_{2}(0)}{t} \\
& =N-m\langle S(t)\rangle-\left(m+\delta_{1}\right)\left\langle I_{1}(t)\right\rangle-\left(m+\delta_{2}\right)\left\langle I_{2}(t)\right\rangle \\
& \geq N-m\langle S(t)\rangle-\left(m+\delta_{1}\right)\left\langle I_{1}(t)\right\rangle-\left(m+\delta_{2}\right) \varepsilon ;
\end{aligned}
$$

when $\langle f(t)\rangle=\frac{1}{t} \int_{0}^{t} f(\theta) d \theta$ is defined for an integrable function f on $[0,+\infty)$, one may get

$$
\langle S(t)\rangle \geq \frac{N-\left(m+\delta_{2}\right) \varepsilon}{m}-\frac{m+\delta_{1}}{m}\left\langle I_{1}(t)\right\rangle-\frac{\Theta(t)}{m} .
$$

By using Itô's formula, it follows that

$$
\begin{aligned}
& \mathrm{d}\left(\left(1+a_{1} \frac{N}{m}\right) \ln I_{1}+b_{1}\left(1+a_{1} \frac{N}{m}\right) I_{1}\right) \\
= & \left(\frac{\left(1+a_{1} \frac{N}{m}\right) \beta_{1} S}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\left(1+a_{1} \frac{N}{m}\right)\left(m+\alpha_{1}+\delta_{1}\right)-\frac{\left(1+a_{1} \frac{N}{m}\right) \sigma_{1}^{2} S^{2}}{2\left(1+a_{1} S\right)^{2}\left(1+b_{1} I_{1}\right)^{2}}\right) \mathrm{d} t \\
& +b_{1}\left(1+a_{1} \frac{N}{m}\right)\left(\frac{\beta_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)}-\left(m+\alpha_{1}+\delta_{1}\right) I_{1}\right) \mathrm{d} t \\
& +\frac{\left(1+a_{1} \frac{N}{m}\right) \sigma_{1} S}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)} \mathrm{d} B_{1}(t)+\frac{b_{1}\left(1+a_{1} \frac{N}{m}\right) \sigma_{1} S I_{1}}{\left(1+a_{1} S\right)\left(1+b_{1} I_{1}\right)} \mathrm{d} B_{1}(t)
\end{aligned}
$$

$$
\begin{align*}
& \geq\left(\frac{\beta_{1} S}{\left(1+b_{1} I_{1}\right)}-\left(1+a_{1} \frac{N}{m}\right)\left(m+\alpha_{1}+\delta_{1}\right)-\frac{\sigma_{1}^{2}}{2}\left(1+a_{1} \frac{N}{m}\right)\left(\frac{N}{m+N a_{1}}\right)^{2}\right) \mathrm{d} t \\
& \quad+b_{1}\left(1+a_{1} \frac{N}{m}\right)\left(\frac{\beta_{1} S I_{1}}{\left(1+a_{1} \frac{N}{m}\right)\left(1+b_{1} I_{1}\right)}-\left(m+\alpha_{1}+\delta_{1}\right) I_{1}\right) \mathrm{d} t+\sigma_{1} S(t) \mathrm{d} B_{1}(t) \\
& \geq \tag{A2}\\
& \quad\left(\beta_{1} S-\left(1+a_{1} \frac{N}{m}\right)\left(m+\alpha_{1}+\delta_{1}\right)-b_{1}\left(1+a_{1} \frac{N}{m}\right)\left(m+\alpha_{1}+\delta_{1}\right) I_{1}-\frac{\sigma^{2}}{2} \frac{\left(\frac{N}{m}\right)^{2}}{1+a_{1} \frac{N}{m}}\right) d t \tag{A3}\\
& \quad+\sigma_{1} S \mathrm{~d} B_{1}(t)
\end{align*}
$$

On the sides of (A3), dividing by $t>0$ and integrating from 0 to t gives

$$
\begin{align*}
(1+ & \left.a_{1} \frac{N}{m}\right) \frac{\ln I_{1}(t)-\ln I_{1}(0)}{t}+b_{1}\left(1+a_{1} \frac{N}{m}\right) \frac{I_{1}(t)-I_{1}(0)}{t} \\
& \geq \beta_{1}\langle S(t)\rangle-\frac{m+a_{1} N}{m}\left(m+\alpha_{1}+\delta_{1}\right)-b_{1} \frac{m+a_{1} N}{m}\left(m+\alpha_{1}+\delta_{1}\right)\left\langle I_{1}(t)\right\rangle-\frac{\sigma_{1}^{2}\left(\frac{N}{m}\right)^{2}}{\frac{2\left(m+a_{1} N\right)}{m}}+\frac{Q_{2}}{t} \\
& \geq \beta_{1}\left(\frac{N-\left(m+\delta_{2}\right) \varepsilon}{m}-\frac{m+\delta_{2}}{m}\left\langle I_{1}(t)\right\rangle-\frac{\Theta(t)}{m}\right)-\frac{m+a_{1} N}{m}\left(m+\alpha_{1}+\delta_{1}\right)+\frac{Q_{2}(t)}{t} \\
& \quad-\frac{b_{1}\left(m+a_{1} N\right)}{m}\left(m+\alpha_{1}+\delta_{1}\right)\left\langle I_{1}(t)\right\rangle-\frac{\sigma_{1}^{2}\left(\frac{N}{m}\right)^{2}}{\frac{2\left(m+a_{1} N\right)}{m}} \\
= & \frac{m+a_{1} N}{m}\left(m+\alpha_{1}+\delta_{1}\right)\left(\frac{\beta_{1}\left(N-\left(N+\delta_{2}\right) \varepsilon\right)}{\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}-\frac{\sigma_{1}^{2}\left(\frac{N}{m}\right)^{2}}{2\left(\frac{m+a_{1} N}{m}\right)^{2}\left(m+\alpha_{1}+\delta_{1}\right)}-1\right) \\
& -\left(\frac{\beta_{1}\left(m+\delta_{1}\right)}{m}+\frac{b_{1}\left(m+a_{1} N\right)}{m}\left(m+\alpha_{1}+\delta_{1}\right)\right)\left\langle I_{1}(t)\right\rangle-\frac{\beta_{1} \Theta(t)}{m}+\frac{Q_{2}(t)}{t} \tag{A4}
\end{align*}
$$

where $Q_{2}(t)=\int_{0}^{t} \sigma_{1} S(\tau) \mathrm{d} B_{1}(\tau)$. It is possible to rewrite the inequality (A4) as

$$
\begin{align*}
\left\langle I_{1}(t)\right\rangle & \geq \frac{1}{\Delta}\left\{\frac{m+a_{1} N}{m}\left(m+\alpha_{1}+\delta_{1}\right)\left(\frac{\beta_{1}\left(N-\left(N+\delta_{2}\right) \varepsilon\right)}{\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}-\frac{\sigma_{1}^{2}\left(\frac{N}{m}\right)^{2}}{2\left(\frac{m+a_{1} N}{m}\right)^{2}\left(m+\alpha_{1}+\delta_{1}\right)}-1\right)\right. \\
& \left.-\frac{\beta_{1} \Theta(t)}{m}+\frac{Q_{2}(t)}{t}-\frac{1}{t} \frac{m+a_{1} N}{m}\left[\left(\ln I_{1}(t)-\ln I_{1}(0)\right)+b_{1}\left(I_{1}(t)-I_{1}(0)\right)\right]\right\} \tag{A5}\\
& \geq\left\{\begin{array}{l}
\frac{1}{\Delta}\left\{\frac{m+a_{1} N}{m}\left(m+\alpha_{1}+\delta_{1}\right)\left(\frac{\beta_{1}\left(N-\left(N+\delta_{2}\right) \varepsilon\right)}{\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}-\frac{\sigma_{1}^{2}\left(\frac{N}{m}\right)^{2}}{2\left(\frac{m+a_{1} N}{m}\right)^{2}\left(m+\alpha_{1}+\delta_{1}\right)}-1\right)\right. \\
\\
\left.-\frac{\beta_{1} \Theta(t)}{m}+\frac{Q_{2}(t)}{t}+\frac{1}{t} \frac{m+a_{1} N}{m}\left[\ln I_{1}(0)-b_{1}\left(I_{1}(t)-I_{1}(0)\right)\right]\right\}, 0<I_{1}(t)<1 \\
\frac{1}{\Delta}\left\{a_{1}\left(m+\alpha_{1}+\delta_{1}\right)\left(\frac{\beta_{1}\left(N-\left(N+\delta_{2}\right) \varepsilon\right)}{\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}-\frac{\sigma_{1}^{2}\left(\frac{N}{m}\right)^{2}}{2\left(\frac{m+a_{1} N}{m}\right)^{2}\left(m+\alpha_{1}+\delta_{1}\right)}-1\right)\right. \\
\left.-\frac{\beta_{1} \Theta(t)}{m}+\frac{Q_{2}(t)}{t}-\frac{1}{t} \frac{m+a_{1} N}{m}\left[\left(\ln I_{1}(t)-\ln I_{1}(0)\right)+b_{1}\left(I_{1}(t)-I_{1}(0)\right)\right]\right\}, 1<I_{1}(t)
\end{array}\right.
\end{align*}
$$

where $\Delta=\frac{\beta_{1}\left(m+\delta_{1}\right)}{m}+b_{1}\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)$.
By Lemma 3, we get that $\lim _{t \rightarrow+\infty} \frac{Q_{2}(t)}{t}=0$. We can observe that $I_{1}(t) \leq \frac{N}{m}$; thus, we have that $\lim _{t \rightarrow+\infty} \frac{I_{1}(t)}{t}=0$ and $\lim _{t \rightarrow+\infty} \frac{\ln I_{1}(t)}{t}=0$ as $I_{1}(t) \geq 1$ and $\lim _{t \rightarrow+\infty} \Theta(t)=0$.

When the limit inferior of both sides of (A5) are taken into account, we have

$$
\liminf _{t \rightarrow+\infty}\left\langle I_{1}(t)\right\rangle \geq \frac{\left(1+a_{1} \frac{N}{m}\right)\left(m+\alpha_{1}+\delta_{1}\right)}{\Delta}\left(\frac{\beta_{1}\left(N-\left(N+\delta_{2}\right) \varepsilon\right)}{m\left(1+a_{1} \frac{N}{m}\right)\left(m+\alpha_{1}+\delta_{1}\right)}-\frac{\sigma_{1}^{2}\left(\frac{N}{m}\right)^{2}}{2\left(1+a_{1} \frac{N}{m}\right)^{2}\left(m+\alpha_{1}+\delta_{1}\right)}-1\right)
$$

≥ 0.
Allowing for $\varepsilon \rightarrow 0$, we have

$$
\liminf _{t \rightarrow+\infty}\left\langle I_{1}(t)\right\rangle \geq \frac{\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}{\beta_{1}\left(m+\delta_{1}\right)+b_{1}\left(m+a_{1} N\right)\left(m+\alpha_{1}+\delta_{1}\right)}\left(\mathcal{R}_{1}^{s}-1\right) .
$$

Due to the fact that the methods of proving parts (ii) and (i) are similar, this step will not be repeated. Part (iii). Take note that

$$
\begin{equation*}
\langle S(t)\rangle=\frac{N}{m}-\frac{m+\delta_{1}}{m}\left\langle I_{1}(t)\right\rangle-\frac{m+\delta_{2}}{m}\left\langle I_{2}(t)\right\rangle-\frac{\Theta(t)}{m} . \tag{A6}
\end{equation*}
$$

Define

$$
\begin{equation*}
V(t)=\ln \left[I_{1}^{\left(1+a_{1} \frac{N}{m}\right)}(t) I_{2}^{\left(1+a_{2} \frac{N}{m}\right)}(t)\right]+\left[b_{1}\left(1+a_{1} \frac{N}{m}\right) I_{1}(t)+b_{2}\left(1+a_{2} \frac{N}{m}\right) I_{2}(t)\right] . \tag{A7}
\end{equation*}
$$

Consequently, $V(t)$ is bounded. We have

$$
\left.\left.\begin{array}{rl}
D^{+} V(t)= & \sum_{i=1}^{2}\left(\frac{\left(1+a_{i} \frac{N}{m}\right) \beta_{i} S}{\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)}-\left(1+a_{i} \frac{N}{m}\right)\left(m+\alpha_{i}+\delta_{i}\right)-\frac{\left(1+a_{i} \frac{N}{m}\right) \sigma_{i}^{2} S^{2}}{2\left(\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)\right)^{2}}\right) \mathrm{d} t \\
& +\sum_{i=1}^{2} \frac{\left(1+a_{i} \frac{N}{m}\right) \sigma_{i} S}{\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)} \mathrm{d} B_{i}(t)+\sum_{i}^{2} b_{i}\left(1+a_{i} \frac{N}{m}\right)\left(\frac{\beta_{i} S I_{i}}{\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)}-\left(m+\alpha_{i}+\delta_{i} I_{i}\right) \mathrm{d} t\right. \\
& +\sum_{i}^{2} \frac{b_{i}\left(1+a_{i} \frac{N}{m}\right) \sigma_{i} S I_{i}}{\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)} \mathrm{d} B_{i}(t) \\
\geq & \sum_{i=1}^{2}\left(\frac{\left(1+a_{i} \frac{N}{m}\right) \beta_{i} S}{1+a_{i} \frac{N}{m}+b_{i} I_{i}+a_{i} b_{i} \frac{N}{m} I_{i}}-\left(1+a_{i} \frac{N}{m}\right)\left(m+\alpha_{i}+\delta_{i}\right)-\frac{\left(1+a_{i} \frac{N}{m}\right) \sigma_{i}^{2} S^{2}}{2\left(\left(1+a_{i} S\right)\left(1+b_{i} I_{i}\right)\right)^{2}}\right) \mathrm{d} t \\
& +\sum_{i=1}^{2} \frac{\left(1+a_{i} \frac{N}{m}\right) \sigma_{i} S}{\left(1+a_{i} \frac{N}{m}\right)\left(1+b_{i} I_{i}\right)} \mathrm{d} B_{i}(t)+\sum_{i}^{2} b_{i}\left(1+a_{i} \frac{N}{m}\right)\left(\frac{\beta_{i} S I_{i}}{\left(1+a_{i} \frac{N}{m}\right)\left(1+b_{i} I_{i}\right)}-\left(m+\alpha_{i}+\delta_{i}\right) I_{i}\right) \mathrm{d} t \\
& +\sum_{i}^{2} \frac{b_{i}\left(1+a_{i} \frac{N}{m}\right) \sigma_{i} S I_{i}}{1+a_{i} \frac{N}{m}+b_{i} I_{i}+a_{i} b_{i} \frac{N}{m} I_{i}} \mathrm{~d} B_{i}(t) \\
\geq & \left(\beta_{1}+\beta_{2}\right) S-\sum_{i}^{2}\left(m+\alpha_{i}+\delta_{i}\right)\left(1+b_{i} I_{i}\right)\left(1+a_{i} \frac{N}{m}\right)+\sum_{i=1}^{2} \frac{\sigma_{i}^{2}\left(\frac{N}{m}\right)^{2}}{2\left(m+a_{i} N\right)} \tag{A8}
\end{array}\right) \mathrm{d} t+\sum_{i}^{2} \sigma_{i} S \mathrm{~d} B_{i}(t) . \quad \text { (A8) }\right)
$$

On the sides of (A8), dividing by $t>0$ and integrating from 0 to t gives

$$
\begin{align*}
\frac{V(t)-V(0)}{t} \geq & \sum_{i=1}^{2}\left(\beta_{i}\langle S(t)\rangle-\left(m+\alpha_{i}+\delta_{i}\right)\left(1+a_{i} \frac{N}{m}\right)\left(1+b_{i}\left\langle I_{i}(t)\right\rangle\right)-\frac{\sigma_{i}^{2}\left(\frac{N}{m}\right)^{2}}{\frac{2\left(m+a_{i} N\right)}{m}}+\frac{Q_{i}}{t}\right) \\
= & \left(\beta_{1}+\beta_{2}\right) \frac{N}{m}-\sum_{i=1}^{2}\left(m+\alpha_{i}+\delta_{i}\right)-\sum_{i=1}^{2} \frac{\sigma_{i}^{2}\left(\frac{N}{m}\right)^{2}}{2\left(1+a_{i} \frac{N}{m}\right)}-\frac{\beta_{1}+\beta_{2}}{m} \Theta(t)+\sum_{i=1}^{2} \frac{Q_{i}}{t} \\
& -\sum_{i=1}^{2}\left(\frac{\beta_{i}}{m}\left(m+\delta_{i}\right)+b_{i}\left(m+\alpha_{i}+\delta_{i}\right)\left(1+a_{i} \frac{N}{m}\right)\right)\left\langle I_{i}(t)\right\rangle \\
\geq & \sum_{i=1}^{2}\left(1+a_{i} \frac{N}{m}\right)\left(m+\alpha_{i}+\delta_{i}\right)\left(\frac{\beta_{i} N}{\left(m+a_{i} N\right)\left(m+\alpha_{i}+\delta_{i}\right)}-\frac{\sigma_{i}^{2} N^{2}}{2\left(1+a_{i} \frac{N}{m}\right)\left(m+\alpha_{i}+\delta_{i}\right)}-1\right) \\
& -\Delta_{\max }\left[\left\langle I_{1}(t)\right\rangle+\left\langle I_{2}(t)\right\rangle\right]-\sum_{i=1}^{2}\left(\frac{\beta_{i}}{m} \Theta(t)-\frac{Q_{i}}{t}\right) \tag{A9}
\end{align*}
$$

where

$$
Q_{i}(t)=\int_{0}^{t} \sigma_{i} S(\tau) d B_{i}(\tau), \quad \Delta_{\max }=\sum_{i=1}^{2}\left[\frac{\beta_{1}+\beta_{2}}{m}\left(m+\delta_{i}\right)+b_{i}\left(m+\alpha_{i}+\delta_{i}\right)\right] .
$$

It is possible to rewrite the inequality (A9) as

$$
\begin{align*}
\left\langle\sum_{i=1}^{2} I_{i}(t)\right\rangle \geq & \frac{1}{\Delta_{\max }}\left(\sum_{i=1}^{2}\left(1+a_{i} \frac{N}{m}\right)\left(m+\alpha_{i}+\delta_{i}\right)\left(\frac{\beta_{i} N}{\left(m+a_{i} N\right)\left(m+\alpha_{i}+\delta_{i}\right)}-\frac{\sigma_{i}^{2} N^{2}}{2\left(1+a_{i} \frac{N}{m}\right)\left(m+\alpha_{i}+\delta_{i}\right)}-1\right)\right. \\
& \left.+\frac{V(0)-V(t)}{t}-\sum_{i=1}^{2} \frac{\beta_{i}}{m} \Theta(t)+\sum_{i=1}^{2} \frac{Q_{i}}{t}\right) \tag{A10}
\end{align*}
$$

By Lemma 3, we have that $\lim _{t \rightarrow+\infty} \frac{Q_{i}(t)}{t}=0$ for $i=1,2$. And we can see that $\lim _{t \rightarrow+\infty} \Theta(t)=0$ and $\lim _{t \rightarrow+\infty} \frac{V(t)}{t}=0$.

Taking the limit inferior of both sides of (A10) yields

$$
\liminf _{t \rightarrow+\infty}\left\langle\sum_{i=1}^{2} I_{i}(t)\right\rangle \geq \frac{1}{\Delta_{\max }} \sum_{i=1}^{2}\left(1+a_{i} \frac{N}{m}\right)\left(m+\alpha_{i}+\delta_{i}\right)\left(\mathcal{R}_{i}^{s}-1\right)>0
$$

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

