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Abstract: An amplified reflection and exploitation-based distributed denial of service (DDoS)
attack allows an attacker to launch a volumetric attack on the target server or network. These
attacks exploit network protocols to generate amplified service responses through spoofed requests.
Spoofing the source addresses allows attackers to redirect all of the service responses to the victim’s
device, overwhelming it and rendering it unresponsive to legitimate users. Mitigating amplified
reflection and exploitation attacks requires robust defense mechanisms that are capable of promptly
identifying and countering the attack traffic while maintaining the availability and integrity of the
targeted systems. This paper presents a collaborative prediction approach based on machine learning
to mitigate amplified reflection and exploitation attacks. The proposed approach introduces a novel
feature selection technique called closeness index of features (CIF) calculation, which filters out
less important features and ranks them to identify reduced feature sets. Further, by combining
different machine learning classifiers, a voting-based collaborative prediction approach is employed
to predict network traffic accurately. To evaluate the proposed technique’s effectiveness, experiments
were conducted on CICDDoS2019 datasets. The results showed impressive performance, achieving
an average accuracy, precision, recall and F1 score of 99.99%, 99.65%, 99.28% and 99.46%,
respectively. Furthermore, evaluations were conducted by using AUC-ROC curve analysis and the
Matthews correlation coefficient (MCC) statistical rate to analyze the approach’s effectiveness on
class imbalance datasets. The findings demonstrated that the proposed approach outperforms recent
approaches in terms of performance. Overall, the proposed approach presents a robust machine
learning-based solution to defend against amplified reflection and exploitation attacks, showcasing
significant improvements in prediction accuracy and effectiveness compared to existing approaches.
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1. Introduction

Communication protocols allow computer networks to serve requests from prolific clients over
diverse network topologies. While low-security measures in communication protocols can enhance
data communication efficiency and facilitate the smooth operation of computer networks, they also
introduce significant vulnerabilities. Malicious actors can exploit these vulnerabilities to compromise
the security and stability of communication systems. The reflection and exploitation attack is a
significant cyberattack method that cybercriminals employ to exploit vulnerabilities in network
protocols and systems to generate massive traffic volumes. This flood of malicious traffic is designed
to overwhelm the target server or network, leading to various adverse effects on its stability,
availability and security. These attacks can cause disruptions in online services, financial losses,
reputation damage and potential data breaches. As a result, defending against such attacks and
maintaining a robust cybersecurity posture is crucial for organizations to ensure the continued
functioning of their digital infrastructure and protect their valuable assets.

In reflection attacks, the attacker sends requests to servers or devices configured to respond to
certain types of queries or requests. These servers are often legitimate and publicly accessible. This
is achieved by manipulating the packet headers to forge the source IP address. The attacker spoofs
the source IP address in the requests, making it appear as if they originate from the target victim’s
IP address. Assuming the requests are legitimate, the servers send their responses to the victim’s IP
address, resulting in a flood of traffic directed at the victim. Attackers amplify the attack intensity by
smartly selecting those reflector servers that can reply with a large packet size compared to the request
packet [1].

In exploitation attacks, an attacker exploits the vulnerability of a network protocol to launch a
high-volume attack on the victim server [2]. The attacker leverages the characteristics of the targeted
network protocols or services to achieve amplification. Certain protocols, such as the domain name
system (DNS) protocol, Network Time Protocol (NTP), Simple Network Management Protocol
(SNMP) and others, can generate significantly larger responses than the initial request size. By
exploiting these protocols’ features, the attacker can amplify the volume of traffic directed at the
victim. This amplification effect allows the attacker to overwhelm the victim’s network infrastructure,
consuming its resources and making it inaccessible to legitimate users.

The combination of reflection and exploitation techniques enables cybercriminals to launch
devastating distributed denial of service (DDoS) attacks that can disrupt online services, cause
financial losses and impact targeted organizations’ reputations. These attacks can be challenging to
mitigate due to the widespread availability of vulnerable servers and the ease of spoofing IP
addresses. These attacks are generally carried out by exploiting network protocols, such as the Simple
Service Discovery Protocol (SSDP), DNS protocol, Lightweight Directory Access Protocol (LDAP),
Network Basic Input/Output System (NetBIOS) protocol, Simple Network Management Protocol
(SNMP), Microsoft SQL Server Resolution (MCSQLR) protocol, synchronized (SYN) flood attack
protocol, User Datagram Protocol (UDP) and Trivial File Transfer Protocol (TFTP).

SSDP enables devices to communicate and share information and helps the user to discover plug
and play devices in the network [3]. The proliferation of Internet of Things (IoT) devices in the home
or small networks has increased SSDP reflection attacks. Cybercriminals exploit the fragility of the
SSDP to generate a high volume of network traffic using IoT devices, such as cameras, smart TVs,
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smart cars and smart fridges, to launch amplified reflection attacks [4]. DNS servers provide the IP
address of the corresponding domain name. In a DNS amplification attack, an attacker spoofs the IP
with the victim’s IP. Attackers craft millions of such packets and send them to the DNS reflectors; DNS
reflectors send back the reply to the victim instead of the attacker [5], allowing an attacker to launch
a DNS amplification attack on the victim. Cybercriminals exploit LDAP servers to launch amplified
reflection attacks on the victim server. First, they send a query to an LDAP server in a way that the
server sends a large response. Then, the attacker spoofs the request query, making the LDAP server
send the reply to the victim [6]. The NetBIOS helps to establish communication between applications
in a small network to make an application share their resources. Attackers use the IP spoofing technique
to send many requests for name lookup to the NetBIOS name server. Although the request query made
by the attacker is small, the server’s response is detailed information about the current network and
hostname configuration, which is much larger than the request query [7]. The SNMP defines a set of
rules for management stations to monitor and control the network devices for the smooth execution of
the network management functions requested by the network management stations [8].

Attackers send numerous spoofed queries with a forged IP of the victim to the network devices
running the SNMP. The network devices send SNMP responses to the forged address i.e., the victim,
in a larger volume to jam the victim’s device and network. Attackers exploit the MC-SQLR protocol to
launch a volumetric reflection attack. The MC-SQLR is designed to send information about all of the
database instances on a Microsoft SQL Server to the clients requesting information about a Microsoft
SQL (MSSQL) server database instance. Usually, portmap querying port mapper is a small request,
but the reply is multiple times that of the request packet. An attacker takes advantage of it to launch an
amplified portmap reflection attack. The remote procedure call (RPC) portmap helps to map the RPC
service number with the network port number. The attacker makes continuous spoofed portmapper
service requests using the victim’s source IP. A Syn flood attack is a Transmission Control Protocol
(TCP)-based exploitation attack.

An attacker exploits the TCP three-way handshake vulnerability by continuously send Syn requests
to the victim server but does not acknowledge back to any Syn request. It creates a huge number of
half-open connections on the server [9]. Half-open connections cause the servers to be inundated and
unresponsive to legitimate traffic. Attackers send a huge number of User Datagram Protocol (UDP)
packets to the random ports of the victim server. The bombardment of such a flood consumes all of the
server’s resources [10]. Therefore, the absence of an initial handshake in the UDP packet makes it more
attractive to the attacker and enables them to launch an attack in high volume using limited resources.
The TFTP enables the transference, downloading or uploading of a file without authentication [11].
The stateless nature, easy implementation and fast transmission rate help to boot diskless workstations,
install an operating system or transfer large files. However, the nature of having no authentication and
less security is exploited by cybercriminals to launch TFTP amplification volumetric attacks [12].
Cybercriminals send a request to download a file from the TFTP server and, while sending it, they
spoof the source IP address with a victim IP address. In this way, all of the TFTP server replies are
directed to the victim server. The above-discussed attacks are categorized and illustrated in Figure 1.
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Figure 1. Reflection and exploitation-based DDoS attacks.

The exploitation of the above-discussed protocols is difficult to detect by traditional methods. The
possibility of implementing complex security on these protocols is also low, as it can affect the
performance of the device implementing the protocol. Therefore, fixing the vulnerabilities in these
protocols or developing a modern solution is prone to be overlooked entirely. In recent years, machine
learning has evolved as one of the promising solutions for analyzing a tremendous amount of network
data to detect sophisticated attacks on the network and network devices. Many researchers have
employed machine learning to build powerful techniques to defend against cyberattacks [13—18]. This
work uses a collaborative prediction approach to detect and defect amplified reflection and
exploitation attacks. The following are key contributions.

o It presents details of the network protocols an attacker exploits for reflection and exploitation
attacks.

e A novel closeness index of features (CIF) technique is proposed to rank features.

e The CIF is combined with the Pearson correlation coefficient and a mutual information
(MI)-based feature ranking technique to construct reduced feature sets that can give optimal
performance for most of the reflection and exploitation attacks.

e A collaborative prediction approach is proposed by implementing a voting classifier to detect
attacks.

e The proposed approach has experimented on various reflection and exploitation attack datasets to
evaluate the model’s effectiveness.

e The proposed model is further evaluated by the area under the curve (AUC) and receiver operating
characteristic (ROC) curve and Matthews correlation coefficient (MCC) statistical rate.

The rest of the article is organized as follows: Section 2 discusses machine learning-based
approaches closely related to the proposed work. Next, Section 3 gives a detailed description of the
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proposed approach. Then, the experimental result is presented in Section 4 and the discussion is
presented in Section 5. Finally, Section 6 concludes the proposed work.

2. Related works

Cyberattacks exploiting network protocols have always been a major concern for researchers and
industries. Over the period, many security mechanisms have been developed to ensure the security of
the network protocols. The section below discusses existing studies that propose defense mechanisms
against reflection and exploitation attacks using machine learning techniques.

Thorat et al. [19] proposed TaxoDaCmachine learning, a taxonomy based on the divide and conquer
approach that uses a machine learning technique to detects DDoS attacks targeted on transport layer
protocol. Dividing bigger classification problems into smaller sub-problems helps the approach to
perform efficiently. TaxoDaCmachine learning gives the flexibility to choose different feature sets
and various machine learning classifiers to perform the classification. The extensive work on data
cleaning and feature selection improves the performance of the proposed approach. Various machine
learning classifiers, such as k-nearest neighbor (KNN), decision tree (DT), random forest (RF) and
artificial neural network (ANN) algorithms are used at various levels to improve classification accuracy.
TaxoDaCmachine learning achieved 99.9% detection accuracy when applied to the CICDDo0S2019
dataset. The technique performs classification by using minimum computational cost and time. Ahmed
et al. [20] implemented a machine learning technique to detect and mitigate DNS query-based DDoS
attacks in software defined networking (SDN). This technique is more suitable for networks, such as
military networks, that need high security. In the proposed technique, the SDN controller periodically
accesses and analyzes network traffic to find the network traffic features. As a result, Dirichlet process
mixture model (DPMM) outperformed the mean shift clustering method in terms of the detection
accuracy of network traffic flows and hypertext transfer protocol (HTTP) and file transfer protocol
(FTP) traffic flows.

Sreeram and Vuppala [21] proposed a bio-inspired bat algorithm to detect DDoS attacks based on
application layer protocols, such as HTTP, DNS, VoIP or SMTP attacks. Unfortunately, DDoS attacks
based on application layer protocols follow all of the communication protocols, which makes them
difficult to detect. The bio-inspired proposed technique helped to achieve higher accuracy with
minimal computational complexity. When experimented on the CAIDA 2007 dataset, it achieved
94.5% precision, 94% recall and 94.8% accuracy. Salman et al. [22] proposed a framework for
identifying IoT devices and detecting malicious network traffic. The proposed framework has
modules, such as a feature extractor to record the features of active network flow, a module to identify
IoT devices to classify the devices based on statistical features of network flows, a traffic-type
identification module to classify the generated traffic and an intrusion detection module to profile the
normal device behavior to detect abnormal activity. During the experiment, various machine learning
classifiers were employed, where RF achieved the highest accuracy, with 94.5% for device-type
identification and 93.5% for traffic-type classification. The authors of [23] proposed BLCD, a broad
learning-based extensive defense strategy for detecting DDoS attacks based on the SSDP. BLCD
incorporates broad learning and a collection of defense strategies to detect malicious traffic, and it
reduces the incoming and outgoing network traffic from a device. The defense strategies are deployed
on multiple zones, such as senders, routers, service providers, victims, amplifiers and bots. The
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proposed technique achieved 99.99% accuracy in detecting malicious traffic.

Ismail et al. [24] presented the weighted score selector (WSS), a lightweight ensemble machine
learning approach for detecting cyberattacks in wireless sensor networks (WSNs). WSS implements
MI and Kendall’s correlation coefficient for identicality reduction and the extraction of an optimal
subset of features. The authors employed seven conventional machine learning classifiers to create a
pool and experimented with them on the WSN-DS dataset. The approach divided the original dataset
into multiple balanced sub-datasets reducing the computational overhead and making the approach
suitable for imbalanced datasets. Further, the most effective classifier is selected after analyzing the
performance of each classifier from the pool. Kshirsagar and Kumar [25] proposed a machine learning-
empowered security framework against DDoS attacks by exploiting TCP and UDP protocols. The
thresholds 0.5, 0.25 and 0 were applied in IG and CR-based techniques to get reduced feature sets
CRFS-1, CRFS-2 and CRFS-3. Further, CRFS-1 and CRFS-2 were combined to get a new feature
set that enhanced the classification performance of the J48 classifier. Mishra et al. [26] proposed a
multi-classifier algorithm-based defensive mechanism against different DDoS threats. The authors
employed six machine learning classifiers on the CICD0S2019 dataset to detect DDoS attacks. The
low variance features with less than a predetermined threshold were removed. Further, the tree-based
feature selection approach eliminated unnecessary features and finally selected the top 25 features.
The AdaBoost achieved the highest classification accuracy, while a naive bayes algorithm achieved the
highest performance speed.

In summary, the existing studies have significantly contributed to the development of defense
mechanisms against amplified reflection and exploitation attacks using machine learning techniques.
These studies contribute valuable insights and techniques for addressing network security challenges
posed by reflection and exploitation attacks, showcasing the potential of machine learning in to
enhance defense mechanisms.

While existing studies have made notable advancements, it is clear that improvements are still
needed in the following areas:

e Accuracy improvement: While the existing studies achieved high detection accuracy in many
cases, there is still room for improvement. Future research should focus on developing more
accurate models to minimize false positives and false negatives.

o Feature selection techniques: Feature selection is critical in improving the performance of
machine learning models. Existing approaches may not have explored all possible relevant
features or utilized advanced feature selection methods. Developing more effective feature
selection techniques could enhance the overall defense mechanism.

e Collaborative prediction: Some studies have employed multiple machine learning classifiers to
improve accuracy, but further exploration of collaborative predictive methods may yield better
results. Ensemble methods or meta-learning techniques combine the strengths of different
classifiers effectively.

e Handling class imbalance data: Dealing with imbalanced datasets is a common challenge in
network security. Existing approaches have addressed this to some extent, but more robust
techniques are needed to handle class imbalances and avoid bias in the model.

These identified limitations motivated the researchers to develop defense mechanisms that are both
more resilient and efficient in the terms of countering the amplified reflection and exploitation DDoS
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attacks. By addressing these critical gaps, the research contributes to the evolution of more robust and
impactful solutions in this domain.

3. Methodology

The proposed amplified reflection and exploitation attack detection method is a machine learning-
based technique. It has following stages.

Dataset enhancement: Most of the data have multiple missing values, such as null, NaN and
NA. This subsection discusses the dataset used in this study and the steps involved in improving the
dataset quality.

Feature selection techniques: The technique employs three different feature ranking techniques to
identify the most useful features for attack detection. These techniques include the following:

o CIF: This method assesses the relevance and importance of each feature based on its proximity to
the target variable or attack label.

e Pearson Correlation Coefficient-based ranking: Features are ranked based on correlation between
independent and dependent features.

e MlI-based ranking: MI measures the dependency between each feature and the attack label, with
higher MI values indicating greater relevance.

Collaborative prediction using VotingClassifier: The selected features are input for three
different machine learning classifiers: AdaBoostClassifier, LogisticRegression and BaggingClassifier.
A VotingClassifier is employed to make the final prediction. This ensemble technique combines the
predictions from the individual classifiers (AdaBoostClassifier, LogisticRegression and
BaggingClassifier) and aggregates them by using a majority voting scheme. The VotingClassifier
leverages the diversity of the individual classifiers to improve the overall predictive performance. By
implementing this approach, the proposed technique aims to enhance the detection of amplified
reflection and exploitation attacks.

The following subsection discusses each stage of the proposed technique in detail and the workflow
is presented in Figure 2.

3.1. Dataset enhancement

It is crucial to evaluate machine learning models on modern, realistic and large datasets to ensure
their real-world performance, generalizability, robustness, scalability and ethical considerations.
Considering this view, the proposed approach has been evaluated on the CICDD0S2019 [27] DDoS
attack dataset. It includes various modern and realistic DDoS attack traffic profiles. The
CICDDo0S2019 dataset has a huge amount of network traffic collected from a comprehensive testbed
that combines a highly secured victim network and an attack network separated from the victim
network. Therefore, the ratio of attack records is very high in each dataset compared to the ratio of
benign records, which gives a realistic scenario of a high-volume DDoS attack. In most cases, attack
records are more than 99.9% of total records. All datasets have a total of 88 features. Many features,
such as ‘Bwd PSH Flags’ and ‘Bwd Avg Bulk Rate’ are single-value features; hence they were
discarded during the experiments. The proposed technique has been applied to CICDD0S2019’s
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SSDP, DNS, LDAP, NetBIOS, SNMP, NTP, MSSQL, Portmap, Syn and UDP datasets. An overview

of the CICDD0S2019 dataset is given in Table 1.
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Figure 2. Workflow of the proposed approach.
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Table 1. CICDDo0S2019 dataset record details.

Dataset Attack Benign Total Attack % Benign %
SSDP 2610611 763 2611374 99.97% 0.03%
DNS 5071011 3402 5074413 99.93% 0.07%
LDAP 2179930 16 2181542 99.93% 0.07%
NetBIOS 3454578 1321 3455899 99.96% 0.04%
SNMP 5159870 1507 5161377 99.97% 0.03%
NTP 1202642 14365 1217007 98.82% 1.18%
MSSQL 5772992 2794 5775786 99.95% 0.05%
Portmap 186960 4734 191694 97.53% 2.47%
Syn 4284751 35790 4320541 99.17% 0.83%
UDP 3779072 3134 3782206 99.92% 0.08%

All datasets have a significant amount of missing and infinite values. These values were imputed
with zero. Deleting these values can cause a significant amount of data loss. The missing value
imputation can also be done by predicting these values using machine learning models. Machine
learning models can capture complex relationships between variables, allowing for more accurate
imputations. Although it will improve the dataset, it can extra overload on model. Details of the
missing and infinite values are given in Figure 3.

600,000

500,000

400,000
300,000
200,000
100,000

SSDP LDAP NETBIOS SNMP MSSQL Portmap
Dataset

Count of infinity & na values

Figure 3. Details of missing and infinite values in the dataset.

3.2. Feature selection techniques

Filtering out unwanted features and selecting important features can help to improve the
performance of any machine learning model. These steps become essential when the dataset size is
huge and the model needs to analyze these data in real time. The proposed feature selection technique
combines three feature ranking techniques: CIF, Pearson correlation coefficient and MI.
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Having three different feature ranking techniques in the feature selection process offers several
advantages. It allows the model to comprehensively evaluate the relevance of features from various
perspectives, capture both linear and nonlinear relationships between features and the target variable,
reduce the bias introduced by any single method, handle diverse data types effectively, increase
robustness against noise in the data and strike a balance between feature interpretability and
predictive performance.

CIF-based ranking: The CIF is determined by calculating the mean value of a feature and
subtracting it from each value of that feature. The absolute value of the subtraction is divided by the
mean value of the same feature. This process repeats for each feature value and a total is calculated.
This total value indicates the closeness of each value of a feature to the mean value of that feature.
The equation for calculating the CIF for all features is given by Eq (3.1).

o\ L] = mean(F i)
CIF = Z ]Z e L) 3.1)

where
p is the total number of features in the dataset
g is the total number of records in i" feature
F represents all features in the dataset

The CIF values calculated for each feature of the Syn flood attack dataset is shown in Figure 4.

The CIF offers insights into feature distribution and variability, benefiting decision-making and
increasing data comprehension. The CIF provides a quantifiable measure of how closely individual
feature values cluster around their respective means. It can help to evaluate the importance and
relevance of features within a dataset. They might indicate the presence of outliers or extreme values
that deviate significantly from the mean. Identifying and investigating these features could be crucial
to obtaining an understanding of data quality issues or anomalies.

Pearson correlation coefficient-based ranking: The Pearson correlation coeflicient is a statistical
measure that quantifies the linear relationship between each feature (independent variable) and the
target variable (dependent variable). Features with a higher absolute value the correlation coefficient
(closer to 1 or -1) are considered as more strongly correlated with the target variable and are
potentially more informative for predictive modeling tasks. On the other hand, features with
correlation coefficients close to 0 are less likely to have a strong linear relationship with the target and
may be less useful for prediction.

Equation (3.2) is used to calculate Pearson’s correlation coefficient between independent feature /
and dependent feature D.

Z(I I(D; - D)
Pip = (3.2)

Z(I -1y \/Z(D Dy

where
I and D are two features of the dataset
n is the number of records in feature /
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Figure 4. CIF values for Syn flood attack dataset features.

[ is mean of feature /
D is the mean of feature D

The correlation values calculated between each independent feature and dependent feature of the
Syn flood attack dataset is shown in Figure 5.

MI-based ranking: The MI between two features shows how much information one feature has
about another. For example, the amount of information feature F carries to correctly classify the target
label L (benign or attack) is calculated by using Eq (3.3). A higher MI (F, L) value indicates higher
importance of the feature [28]. Conversely, when the value of MI (F, L) is zero, feature F' now has
information about target feature L, which can be removed from the final feature set.

n

MI(F,L)= " Z p(Fi, L)) log

i=1 j=1

( p(Fi, Ly) ) (3.3)

p(Fi)p(L)

where
F represents all of the features in the dataset
L is the label of a record (benign or attack)
i and j are used to iterate all of the features in the dataset

Then, the MI value is calculated for each feature, which helps in the ranking of features based on
the amount of information they have about the target feature. Subsequently, an i feature is selected
from each group to create a feature subset. The MI value calculated for each feature of the Syn flood
attack dataset is shown in Figure 6.
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Figure 5. Correlation values of Syn flood attack dataset features.
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Figure 6. MI values for Syn flood attack dataset features.

Final high ranked feature identification: After ranking features using the CIF, LASSO and MI

0 to the length of features. The 0" feature denotes the

highest-ranked feature. At each i step, the i feature is extracted from the CIF, LASSO and MI

i

techniques, a loop is used to iterate from
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feature sets and all unique values are added to the feature set. AdaBoostClassifier is implemented to
find the classification accuracy of the feature set at each i step. The current classification accuracy
is compared with the previous classification accuracy. At the first iteration, the current classification
accuracy is compared with 0. If the current classification accuracy is higher than the previous accuracy,
then all of the unique i™ features are included in the final feature set.

This way, a final feature set is identified for all of the datasets used in the experiment.

Reduced feature set construction: Once the final feature set is identified for all datasets, the
researcher can calculate the occurrence of each feature based on all the final feature sets. A feature
with the highest number of occurrences shows the highest importance of that feature for most of the
dataset. Features are again ranked based on their occurrence count in descending order. A loop is
used to iterate from 1 to n, where n is the total number of features. It creates an (n-1) number of final
reduced feature sets. At each i step, all of the features from the 0 to i position are included in the
i reduced feature set.

This way, multiple reduced feature sets are constructed and experimented via the proposed
collaborative prediction technique. The best-performing reduced feature set is finally selected for the
proposed reflection and exploitation attack detection technique.

This approach yields reduced feature sets that might not exhibit the best performance during a
particular attack, but they ensure optimal performance for all types of reflection and exploitation
attacks, such as SSDP, DNS, LDAP, NetBIOS, SNMP, NTP, MSSQL, Portmap, Syn and UDP attacks.

The rankings of features can differ across techniques, with some methods assigning higher
importance to certain features and lower importance to others. Relying solely on one ranking
technique risks missing crucial features. To address this, the proposed feature selection technique
utilizes three distinct ranking methods, reducing the chance of losing vital features and providing a
more comprehensive assessment of feature importance. By combining these approaches, a more
robust feature selection process is achieved, ensuring that key features are retained for subsequent
analysis and modeling.

3.3. The collaborative prediction technique

The proposed collaborative prediction approach implements machine learning techniques to
classify network traffic and detects reflection and exploitation attacks. Machine learning has emerged
as a widely explored area in recent years. The extensive training of the machine learning model on
diverse sets of network traffic allows it to detect malicious behavior of the network [29, 30]. The
proposed technique implements a voting classifier to improve attack detection capabilities. The voting
classifier combines various base machine learning classifiers, such as AdaBoostClassifier,
LogisticRegression and BaggingClassifier to build a robust ensemble model that can achieve a higher
classification accuracy on diverse datasets.

The three selected classifiers belong to different classifier types, providing diversity in the voting
classifier. AdaBoostClassifier is an ensemble method that combines multiple weak learners to create a
strong learner; LogisticRegression is a linear model for binary classification and BaggingClassifier is
another ensemble method that uses bootstrap aggregation. By including classifiers from different
types, the potential strengths across the ensemble can be captured. Each classifier may have its own
strengths and weaknesses. By combining AdaBoostClassifier, LogisticRegression and
BaggingClassifier, their individual strengths can be leveraged to improve overall performance. For
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example, AdaBoostClassifier is known for its ability to handle complex relationships and outliers,
LogisticRegression can work well with linearly separable data and BaggingClassifier can reduce
variance and improve stability. The combination of these classifiers potentially allows us to benefit
from their complementary strengths.

Ensemble methods, such as AdaBoostClassifier and BaggingClassifier, are known for their ability
to reduce overfitting and improve generalization. They achieve this by aggregating predictions from
multiple models. Including ensemble methods in the voting classifier increases the likelihood of
obtaining more robust and generalizable predictions. LogisticRegression is a widely used classifier
known for its interpretability and simplicity. It provides coefficients that indicate the impact of each
feature on the target variable, making it easier to interpret and understand the model. Incorporating
LogisticRegression into the voting classifier allows us to benefit from its simplicity and
interpretability.

In recent years, various researchers have extensively experimented with these base machine learning
classifiers to detect network attacks [31-34]. A voting classifier was constructed by implementing both
‘hard’ and ‘soft’ voting. Voting ‘hard’ entails opting for the prediction yielded by the maximum base
classifiers, whereas ‘soft” voting makes predictions based on the sum of the prediction probabilities by
base classifiers. The algorithm is applied to all reduced feature sets identified during feature selection.
The pseudo-code to detect amplified reflection and exploitation attacks is given in Algorithm 1.

Algorithm 1 The collaborative prediction technique
Require: Reduced feature sets (RFS): [Setl, Set2, Set3, Set4]
df: dataset
label: record classification (benign or malicious)
Ensure: Classification result for [Setl, Set2, Set3, Set4]
1. Estms < Estms.append((AdaBoostClassifier(), LogisticRegression(), BaggingClassifier())

2: Models = Models.append((VotingClassifier(estimators = Estms,voting =’
hard"), VotingClassifier(estimators = Estms,voting =" soft’))

3: for i in range(len(RFS)) do > Training model using Setl, Set2, Set3 and Set 4

4: nDF < pd.DataFrame(df[RFS [i], label]).copy()

5: Train, Test < train_test_split(nDF, test_size = 0.3)

6: xTrain,yTrain < Train|RFS[i]], Train[label]

7: xTest,yTest < Test[RFSi]], Test[label]

8: for model in range(Models) do > Training voting hard and voting soft model

9: model. fit(xTrain, yT rain)

10: predict < model.predict(xT est)

11: accuracy < metrics.accuracy_score(yT est, predict)

12: precision < metrics.precision_score(yT est, predict)

13: recall < metrics.recall_score(yTest, predict)

14: Flscore & metrics.f1_score(yTest, predict, zero_division = 1)

15: Store < accuracy, precision, recall, F'1score

16: end for

17: end for
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4. Results

This section describes the proposed feature selection technique and collaborative prediction
technique that were applied to CICDDo0S2019’s SSDP, DNS, LDAP, NetBIOS, SNMP, NTP, MSSQL,
Portmap, Syn and UDP datasets to evaluate their performance. The most important feature of all of
the individual datasets of CICDD0S2019’s dataset was initially identified. The identified features are
shown in Table 2.

Table 2. List of identified features for all individual datasets.

Dataset Feature sets Accuracy
SSDP Init_Win_bytes_backward, FlowIATStd, Protocol 0.99989
DNS Init_Win_bytes_backward, DestinationPort, Inbound 0.99993
LDAP Init_Win_bytes_backward, DestinationPort, act_data_pkt_fwd 0.99974
NetBIOS Init_Win_bytes_backward, DestinationPort, Protocol 0.99993
SNMP Init_Win_bytes_backward, DestinationPort, Inbound 0.99995
NTP Init_Win_bytes_backward, FlowIATStd, Protocol, BwdHeaderLength, 0.99915
FwdIATStd, Inbound, SYNFlagCount, FlowIATMean,
FwdPacketLengthMax
MSSQL Init_Win_bytes_forward, DestinationPort, Protocol 0.99997

Portmap Init_Win_bytes_backward, DestinationPort, AveragePacketSize, 0.99968
SYNFlagCount, FlowBytes/s, MinPacketLength, ActiveStd,
SourcePort, PacketLengthMean

Syn Init_Win_bytes_backward, FlowIATStd, Init Win_bytes_forward 0.99938

UDP Init_Win_bytes_backward, FlowIATStd, Inbound 0.99986

Once the best-performing feature was identified for all datasets, the total occurrence of an individual
feature across all datasets was calculated. Based on the total occurrence, a ranking of the feature was
assigned. Once ranked, multiple feature subsets were created by including each lower-ranked feature.
This way, the final reduced feature sets were created, which are given in Table 3.

After identifying the reduced feature sets, i.e., Setl, Set2, Set3 and Set4, an experiment was
conducted by using a voting classifier that implemented voting hard and soft. The voting classifier
combined AdaBoostClassifier, LogisticRegression and BaggingClassifier as the base classifier. Each
dataset was split into training and test data at a 70:30 ratio, where 70% of the dataset was used to train
the model and 30% was used to test the model.

Evaluation metrics, such as accuracy, precision, sensitivity, F1 score and MCC were used to evaluate
model performance. These evaluation indicators are commonly used to evaluate machine learning
classifiers. Evaluating a model based on these performance indicators is essential. They provide a
quantitative assessment of machine learning model performance, enabling the comparison, selection
and monitoring of models. They play a crucial role in guiding the development and deployment of
effective machine learning systems. Evaluation metrics help one to compare and choose the best model
among multiple machine learning classifiers. Different models may perform differently based on the
chosen metric, so these metrics provide a basis for model selection. It allows us to monitor the model’s
performance over time. It is important to ensure that the model maintains its effectiveness as new data
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become available. At the same time, these evaluation metrics help assess the real-world impact of
deploying a model. For example, precision and sensitivity metrics can help to estimate the cost and
benefits of implementing a model in a specific application domain.

Table 3. Best clusters from each subcluster.

Features Count Group Final feature set
Imt,Wln.,bytes,backward 0 1 Setl: [All features from Group 1]
DestinationPort 6
FlowIATStd 4
Inbound 4 2 Set2: [All features from Group 1 & 2]
Protocol 4
Init_Win_bytes_forward 2
SYNFlagCount 2 3 Set3: [All features from Group 1, 2 & 3]
act_data_pkt_fwd 1
ActiveStd 1
AveragePacketSize 1
BwdHeaderLength 1
FlowBytes 1
FlowIATMean 1 4 Set4: [All features from Group 1, 2, 3 & 4]
FwdIATStd 1
FwdPacketLengthMax 1
MinPacketLength 1
PacketLengthMean 1
SourcePort 1
T, +T,
Accuracy = “4.1)
IT,+T,+F,+F,
. T,
Precision = 4.2)
T,+F,
Ty
Recall = “4.3)
T,+F,
Flscore = 2 # Prec%s%on * Recall (4.4)
Precision + Recall
T,xT,) —(F,*F,
MCC = (Tp*Tw) = (Fp * Fu) (4.5)
NT o+ Fp) s (T + Fo) * (To + Fp) * (Ty + Fp)
where

T, represents a benign record correctly classified as benign
T, represents an attack record correctly classified as attack
F, represents a benign record incorrectly classified as attack
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F, represents an attack record incorrectly classified as benign
Based on the above-discussed evaluation metrics, accuracy, precision, sensitivity and F1 score can
be calculated.  Table 4 shows the voting hard and soft model’s average performance on
CICDDo0S2019’s SSDP, DNS, LDAP, NetBIOS, SNMP, NTP, MSSQL, Portmap, Syn and UDP
datasets. The same result is depicted in Figure 7.

Table 4. Average performance of voting hard and voting soft model.

Model Metric Setl Set2 Set3 Set4
Accuracy 0.99927 0.99968 0.99985 0.99997
Voting Precision 0.95073 0.9935 0.99662 0.99655
Hard Recall 0.69778 0.92096 0.94834 0.99284
F1 score 0.79417 0.95533 0.97158 0.99468
Accuracy 0.99922 0.99981 0.99994 0.99997
Voting Precision 0.98244 0.99707 0.99692 0.99704
Soft Recall 0.56901 0.93889 0.96575 0.99014
F1 score 0.69658 0.96659 0.9809 0.99356
1.00
0.95
0.90
0.85
? 0.80
g 0.75
0.70
0.65
0.60
0.55 o
Accuracy Precision Recall F1Score Accuracy Precision Recall F1Score
Voting Hard Voting Soft

mSetl = Set2 mSet3 mSet4

Figure 7. Average classification performance of voting hard and voting soft model.

From Figure 7, it is clear that the reduced feature set Set4 outperformed all of other feature sets.
Feature set Set4 combines all of the features identified as reduced feature sets on all individual
datasets. Selecting all of these features helped to the model improve classification performance across
all datasets. Although the accuracy is similar for all feature sets, there is a huge difference in Recall
and F1 score. An adequately built machine learning model is supposed to perform well for all
evaluation metrics and selecting feature set Set4 helps to achieve this.
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When comparing the hard and soft voting of the voting classifier using the best-performing feature
set Set4, it was identified that voting hard achieved better performance than voting soft. Moreover, the
majority voting-based voting hard technique performed better than the probability value-based voting
soft technique. The results in Figure 8 also depicts this tendency.

Accuracy Precision Recall F1Score
® Voting Hard = Voting Soft

1.000

0.998

0.996

Accuracy

0.994

0.992

0.990

Figure 8. Comparison between voting hard and voting soft on feature set Set4.

The average time that the voting classifier (hard and soft voting classifier) took on all of the datasets
was calculated. Then, the ratio of the time taken by both voting hard and voting soft was calculated
and, based on that, the graph in Figure 9 was plotted. Figure 9 shows that the times taken by the
two algorithms were almost similar. The experimental results demonstrated that, voting hard took
less detection time on some datasets; in some cases, it was equal to that of the soft voting algorithm.
However, voting soft took less detection time, in many cases, than the voting hard algorithm.

53%
52%
51%

50%

Time taken(%)

49%
48%

47%
DNS LDAP MSSQL NetBIOS NTP Portmap SNMP SSDP Syn UDP
—=Vote(Hard) —Vote(Soft)

Figure 9. Average detection time of voting hard and voting soft model.
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Figure 10. AUC-ROC curve analysis of the proposed model.

AUC-ROC curve analysis: All sub-datasets of the CICIDS2019 dataset are class-imbalanced
datasets. Averaging revealed that 99.79% of the records are malicious and only 0.21% are benign, as
shown in Table 1. Any machine learning model, even achieving an accuracy of 99%, cannot be

concluded as an effective model.

The AUC-ROC curve analysis measures the performance of a

machine-learning model [35] and it confirmed that the model was performing as expected, even on
class-imbalanced datasets. AUC-ROC evaluates how well the model performs on both classes, not
favoring the majority class. In class-imbalanced datasets, one class (majority class) has significantly
more samples than the other class (minority class).
class-imbalanced scenarios, AUC-ROC curve analysis offers a more robust and informative way to
assess the performance of machine learning models. It ensures that the imbalanced nature of the data
does not skew the model’s performance and provides a clearer picture of a model’s ability to handle
such challenges.

While accuracy can be misleading in

The AUC-ROC graph in Figure 10 was calculated and plotted to evaluate the model’s effectiveness.
During the experiment, the model achieved higher AUC-ROC on all of the feature sets except for
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feature set Setl.

MCC analysis: The MCC is a dependable and elegant way to assess the classification performance
of a machine learning model [36]. The calculation is based on all four values in the confusion matrix:
true positive, true negative, false positive and false negative. Achieving higher values for accuracy,
precision, recall or the F1 score on balanced datasets does not always guarantee the machine learning
model’s efficiency, especially on imbalanced datasets. It is particularly useful for imbalanced datasets
and provides a balanced measure of the model’s performance.

The MCC ranges from -1 to +1, where +1 indicates a perfect prediction, O represents a random
prediction and -1 denotes a complete disagreement between the prediction and the true labels.
However, a higher MCC value indicates a more informative and truthful score, and it ensures the
model’s superiority, especially on imbalanced datasets. The MCC value was calculated for all four
reduced feature sets to analyze the model’s performance. The model achieved the highest MCC value
on reduced set Set4, which shows the model’s effectiveness. The comparative analysis based on the
MCC value is represented in Figure 11 for all four sets.

0.9

0.8

0.7

Matthews correlation coefficient

0.6
SSDP DNS LDAP NetBIOS SNMP NTP MSSQL Portmap Syn UDP

Setl Set2 Set3 <=Set4

Figure 11. MCC analysis of the model.

In all of the experiments conducted, regardless of using hard or soft voting models, the classification
performance was consistently superior when using feature set Set4 compared to Sets 1, 2, or 3. The
AUC-ROC curve and MCC analysis also confirmed that Set4 had a significant role in improving the
performance of both algorithms. Furthermore, the highest classification accuracy overall was achieved
when the voting classifier was implemented with a hard-voting technique using reduced feature set
Set4, as shown in Table 5.
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Table 5. Performance of voting hard model on various datasets using feature set Set4.

Dataset Accuracy Precision Recall F1 score
SSDP 0.99999 0.99535 0.98618 0.99074
DNS 0.99998 0.99489 0.98085 0.98782
LDAP 0.99999 1 0.9898 0.99487
NetBIOS 0.99999 0.99024 0.9951 0.99267
SNMP 1 1 0.98569 0.99279
NTP 0.99988 0.99433 0.99527 0.9948

MSSQL 1 0.99394 1 0.99696
Portmap 0.99989 0.99788 0.99788 0.99788
Syn 1 0.9999 0.99981 0.99986
UDP 1 0.99894 0.99788 0.99841
Average 0.99997 0.99655 0.99284 0.99468

5. Discussion

The results of comparative analysis of the proposed approach with state-of-the-art techniques is
given in Table 6. It shows that the proposed approach achieved high accuracy compared to most
studies. The extensive work on feature selection significantly promoted the selection of only those
features that contributed to the machine learning model to improve the classification accuracy.
Reducing the feature size improved the computational efficiency, making the model perform the
detection at high speed. Detection speed plays a major role, especially when the model is dedicated to
defending against cyberattacks in high-speed networks with the possibility of volumetric attacks. In
various studies [37, 38], authors have experimentally shown that ensemble classifiers perform better
than base classifiers. One machine learning classifier achieving significant classification accuracy on a
dataset cannot guarantee that the same classifier will achieve the same accuracy on any dataset. The
experiments have shown that combining boosting, bagging and base classifiers in the voting classifier
improved the collaborative predictive model. The proposed collaborative approach ensures that, even
if one machine learning classifier performs poorly, the other two classifiers will not significantly
degrade the final prediction.

The AUC-ROC curve analysis in Figure 10 shows that the model correctly distinguished between
benign and attack records when applied to the reduced feature set Set4. The higher AUC-ROC curve
analysis graph in Figure 10 shows the predictive power of the classifier. In the case of the reduced
feature set Set4, the significantly high MCC values on all datasets, as shown in Figure 11, confirm the
prediction capability of the proposed approach on all datasets. It shows the model’s effectiveness on
diverse datasets, including imbalanced datasets where records from a particular class are numerous.
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Table 6. Comparative analysis of the proposed approach with state-of-the-art techniques.

Study Application area Feature selection Techniques Accuracy
[24] Computer network Information gain  andJ48 classifier 99.99 %
correlation
[39] D2D Features specific to D2DRF, LightGBM, XGBoost, & 99.5%
network AdaBoost
[40] Computer network  Yes Machine and Deep learning ~ 99.94%
[41] IoT Feature selection RFR SVM, KNN, DT, NB, RF, &99%
LR
[42] Computer network Sparse  autoencoder & DNN 98%
normalization
[43] Computer network Ensemble  of  feature DNN 99.6%
selection
[44] Computer network  Yes CuDNNLSTM and 99.74%
CuDNNGRU

Proposed Computer network CIF, mean-value & MI AdaBoost, LR, & Bagging 99.99 %

6. Conclusions and future work

This research article addressed the critical issue of amplified reflection and exploitation attacks,
which pose significant threats to network security. By exploiting network protocols and reflector
servers, these attacks can lead to severe disruptions and downtime, rendering the network
unresponsive to legitimate users. To counter these sophisticated attacks, a novel machine
learning-based approach was developed by leveraging the CIF technique for feature selection,
effectively filtering out less important features and identifying reduced feature sets. Combined with a
collaborative prediction approach using a voting classifier, we were able to predict network traffic and
detect potential attacks accurately. Additionally, the proposed collaborative prediction approach,
implemented using a voting classifier, harnesses the diverse strengths of AdaBoostClassifier,
LogisticRegression and BaggingClassifier algorithms, resulting in improved detection accuracy and
reliability. The experimental evaluations conducted on the CICDDoS2019 datasets showcased
impressive results, with the average values of the accuracy, precision, recall and F1 score exceeding
99%. Furthermore, the use of AUC-ROC curve analysis and MCC statistical rate demonstrated the
superiority of the approach, surpassing the performance of existing methods, particularly on
class-imbalanced datasets. These findings solidify the efficacy and reliability of the machine
learning-based solution in terms of defending against amplified reflection and exploitation attacks.
The key contributions of this research lie in the introduction of the CIF technique for feature
selection, which effectively filters out less important features and ranks them to identify the reduced
feature sets. This technique aids in improving the efficiency and effectiveness of the subsequent
predictive stage. Additionally, the collaborative prediction approach, implemented using a voting
classifier, harnesses the diverse strengths of AdaBoostClassifier, LogisticRegression and
BaggingClassifier algorithms, resulting in improved detection accuracy and reliability.

In conclusion, the proposed research presents a comprehensive and effective machine learning-
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based defense mechanism for mitigating amplified reflection and exploitation attacks. The research
findings provide network administrators and security practitioners with a valuable tool to safeguard
critical network infrastructures, ensuring the availability and integrity of services even in the presence
of sophisticated DDoS attacks. Future research endeavors should focus on optimizing the detection
speed aspect while continuing to enhance the overall performance and adaptability of the proposed
approach to evolving cyber threats. By continuously enhancing and evolving defense mechanisms,
staying one step ahead of attackers is possible, ensuring the security and stability of networked systems
in the ever-changing cybersecurity landscape.
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