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Abstract: Time series of stock indices usually exhibit nonstationary and chaotic behavior. Analysis
of the characteristics of the business cycle can reveal pertinent insights into the evolution of the stock
volatility. This paper studies the characteristic periods of three main Chinese stock indices, i.e., the
Shanghai composite index (SHCI), the Shenzhen component index (SZCI), and the Hang Seng index
(HSI). We propose an approach based on the successive one-sided Hodrick-Prescott (SOHP) filtering
and wavelet analysis of the empirical data from the stock markets, to detect their characteristic periods.
In particular, the SOHP filter, which preprocesses the time series with a moving-horizon optimization
procedure, enables us to extract the volatility cycles in different time scales from a stock time series
and reduce noise distortion. The characteristic period of the stock index is then determined by the
maxima of the wavelet power spectrum of the filtered data. The evolution of the characteristic period
in time demonstrates rich information concerning the period stability of the stock market, as well as
the cause and effect of the stock crash. To facilitate solving the moving-horizon optimization issue of
the SOHP filter, we also present an incremental HP filtering algorithm, which greatly simplifies the
involved inverse matrix operation in the HP-type filters.

Keywords: nonlinear time series; characteristic period; the successive one-sided HP filter;
incremental HP filtering algorithm; Chinese stock market

1. Introduction

Stock markets have long been studied as complex systems with the time series of stock prices as ob-
servation variables of the underlying dynamics [1–4]. A basic issue addressed in the studies concerns
characterizing the cyclicality of stock fluctuations [5, 6]. Generically, the volatility of stock markets
demonstrates complicated dynamic features, with nonstationary evolution component and many coex-
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isting modes of oscillations simultaneously. Corresponding to this, the time series arising from stock
markets include long-term growth trend as well as short-term fluctuations. In the context of macroeco-
nomics, the business cycles of the stock markets are characterized by their short-term fluctuations [7].
Researching the major cyclical behavior can provide insight into the stock market movement and help
in making decisions on the stock market [8].

In the literature, several methods have been proposed to separate the trend from the cyclical compo-
nent in stock time series [9, 10]. A most popular approach is that based on the Hodrick-Prescott (HP)
filter and its variants [11–13]. The basic idea of the HP filter is to split a time series into its trend (or
secular) and cyclical component, and separate them by minimizing the variance of cyclical variable
subject to a penalty for variation in the second difference of trend variable. It was originally proposed
for study of the postwar U.S. business cycles [11] and later widely employed in econometrics [14], due
to its simplicity in formulation and less assumption on data statistics. Observe that the HP filter itself
is a two-sided filter, namely, it processes both future and past data in batch to determine the trend com-
ponent. This may result in a smooth fitting of the trend and distort the extracted cyclical components.
To address this issue, Refs. [12] and [15] suggested a one-sided HP filter (OHP) that applies the HP
filter on an expanding sample so as to filtering out less fluctuations at each time point.

The aim of this paper is to further develop a successive one-sided HP filter (SOHP) from the per-
spective of multi-time scale decomposition, with application to characteristic period analysis of the
Chinese stock market. To motivate our study, we regard the primary HP filter as an operation to split
the time series into slow- and fast-varying variables, corresponding to the trend and the cyclical com-
ponent respectively. Hence, applying the operation recursively on the updated fast-varying variable
will enable us to extract the cycles of stock volatility on different time scales. This finally yields a
successive expansion of the original time series in different time scales, as an adaptation form for time-
frequency analysis after removing the trend from it. In this way, we will evaluate the characteristic
periods of the main Chinese stock indices, i.e., the Shanghai composite index (SHCI), the Shenzhen
component index (SZCI), and the Hang Seng index (HSI) [16], by determining the maxima of the
wavelet power spectrum of the filtered data; and examine the evolution of the characteristic periods
along with their implications. In particular, our results reveal the period stability and suggest possible
relation between period shift and stock crash.

We note that the proposed SOHP filter is essentially an optimization problem with moving hori-
zon. Solving the problem involves the inverse operation of a matrix with ever increasing size. The
existing OHP filtering algorithm is originally designed for the case of fixed-length data and is hence
inconvenient for the SOHP filter. To overcome this difficulty, we also present an incremental HP filter-
ing algorithm, which can compute the required inverse matrices for growing-length data in a recursive
manner, greatly facilitating the operation of HP-type filters in modern data-rich environments.

The rest of this paper is organized as follows. In Section 2, we introduce the SOHP filter and the new
filtering algorithm. Section 3 presents analysis of the chaotic features and the characteristic periods of
the concerned Chinese stock indices. A summary is drawn in Section 4.

2. The SOHP filter and incremental filtering algorithm

This section introduces the proposed SOHP filter and presents an incremental filtering algorithm.
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2.1. The SOHP filter

We first recall the HP filter [11], which decomposes l observations of a variable yt into the follow-
ing form:

yt = gt + ct, t = 1, 2, . . . , l, (2.1)

where gt represents the growth trend and ct the cyclical volatility, corresponding to the low- and high-
frequency components of yt, respectively. The trend gt are determined by the minimization problem

min
gt

 l∑
t=1

(yt − gt)2 + η

l∑
t=3

(gt − 2gt−1 + gt−2)2

 , (2.2)

where η ≥ 0 is a tuning parameter. Let yl = [y1, y2, · · · , yl]⊤, gl = [g1, g2, · · · , gl]⊤, and the tridiagonal
matrix

Fl =


1 −2 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 −2 1


(l−2)×l

,

one can rewrite the problem (2.2) in a compact form as

min
gl

{
∥yl − gl∥

2 + η∥Fl gl∥
2
}
, (2.3)

where ∥·∥ represents the ℓ2-norm of a vector. The solution to the optimization problem (2.3) is given by

gl = S −1
l yl, (2.4)

and hence the cyclical part is

cl = (Il − S −1
l )yl, (2.5)

where S l = Il + ηF⊤l Fl and Il is the l × l identity matrix.
In macroeconomic analysis the slow-varying part gl represents a secular trend of economic growth,

and the fast-varying part cl represents the short-term fluctuation of economic volatility [11, 17]. Ob-
serve that the HP filter decomposes a stock price time series into its trend and cycle parts using both
its past and future data at a given period. This can result in a smooth fitting of the growing trend of
the stock price and might lose certain fluctuation details of the trend. In view of this, a modified HP
filter, namely the one-sided HP filter was proposed in [12], which applies the HP filter to the presently
available sample only to avoid using future data at a given time. Specifically, the one-sided HP filter
performs the HP filter on an expanding sample by letting

Y =


y1 y1 · · · y1

0 y2 · · · y2
...
...
. . .

...

0 0 · · · yl


l×l
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be the observation matrix formed by the yt, with each column the ample data available at an observation
time; and exerting Eq (2.4) to each column of Y to yield the HP trend matrix

G =


g1,1 g1,2 · · · g1,l

0 g2,2 · · · g2,l
...

...
. . .

...

0 0 · · · gl,l


l×l

.

gO = [g1,1, g2,2, . . . , gl,l]⊤.

In the present study, we will employ the one-sided HP filter in a recursive manner to reduce the data
noise and extract the volatility tendencies of the time series on different frequencies or time scales. This
leads to a successive expansion of the concerned time series in different time scales that admits wavelet
analysis after removing the secular trend. To be specific, we apply the one-sided HP filter recursively
to the fast-varying component obtained in the last step of operation, following the procedure as below:

Step 1. Apply the OHP filter to the data and obtain the trend gO(1)
l = gO

l and the residual cO(1)
l =

yl − gO(1)
l ;

Step 2. Assume that for i > 1, the cycle residual cO(i) is available, apply the OHP filter to cO(i)
l

to obtain higher order components gO(i+1)
l and cO(i+1)

l , and repeat this operation on the updated cycle
residual until certain stopping criterion (to be stated later) is met;

Step 3. Sum up all the trend components gO(1)
l , . . . , gO(n)

l of different scales successively obtained in
n iterations in Step 2 to get the finite expansion form of the trend estimate:

gl =

n∑
i=1

gO(i)
l , (2.6)

where gO(i)
l denotes the i-th trend residul obtained in Step 2. We will refer to the above approach as the

successive one-sided HP (SOHP) filter.
Analogous to the case of the bHP filter [13], here we introduce the following Bayesian-type infor-

mation criterion (BIC) as the iteration stop condition for the SOPH in Step 2 : Let

BIC(n) =
∥cO(n)∥1

∥cO(1)∥1
+

1
l − 2

l∑
t=3

tr(M(n)
t )

tr(It − S−1
t )
, (2.7)

where ∥ · ∥1 represents ℓ1-norm of a vector, cO(n) denotes the n-th cyclic residual yielded thereof, tr(·)
represents the trace of a matrix, and M(n)

t = It−(It−S −1
t )n; the proper number of iterations n corresponds

to the smallest BIC value.
The expansion form (2.6) can be viewed as a preprocess of a raw time series to reduce noise and ex-

tract volatility trends on different time scales. In contrast to the HP filtering, the adoption of one-sided
HP filter algorithm in this stage can help to avoid smoothing out extra fluctuations in the filtered data.

In the next stage, we use the HP filter to remove the secular growth term from g to obtain the de-
trended component c̃ = [c̃1, c̃2, · · · , c̃l]⊤, which involves periodic motions in different time scales. The
characteristic period of the time series refers to the principal period component identified in wavelet
analysis of the cyclical component c̃, to be specified later. Notice that, as mentioned before, the HP
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filtering usually results in a smoother growth trend than the one-sided HP filter does because it makes
use of both past and future data. Therefore, the corresponding detrended residual component by the
HP filter would reserve more fluctuations of stock volatility, and is hence much relevant to the purpose
of our study.

2.2. Incremental HP filtering algorithm

Notice that the OHP filter is essentially an optimization problem with moving horizon, and the Eqs
(2.4) and (2.5) explicitly depend on the length l of the time series. When the length increases, one
has to compute the inverse of a new matrix S l of higher dimension. This would impede application of
the formulas in expanding sample or streaming data scenario. Actually, even for a time series of fixed
length it is usually not desirable to take inverse operation for a matrix of large size directly. To address
this issue, we propose an incremental algorithm for the HP filter as follows. For 4 ≤ t ≤ l, define

Ft =

[
F̃t−1

p⊤t

]
(t−2)×t

,

where F̃t−1 = [Ft−1 0](t−3)×t and pt = [0, . . . , 0, 1,−2, 1]⊤ ∈ Rt, we have

S t =It + ηF⊤t Ft

=

[
S t−1

1

]
+ ηpt p

⊤
t .

By the Woodbury matrix identity [18], we get the following recursive formula
S −1

t =

[
S −1

t−1
1

]
−

(
1
η
+ p⊤t qt

)−1

qtq
⊤
t ,

S −1
3 =

1
6η + 1


5η + 1 2η −η

2η 2η + 1 2η
−η 2η 5η + 1

 ,
(2.8)

where

qt =

[
S −1

t−1
1

]
pt, for 4 ≤ t ≤ l.

Let yt = [y1, y2, · · · , yt]⊤, from Eqs (2.4) and (2.8), the growth trend and the cyclical component of
yt are given by

gt =S −1
t yt

=

[
gt−1

yt

]
− δt(gt−2 − 2gt−1 + yt)qt, (2.9)
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and

ct =yt − gt

=

[
ct−1

0

]
+ δt(gt−2 − 2gt−1 + yt)qt, (2.10)

respectively, where

δt =
1

1
η
+ p⊤t qt

.

We refer to Eqs (2.8)–(2.10) as an incremental HP filtering algorithm, which merely requires eval-
uating a 3 × 3 initial inverse matrix and applies effectively to series data of fixed as well as expanding
length in a recursive manner.

3. Characteristic period analysis of the Chinese stock market

This section presents the results on dynamic behavior analysis of the Chinese stock market. We
select the monthly data of SHCI from July 1997 to September 2020, SZCI from October 1997 to
September 2020, and HSI from October 1987 to September 2020. Let yt be the log-transformation of
these stock indices. Applying the method described in Section 2.1 to yt, we can obtain the detrended
residual c̃ for each stock index respectively, as shown in Figure 1, where the filter parameter η = 14, 400
for all cases as suggested in [19]. According to our numerical experiments, the BIC in Eq (2.7) assumes
its minimum value at n = 3 for the three stock indices. Table 1 shows the mean and the variance of the
final ct, and the BIC value for our SOHP method. It can be seen that the mean value of ct is very close
to zero for each case. In the following, we will discuss the dynamic behavior of the stock volatility
based on c̃.
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Figure 1. Plots of the cyclical component c̃ of the stock indices, obtained from the empirical
data y by preprocessing with the SOHP filter and detrending with the HP filter, for the case
of (a) SHCI, (b) SZCI, and (c) HSI.
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Table 1. The mean, the variance, and the BIC for SOHP filter with n = 3.

Index Mean Variance BIC
SHCI −5.01e-5 1.75e-2 0.9659
SZCI −1.32e-4 2.20e-2 0.9652
HSI 5.13e-4 9.30e-3 0.9600

3.1. Autocorrelation coefficients

We first evaluate the autocorrelation function of c̃, which measures the correlation between the data
and itself at different time points, defined as

ρd =
E[(c̃t − µ)(c̃t+d − µ)]√

E[(c̃t − µ)2]E[(c̃t+d − µ)2]
,

where µ = E[c̃], E[·] denotes the average or expectation value of a variable, and d is the lag or-
der [20, 21]. Figure 2 displays the computational results for the three stock indices. It indicates that
ρd has a period of about three years for each case, which is within the range of the commonly recog-
nized macroeconomic volatility cycles [22]. Also, it is clear from Figure 2 that ρd exhibits a decaying
oscillation around and eventually tending to zero. This is regarded as a typical character of chaotic
oscillations in a nonlinear dynamical system [23].

0 50 100 150 200 250

d

-1

-0.5

0

0.5

1

d

(a)

0 50 100 150 200 250

d

-1

-0.5

0

0.5

1

d

(b)

0 50 100 150 200 250 300 350

d

-1

-0.5

0

0.5

1

d

(c)

Figure 2. Plots of the autocorrelation coefficients. The period P = 4× d0 years, d0 is the lag
order when the autocorrelation coefficient first decays to zero. (a) SHCI, PS HCI = 3.3 years;
(b) SZCI, PS ZCI = 3 years; (c) HSI, PHS I = 3.3 years.

3.2. Phase diagrams and fractal dimensions of the chaotic attractors

In order to examine the chaotic behavior of the cyclical residual c̃ in more detail, we employ the
delay coordinate method to reconstruct a phase trajectory from the one-dimensional time series that
is topologically equivalent to the underlying dynamics of the original time series. Figure 3 depicts
the phase diagrams for the subseries c̃ of SHCI, SZCI, and HSI with the delay time d = 7 and the
embedded dimension of 2, where the delay time is selected according to the literature [24]. The plots
exhibit spiral-shaped feature, indicating a typical chaotic behavior [23]. In addition, by using the box
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counting method, we also calculate the fractal dimensions of the chaotic attractors for the cases of
SHCI, SZCI, and HSI as 1.11, 1.11, and 1.16, respectively [25].
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Figure 3. Phase diagrams and fractal dimensions (FD) of the chaotic attractors for the case
of (a) SHCI, FDS HCI = 1.11; (b) SZCI, FDS ZCI = 1.11; and (c) HSI, FDHS I = 1.16.

3.3. Characteristic period of stock price volatility

The chaotic behavior as demonstrated before indicates the coexistence of oscillatory modes in the
underlying dynamics of the stock time series. Next we proceed to determine the characteristic periods
of them through wavelet analysis of the detrended residual c̃. By characteristic period of a signal we
meant the reciprocal of the frequency corresponding to the peak of the wavelet coefficient of the signal
in each time cross-section [23]. The characteristic period of a stock market represents the instanta-
neous principal oscillatory mode, which corresponds to the period determined by the maxima of the
wavelet power spectrum, effectively capturing the major variability of the stock price and portraying the
multi-frequency dynamical behavior of the stock index time series. Figure 4 shows the resulting time-
frequency contour maps. It can be seen that the frequency corresponding to the peak of the wavelet
coefficient at different moments approximately ranges from 0.2 to 0.5. That is, the characteristic period
at different times is between about 2 and 5 years.
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Figure 4. Time-frequency contour maps for the case of (a) SHCI, (b) SZCI, and (c) HSI.

Figure 5 illustrates the evolution of characteristic periods of SHCI, SZSI, and HSI. Roughly speak-
ing, the characteristic period for each case can remain a constant value in about 3 to 4 years. It will
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shift in face of shocks and then recover to near the previous value over time. This suggests certain
degree of stability of the characteristic period for the concerned Chinese stock market. To quantify the
argument, we further compute the characteristic period variability, which is measured as the ratio of
the standard deviation to the mean of the periods. The results for SHCI, SZCI, and HSI are 17.8% over
23 years, 18.2% over 23 years, and 21.4% over 33 years, respectively. The period stability of business
cycles in the stock markets are remarkable. By comparison, the characteristic period variability of the
HSI is slightly larger than that of the SHCI and SZCI, implying a relatively less period stability and
more volatility of the former.

We can learn more from the characteristic period shifts of the stock markets as shown in Figure 5.
In particular, an abrupt downward shift in the characteristic period curve indicates a rapid change from
low to high frequency of the variation in stock price, meaning that the stock market becomes very
active in a short time interval. This can often be regarded as a precursor to the stock market crash.
From Figure 5, the SHCI has 3 times of downward shifts in 23 years, the SZCI has 3 times in 23 years,
and the HSI has 7 times in 33 years. Table 2 lists the occurrence time of such period shift in each inset
of Figure 5 along with the fall time of each stock index.

(a)

(b)

(c)

Figure 5. Characteristic periods and shifts. (a) SHCI, (b) SZCI, (c) HSI.
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Table 2. Characteristic period shift time and index fall time.

Shift numbers Period shift time Index fall time
SHCI
First 06.2007 10.2007 [26]
Second 09.2014 06.2015 [27]
Third 01.2018 01.2018 [16]
SZCI
First 03.2007 10.2007 [26]
Second 10.2014 06.2015 [27]
Third 08.2017 10.2017 [16]
HSI
First 12.1993 01.1994 [28]
Second 11.1997 08.1997 [29]
Third 04.2004 03.2004 [30]
Fourth 01.2007 10.2007 [30]
Fifth 07.2008 09.2008 [31]
Sixth 06.2015 06.2015 [32]
Seventh 10.2016 01.2018 [16]

It is of interest to note that the data in Table 2 can be categorized into two types. In the yellow
area, the characteristic period shift occurs preceded or concurrent with the fall of the stock index, and
the gray area represents the case otherwise. The two opposite cases indicate different routes to stock
crash. In the former case a lot of short-term trading activity surges in a short time within the stock
market, leading to rapid accumulation of economic bubbles, and eventually resulting in the slump in
stock price. For example, in Figure 5(a), the crashes of the SHCI that occurred in October 2007 and
June 2015 were caused by internal factors; the characteristic period shifted in June 2007 and September
2014 before the stock index crashed. The other cases of stock index sharp declines in the yellow area of
Table 2 (corresponding to the partial enlargement in Figure 5) were also mainly due to internal factors,
with shifts of the characteristic period occurring before or at the same time as stock market crashes.
Whereas for the latter case the delayed characteristic period shift can be regarded as the aftermath of
stock crash. According to relevant information, the second and third large fluctuations of HSI (gray
data in Table 2) that occurred prior to the characteristic period shift have their own external origins.
The one of price crash bursting in August 1997 is now acknowledged as a result of the Asian financial
crisis that began in Thailand [33], while the other one in March 2004 is attributed to a series of global
minor crash [34]. In other words, these two instances of stock market crash that occurred before the
characteristic period shift are caused externally. Accordingly, one may refer to the otherwise case
where the stock market crash occurs subsequent to the characteristic period shift is induced internally.
As a consequence, a decline in the stock characteristic period curve may be view as an alarm of the
crash for the latter case.
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4. Conclusions

The fluctuations in stock markets usually demonstrate lots of coexisting oscillatory modes simul-
taneously. Capturing the major cyclical behavior sheds light on our better understanding of the stock
market volatility and helps in planning effective investment strategies. In general, the time series from
stock markets include both secular growth trend and short-term cyclical tendencies, and the business
cycles of stock markets can be examined with the detrended series data.

In this paper, we have developed an approach to study the cyclical behavior of stock price volatility
based on extended HP filtering and time-frequency analysis. The proposed SOHP filter together with
the incremental filtering algorithm enables extraction of the volatility tendencies with different time
scales in a stock time series for further investigation of the underlying dynamics. The characteristic
period of a stock market represents the instantaneous principal oscillatory mode in wavelet transform
of the stock time series, capturing the major variability of the stock price. Empirical results of the
present approach on the three main Chinese stock market indices reveal that most of the variability
of the stock prices occurs at frequencies of periods about 3 to 4 years. This agrees with the common
observation of the Chinese stock market. Interestingly, our results also identify the downward shift of
the characteristic period values, which are all associated with certain recorded financial crisis. Accord-
ing to whether the period shift occurs behind the crisis or not, the cause of change in stock volatility
cycles may be regarded as external or internal. In our study, most cases (11 out of 13 instances) are
internal, where short-term volatility in stock prices emerges severely and accumulates quickly, lowing
the cyclical periods of the price fluctuation until the crash. This suggests that for a steadily evolv-
ing characteristic period curve of a stock index, the appearance of an evident decline in characteristic
period values may be viewed as a warning of forthcoming large fluctuations.
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