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Abstract: In this paper, we use a graph capsule network to capture the spatial dependence of air quality 

data and meteorological data among cities, then use an LSTM network to model the temporal 

dependence of air pollution levels in specific cities and finally implement PM2.5 concentration 

prediction. We propose a graph-capsule-LSTM model based on a graph-capsule network and an LSTM 

network. The model uses a graph capsule network to model the neighboring feature information of the 

target city and then combines the local data of the target city to form the final feature vector. The 

feature mapping on the time axis is then used to obtain the temporal feature sequences of the target 

nodes, which are fed into the LSTM network for learning and prediction. Experiments show that the 

method achieves better results than the latest baseline model in the PM2.5 prediction task. While 

demonstrating that the capsule network outperforms the convolutional network, it also shows that this 

capsule network is very competent for the task of PM2.5 prediction. 
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1. Introduction  

PM2.5 is one of the major types of particulate matter in air pollution, and its higher concentration 

means poorer air quality. Long-term exposure to high PM2.5 concentrations can cause asthma, 
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bronchitis and other respiratory diseases, and even lung cancer [1]. High PM2.5 air pollution can also 

lead to reduced visibility and a series of social problems, such as airport and highway closures. 

Therefore, accurate prediction of PM2.5 concentrations can not only help people to make reasonable 

arrangements for daily travel and other activities, but also provides a reasonable basis for 

environmental management departments to target air pollution prevention and formulate relevant 

policies to improve air quality. 

Currently, methods for predicting PM2.5 concentrations can be divided into two main categories: 

formation mechanism-based prediction methods and time-series-based prediction methods. Formation 

mechanism-based prediction methods simulate the physical evolution of atmospheric elements and the 

transport of atmospheric elements across regions, but the prediction accuracy is largely affected by the 

difficulty of obtaining accurate raw data and the need for sufficient background knowledge of pollution 

sources, reaction mechanisms, and chemical kinetics [2,3]. 

Compared with prediction methods based on formation mechanisms, time-series-based prediction 

methods have become a hot spot for domestic and foreign scholars to study. Specifically, they can be 

divided into two categories: 1) primitive time-series prediction methods and 2) multivariate time-series 

prediction methods. The primitive time-series prediction method is mainly based on the PM2.5 

historical concentration series, and, for example, entails applying the optimized extreme learning 

machine model to predict PM2.5 [4,5]. The multivariate time-series prediction method takes into 

account weather elements, changes in the concentrations of other pollutants, and other factors to 

construct prediction models; for example, Moisan et al. [6] constructed a dynamic multivariate linear 

equation including weather and environmental variables; Jiang et al. [7] extracted the optimal subset 

of features by using a random forest model, which was used as the input data for a multilayer neural 

network (i.e., a multilayer perceptron (MLP)). It was shown that PM2.5 concentration values are the 

result of the combined effects of meteorological elements such as temperature, wind speed, 

precipitation, and pollutants, such as PM10, CO, and NO2 [8,9]. However, most of the available 

multivariate time-series forecast only consider the local meteorological conditions and the effect of 

pollutants on PM2.5 concentrations. In fact, air pollutant particles are small and easily disperse in a 

certain space along with atmospheric motion, which is typical of geospatial data with spatial 

heterogeneity and spatial dependence [10]. Shi et al. [11] verified the close correlation between air 

pollutants at target and neighboring locations and applied a spatial attention mechanism to reveal the 

spatial interactions between different locations. Therefore, combining relevant factors from the local 

area and spatial neighboring areas to build a prediction model to predict PM2.5 in the target city is 

expected to further improve the prediction accuracy. 

PM2.5 time-series data have the characteristics of instability and are decomposed at multiple 

scales, and the decomposed subseries have better scale fluctuation regularity. Zhou et al. [12] 

decomposed PM2.5 series data based on entire empirical modal decomposition (EEMD); they 

predicted each subseries using a generalized regression neural network. Weng et al. [13] used EEMD 

to construct a combined prediction model after decomposing PM2.5 concentration sequences. Most of 

the existing PM2.5 decomposition integrated prediction models only use a one-dimensional 

decomposition method to decompose the original PM2.5 time series, and then use the influential 

factors to predict each subseries separately. On this basis, this study is an attempt to combine the trends 

of change of PM2.5 time series and multidimensional influential factors, as well as to jointly 

decompose the PM2.5 and influential factors based on multivariate empirical modal decomposition to 

further explore the intrinsic correlation characteristics of each relevant factor and PM2.5 series, which 
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can solve the problems of an inconsistent number of intrinsic mode functions and disorderly time s cale 

matching after decomposition of each series. Considering that the PM2.5 daily average point value 

series cannot objectively reflect the fluctuation status of pollutant concentration within a day.  

Recently, some scholars began to study the problem of predicting the daily interval concentration 

of PM2.5. Xiong et al. [14] developed a multivariate gray model with center and radius sequences to 

predict PM2.5 daily degree interval number sequences, that is, to predict the highest and the lowest 

values. Wang et al. [15] used an MLP to fit the upper and lower bounds of PM2.5 concentration values 

for each day to obtain the corresponding interval prediction results. Although the PM2.5 daily interval 

data contain the daily concentration maximum and minimum values, the important information of daily 

average values is also lost. 

In recent years, graph neural networks have started to be applied in air quality prediction. Xu et 

al. [16] used an encoder-decoder architecture, modeling complex air quality influencing factors such 

as weather and land use, and proposed a hierarchical graph neural network method called HighAir for 

air quality prediction. Chen et al. [17] proposed a prediction model based on a convolutional recurrent 

neural network (RNN) by using information from an air quality monitoring system in Taiwan. Yan et 

al. [18] constructed a multi-time, a multi-site prediction model for Beijing air quality by using a deep 

learning network model based on spatiotemporal clustering; they compared it with a back propagation 

neural network. Dai et al. [19] developed an auto-coder-circulation network for indoor/outdoor PM2.5 

concentrations and environmental parameters in apartments to predict future indoor PM2.5 

concentrations. Seng et al. [20] constructed an integrated prediction model based on long short-term 

memory (LSTM) with multiple outputs and supervised learning of multiple indicators by using a 

combination of particulate matter concentration data, meteorological data, and airborne gaseous 

pollutant data from a single monitoring station and adjacent monitoring stations for the same period.  

2. Preliminaries 

2.1. Problem definition 

For N different cities, the set 𝐶 = {𝑐1, 𝑐2, . . . . . . , 𝑐𝑁} represents the set of monitoring data for all cities; 𝑐𝑚 

represents the monitoring data time series for the city numbered 𝑚 , specifically denoted as 𝑐𝑚 =

{𝐷1, 𝐷2, . . . . . . , 𝐷𝑇}, (𝑚 = 1,2, . . . . . . , 𝑁), with a total of 𝑇 time steps. The observations of a city at each time step 

𝐷𝑡 are a 𝑑 -dimensional vector that contains air quality data and meteorological data after normalization. The 

problem studied in this paper is defined as follows: at a specific moment 𝑡 , for the target city 𝑚 , the 

corresponding values of 𝑐𝑚 at M future moments (𝑡 + 1, 𝑡 + 2, . . . . . . , 𝑡 + 𝑀) are predicted by combining the 

historical data of the first-order and higher-order neighbors of 𝑚 on the spatial graph structure in 𝐶 over the 

past 𝐿 time steps (𝑡, 𝑡 − 1, . . . . . . , 𝑡 − 𝐿). Therefore, the input of the model is the historical data for all cities 

over the past 𝐿 time steps, including air quality data and meteorological data after preprocessing. The output 

is the predicted hourly PM2.5 concentrations for a specific target city. 

In the specific implementation of the experiment, we use the air quality data and meteorological 

data of the past 48 hours to predict the PM2.5 concentration values of the target cities for the next 6 

hours. Due to a large number of cities in the dataset, it is impossible to predict all of the cities as target 

nodes all over again in each experiment. Therefore, during the experiments, if not specifically stated, 

for each experiment, 10 cities were picked out and sequentially used as target nodes for the training 

and prediction of the model; finally, the root means square error (RMSE) and mean absolute error 

(MAE) values at each future time step were averaged separately as a basis for performance compared 
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with the comparison method. Unless ablation experiments were done for some hyperparameters, it will 

be specified on which nodes the experiments were conducted. 

2.2. Study area and data monitoring 

According to the dataset used for the study in this paper (source: China General Environmental 

Monitoring Station with China Air Quality and Meteorological Historical Data website, 

https://quotsoft.net/air/), after removing some cities with residual or sparse data, our study area included 

189 Chinese cities, and the location distribution of the study area is shown in Figure 1. 

 

Figure 1. Distribution of the 189 monitored cities. 

The datasets we used were obtained from the China General Environmental Monitoring Station 

with the China Air Quality and Meteorological Historical Data website for the period from May 13, 

2014 to January 23, 2021. The air quality data include the daily concentration data of multiple 

pollutants, such as AQI AQI, PM2.5, PM10, SO2, NO2, O3, CO, etc. In addition, combined with 

historical Chinese meteorological data, we obtained daily meteorological data, including air 

temperature, dew point temperature, sea level pressure, wind direction, wind speed, and liquid 

sedimentation depth dimensions for the same time period. After preprocessing and screening, the 

following 12 input features were used for all experiments: PM2.5, PM10, SO2, NO2, CO, O3, air 

temperature, dew point temperature, sea level pressure, wind direction, wind speed and total sky 

condition coverage code. 

In order to train and test the experimental model separately, we used the first 80% of the sample 

sequences within the above time range (May 13, 2014 to January 23, 2021) as the training sample set 

for model training and learning, and the subsequent 20% as the test sample set for testing the 

performance of the trained model and evaluating the generalization ability of the model. Specifically, 

the dataset was divided in the way shown in Table 1. 
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Table 1. Division of the dataset. 

Data  

Segmentation 

Time Frame Sample Size Calculation Instructions 

Training  

Set 

May 13, 2014 to 

September 23, 2019 

47,001 24 hours (sample observations)/day * 

2448 days * 80% = 47,001 

Test Set September 24, 2019 to 

January 23, 2021 

11,750 24 hours (sample observations)/day * 

2448 days * 20% = 11,750 

2.3. Data preprocessing 

2.3.1. Data normalization 

Deep learning algorithms, while powerful, have their own specifications and requirements for use. 

Although, in theory, it is possible to feed raw data directly into the input layer for end-to-end 

computation, in practice, the result of feeding raw data directly into a neural network is often not 

satisfactory. The possible reasons are as follows: 

1) If the values of data points are too large, it will cause violent oscillations in the computation 

and transmission in the network, which will eventually lead to violent changes in the weights and the 

network becoming very unstable. 

2) If the data fed to different neurons in the input layer is too different in order of magnitude, it 

can lead to small input units being almost ignored and the input data becoming invalid. This may 

defy common sense in application problems. 

As an example, the air quality monitoring data of Beijing at 0000 hours on May 13, 2014 are 

shown in Table 2. 

Table 2. Sample air quality data. 
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The meteorological observations are shown in Table 3. 

Table 3. Sample meteorological data. 

Air  

temperature 

Dew point 

temperature 

Sea level 

pressure 

The 

direction of 

wind 

blowing 

Wind 

speed 

Total sky 

condition 

coverage code 

Liquid 

settling 

depth, 

1 hour 

Liquid 

settling 

depth, 

6 hours 

3 -195 10384 340 30 -9999 -9999 -9999 

 

It shows that both air quality historical data and meteorological historical data are very different 

in order of magnitude: there are tens of thousands, thousands, hundreds, tens, single digits, decimals 

and extremely large positive and negative numbers. Such raw values, when fed directly into the neural 
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network, inevitably lead to violent oscillations in the data stream during training and uncontrollable 

parameter adjustments during backpropagation. 

In view of the above reasons, we chose to use a min-max normalization technique to normalize 

the input data, as shown in Eq (1): 

𝑍𝑖 =
𝑥𝑖−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                         (1) 

where 𝑍𝑖 denotes the i-th normative value of the indicator x, 𝑥𝑖 denotes the i-th observation (raw value) 

of x, 𝑚𝑖𝑛( 𝑥)  denotes the minimum value of the indicator x in the dataset and 𝑚𝑎𝑥( 𝑥)  denotes the 

maximum value of the indicator x in the dataset. 

After normalization, all indicator values in the original dataset are mapped from the original 

interval [𝑚𝑖𝑛( 𝑥), 𝑚𝑎𝑥( 𝑥)] for that indicator to the interval [0,1]. That is, all indicators, no matter how 

different they were in order of magnitude, are now normalized to the same order of magnitude. 

2.3.2. Creation of neighborhood feature matrix 

To formally describe the graph structure of the raw data, or rather, to obtain the actual input data 

structure of the model, we generate three large matrices from the raw data: the adjacency matrix 𝐴, the 

degree matrix 𝐷 and the feature matrix 𝐹𝑡 (𝑡 for moments). These three matrices were not provided by 

the original data, so we constructed them from the data during the preprocessing phase. 

The 189 cities involved in the experimental dataset can be obtained as adjacencies within the 

threshold range by setting different distance thresholds based on their geographical distance from each 

other. For all pairs of neighboring cities (e.g., [Jiaozhou, Jiaonan], [Handan, Xingtai], etc.), they are 

connected with an undirected edge on the map, resulting in the following city distribution map showing 

the neighboring relationships. 

Each of the cities represented by a dot in Figure 2 can be called a node or an entity in the topology. 

Now, there are 189 cities in the dataset, so there will be 189 nodes in the graph. The spatial relationships 

that exist between different locations can be represented as an undirected graph G = (V, E), where V 

represents the set of all nodes and E represents all city adjacencies that are within a threshold on spatial 

distance, represented on the topology as an undirected edge connecting adjacent city nodes. 𝐴 ∈ 𝑹𝑁×𝑁 

is the adjacency matrix based on spatial distance. A is a square matrix that represents whether the 189 

cities have adjacency relations with each other. A is also a symmetric square matrix. For example, if 

𝐴[3,5] = 1 indicates that City 3 and City 5 are adjacent cities, there must also be 𝐴[5,3] = 1; if 𝐴[5,6] =

0, there must also be 𝐴[6,5] = 0, indicating that City 5 and City 6 are separated by more than a distance 

threshold and have no adjacency. 
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Figure 2. City distribution and adjacency map (distance thresholds of 100, 150, 200, 250, 

300, 350, 400, and 450 km for ablation experiments and comparative studies). 
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To fit the computation of the graph capsule network, for each time step of the target city on the 

timeline, a neighborhood feature matrix is created for it, i.e., 𝐹𝑡, as shown in Figure 3. 

Neighbor 2

Neighbor 1

...

PM2.5  PM10 SO2 ...

Neighbor N

 

Figure 3. Neighborhood feature matrix 𝐹𝑡 at time step t. 

3. Proposed method 

3.1. Modeling spatial dependencies: Using graph capsule networks 

In this section, we propose a graph capsule network-based PM2.5 concentration prediction 

(graph-capsule-LSTM) framework in order to effectively extract the spatial relationships between 

urban air quality and meteorological conditions. Next, starting from the first stage, i.e., spatial 

dependency modeling, we first describe how the graph capsule network fuses the feature information 

of the target city from the neighboring feature matrix. 

The graph capsule network was proposed mainly to address the inherent drawbacks of solving 

convolutional networks, i.e., the inability of convolutional networks to recognize changes in state, such 

as displacement or rotation, that occur in a signal (whether it is an image or text); in fact, these changes 

have a significant impact on PM2.5. Capsule networks solve these problems. Unlike traditional neural 

networks, the smallest unit of a capsule network is a capsule, which is a set of neurons, or a vector 

neuron. They will learn to detect a specific target in a given region and output a vector. The vector 

contains more semantic information compared to individual neurons, and, in addition to identifying 

features in a certain dimension, it can record changes in air quality data or meteorological data in terms 

of location and incorporate the effect of this change into the PM2.5 prediction calculation. 

Figure 4 is the graph capsule network structure used to learn the neighbor feature matrix. Note 

that this is modeling spatial neighbor information for a target city at one time step. First, the node 

neighbor feature matrix is linearly mapped to an embedding space by multiplying a weight matrix, as 

follows: 

𝐴′ = 𝐴 × 𝑊0             (2) 

𝐴′ is called the neighbor embedding matrix of the target node. 
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Figure 4. Structure of the graph capsule network for learning the neighbor feature matrix 

of target nodes. 

Then, the neighbor embedding matrix 𝐴′  is converted into a primary capsule layer by a 

convolution operation, which is the first layer of the graph capsule network. The convolution is 

performed as follows: 𝐴′ is scanned using 𝑘 𝑛 × 3 convolutional kernels. The reason for choosing the 

convolutional kernel 𝑛 × 3 instead of 3 × 3, which is generally used in image processing, is that each 

row in the neighbor embedding matrix is an “atomic” representation of a neighbor node, i.e., an 

indivisible whole. In this way, the convolutional kernel scans the entire embedding matrix and 

generates a vector. This vector has two functions: 1. Local feature detection of the neighbor embedding 

information, which extracts the underlying features that the convolutional neural network (CNN) is 

good at extracting but the capsule network is not (the capsule network is used to represent “instances” 

of an object, so it is more suitable for representing high-level features). 2. Each convolutional kernel 

operation generates a vector; these vectors constitute the input layer of the capsule network, i.e., the 

main capsules. Each master capsule is represented as 𝑢1, 𝑢2, . . . , 𝑢𝑘, as shown in Figure 4. 

Next, each capsule 𝑢𝑖 is multiplied by a series of weight matrices 𝑊ij to obtain a series of vectors 

�̂�𝑗|𝑖. These matrices and vectors form the second layer of the capsule network: the affine transformation 

capsules. 

Then, after reshaping, aggregation, dynamic routing and nonlinear squeezing functions, the final 

output capsule is obtained. 

The role of the dynamic routing mechanism is to ensure that the output of the capsule is sent to 

the appropriate parent node in the upper layer. Initially, the output is routed to all possible parents but 

scaled down by a coupling factor that sums to one. For each possible parent, the capsule calculates a 

“prediction vector” by multiplying its output by a weight matrix. If this prediction vector has a large 

scalar product with the output of the possible parents, there is top-down feedback that increases the 

coupling coefficient of that parent and decreases the coupling coefficient of the other parents. This 

increases the contribution of the capsule to that parent, which further increases the scalar product of 

the capsule prediction with the parent's output. This type of “routing-by-agreement” is more efficient 

than the original form of routing implemented by maximum pooling in traditional convolutional 

networks. In general, dynamic routing can be thought of as a parallel attention mechanism that allows 

each capsule in the upper layer to focus on some active capsules in the lower layer and ignore others. 

Dynamic routing is also similar to a voting mechanism, which will encapsulate the learned spatial 

location information together with features into a capsule and pass it to higher layers. The importance 

of the dynamic routing process is also supported by biologically sound models in the visual cortex. 

The complete process of the capsule network is as follows: 

𝑢𝑖 = 𝐶𝑜𝑛𝑣2𝐷(𝐴′)     (generate main capsule)      (3) 



518 

Electronic Research Archive  Volume 31, Issue 1, 509–529. 

�̂�𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖     (affine transformation)         (4) 

𝑠𝑗 = ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖     (reshaping, aggregation, dynamic routing)    (5) 

𝑣𝑗 = 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗)       (squeeze)           (6) 

where the squeeze function 𝑠𝑞𝑢𝑎𝑠ℎ() is a nonlinear function defined as follows: 

𝑠𝑞𝑢𝑎𝑠ℎ(𝑠) =
‖𝑠‖2

1+‖𝑠‖2

𝑠

‖𝑠‖
                                   (7) 

𝑐𝑖𝑗 is the coupling coefficient by the routing process, which is calculated as shown in Algorithm 1. 

 

Algorithm 1: Routing process 

Input: Primary capsule i
u

 

Output: Coupling coefficients c  

1 Affine transformation:�̂�𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 ; 

2 for all capsules 𝑖 in the first capsule layer do 

3 𝑏𝑖𝑗 ← 0 

4 end for; 

5 for iteration=1, 2, ..., n do 

6 𝑐𝑖𝑗 ← softmax(𝑏𝑖𝑗); 

7 𝑠𝑗 = ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖 ; 

8 𝑣𝑗 = 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗); 

9 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖 ⋅ 𝑣𝑗 

 

11 end for 

12 Return 𝑐𝑖𝑗 for routing operations. 

 

Finally, the output vectors of the capsule network 𝑣 (𝑣1, 𝑣2, ...𝑣𝑗 ...) are connected and fed into a 

fully connected network to generate an m-dimensional vector, i.e., an embedding vector of spatial 

relations of the target nodes: 

𝐹 = 𝑅𝑒 𝑙 𝑢(𝑊 ∗ Concatenation(𝑣) + 𝑏)           (8) 

3.2. Time series relationship modeling: Using LSTM RNNs 

The work in the first stage above is to abstract the target node neighbor information into an 

embedding vector through the graph capsule network, but what is generated in Figure 4 is only the 

neighbor features of the target node at one time step, and this neighbor feature has not yet combined 

with the local features of the target city at the current time step. Therefore, two more things need to be 

done: 1. Combine the neighbor features and local features to form the target features at the current time 

step. 2. Repeat the operation in Step 1 for each time step to form a sequence of temporal features of 

the target city and feed it into the LSTM network to predict the PM2.5 values of the target city for the 

next N time steps. This process is summarized in Figure 5. 
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Figure 5. Graph-capsule-LSTM structure diagram, where the structure of the capsule is 

shown in Figure 4. 

As in Figure 5, the input to the model has two components: local feature data and a neighbor 

feature matrix. The local feature data include the 12 original features of the target city (which have 

been normalized), which are multiplied by a weight matrix and mapped to a target embedding vector. 

The neighbor feature matrix is a matrix of all neighboring nodes with their feature vectors 

superimposed. For example, if the number of neighbors set is 10, then this matrix is a 10 × 12 matrix. 

Each row represents a feature of a particular neighbor of the target city and consists of pollutant and 

meteorological data (PM2.5, PM10, SO2, CO, NO2, O3, temperature, barometric pressure, dew point, 

wind direction, wind speed and total sky condition coverage code). According to Eq (2), the kernel 

slides eight steps ((10 − 3)/1 + 1 = 8) in the input matrix with a convolutional kernel (or feature detector) 

size of 3 and a step size of 1. Experimentally, with a number of convolutional kernels of 60, the 

convolutional layer produces an 8 × 60 matrix. Each column vector is a main capsule, which is the 

first layer of the capsule network that follows, and, after a series of calculations from Eqs (4) to (6), 

the features extracted by the capsule network are obtained, which are the neighboring features of the 

target node. Then, the target feature vector and the neighbor feature vector are stitched together as a 

final target vector on a time step 𝐹. 

Next, for the target node, a target vector is generated at each time step to form a sequence of 

temporal features of the target node, which is fed into the LSTM network for training and prediction. 

[𝑃𝑀2. 5(𝑡+1), . . . , 𝑃𝑀2. 5(𝑡+6)] = 𝐿𝑆𝑇𝑀([𝐹𝑡−47, 𝐹𝑡−46, . . . . . . , 𝐹𝑡]; 𝐺(𝑉, 𝐸))         (9) 

Finally, the output of the LSTM is fed to the fully connected layer and outputs six cells 

representing the predicted PM2.5 concentrations for the next 6 hours in the target city. 

3.3. Optimization methods 

For such a regression task, in order to learn the parameters of the model, we used the minimized 

mean square error function to optimize the model and added the canonical term, so the loss function 

used is defined as 

𝐿𝑂𝑆𝑆 =
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
+ 𝜆‖𝑊‖2                         (10) 
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where 𝑦𝑖 is the real PM2.5 concentration value and �̂�𝑖 is the concentration value predicted by the model. 
n  represents the volume of the training or test set. 𝜆‖𝑊‖2 is the L2 regular term, which aims to reduce 

the complexity of the model and improve the generalization ability of the model. And, 𝑊 represents 

the trainable parameters of the model. The Adam optimizer was used in the experiments to minimize 

the loss function of Eq (10). The Adam optimizer algorithm has the advantages of the AdaGrad and 

RMSProp algorithms. Adam not only calculates the adaptive parameter learning rate based on the first-

order moment mean, like the RMSProp algorithm, but it also takes full advantage of the second-order 

moment mean of gradients. 

4. Experiments 

4.1. Evaluation methodology 

In order to enable comparison with the previous methods, the evaluation metrics commonly used 

in regression tasks, i.e., the MAE and RMSE, were used to measure the predictive effectiveness of 

different models: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
                                   (11) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
                            (12) 

where 𝑦𝑖 is the real PM2.5 concentration value and �̂�𝑖 is the concentration value predicted by the model. 

𝑛 represents the number of samples in the training set or test set. 

4.2. Comparative experiments and parameter settings 

4.2.1. Comparison experiments 

The proposed method is compared with other methods on the same dataset to prove the 

effectiveness of the present model. The comparison methods can be divided into four groups, as 

follows. 

Group 1: CNN-RNN, CNN-GRU, CNN-LSTM. 

All models in Group 1 only use local data from the target city. The model uses data from the last 

48 hours to predict PM2.5 levels for the next 6 hours. Each batch of inputs was fed into the CNN 

network, which acts as a feature extractor before entering the RNN, gated recurrent unit (GRU) or 

LSTM network. 

Group 2: GCN-GRU. 

It is a mixed model. The data of all cities in the dataset were simultaneously entered into the graph 

convolutional network (GCN) for aggregation, updating and cycling, and the embeddings of all cities 

were obtained at the same time. In the next stage, the embeddings of the target city in each embedding 

matrix in the past few hours are successively obtained in the time step for the target city, and a time 

series is formed and sent to the GRU RNN for training. 

Group 3: GAT-LSTM. 

It is a mixed model. The data of all the cities in the dataset were simultaneously entered into the 
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graph attention network (GAT) for aggregation, updating and cycling, and the embeddings of all cities 

were obtained at the same time. In the next stage, the embeddings of the target city in each embedding 

matrix in the past few hours are successively obtained in the time step for the target city, so as to form 

a time series and send it to the LSTM RNN for training. 

Group 4: Graph-capsule-LSTM. 

This is our proposed method, which is a new hybrid model. For the target node, the following 

operations are performed at each time step: The matrix formed by the air quality and meteorological 

data of the neighboring nodes is fed into the capsule network. Next, the neighboring feature vectors of 

the target node are output. Then, the local data of the target node points are combined to generate the 

final target features. Finally, the target feature sequences at each time step are fed into the LSTM RNN 

for training and prediction. 

As for the networks used in the second and prediction phase, such as the RNN, LSTM network 

and GRU, the models for all groups consist of a hidden layer for fairness. In the output layer, six 

neurons are output through the fully connected network to produce the final prediction, representing 

the predicted PM2.5 concentration for the next 6 hours. 

4.2.2. Experimental parameter settings 

We implemented the graph-capsule-LSTM model by using the deep learning modeling 

environment Keras as the development language and TensorFlow as the backend API. Table 4 lists the 

experimental hyperparameter settings. For the selection of the hidden layer activation function, ReLU 

was used as the activation function. The advantage of the ReLU is its biological rationality. It is 

unilateral and more consistent with the characteristics of biological neurons than the sigmoid and tanh 

functions. ReLU is easier to optimize. Uniformly distributed random initialization of the model 

parameters was used to ensure that all neurons were treated equally at the beginning of training. For 

each method, no regularization training was first performed, and if there was overfitting (i.e., training 

losses kept decreasing while validation losses started increasing), the L2 regularization coefficients 

were then adjusted in the range of [10−6, 10-5, . . . . . . ,1], with the aim being to obtain the best effect of 

eliminating overfitting during the experiment. The test batch sizes were [64, 128, 256, 512], and the 

learning rates were [0.1, 0.01, 0.001, 0.0001]. For time-series modeling and final result prediction, the 

classical LSTM network was used. For this model, capturing spatial relationships using the graph-

capsule network is the first stage of the whole algorithm, which is the most complex part of the model 

when handling big data. For the specific structure of the graph-capsule-LSTM, the following setup 

was used: 

(1) For spatial dependencies, only the first-order (direct) neighbors of the target city node are 

considered, and no higher-order neighbors are considered. Without specifying, the capsule network 

uses one layer of convolution and three times of routing. Various other models of the convolutional 

family use three hidden layers for feature extraction. 

(2) In order to capture the cross-influence of air quality and meteorological conditions between 

spatially adjacent regions, the adjacency between cities is judged according to certain distance 

thresholds when modeling the map structure. The adjacency distance thresholds were set to 100, 150, 

200, 250, 300, 350, 400 and 450 km, respectively. In the analysis of the experimental results, the 

ablation comparison study was specifically aimed at the effect of thresholds, and the model predicts 

the RMSE and MAE values under different threshold conditions. 
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If not otherwise specified, the default settings for this experiment regarding the network structure 

are shown in Table 4. 

Table 4. Network structure settings of graph-capsule-LSTM in the experiment. 

Parameters Default value 

Capsule network routing times 3 

Capsule network output feature size 150 

Determining distance thresholds for neighbors 200 km 

LSTM Number of input cells = 150, activation function = ReLU 

Full connection layer Number of output cells = 6, indicating that PM2.5 values 

are to be predicted for the next 6 hours 

4.3. Experimental results and analysis 

4.3.1. Comparison with comparative methods 

In this section, the performance of the graph-capsule-LSTM model and other baseline methods 

are compared. For the embedding-based methods, since the dimension size of the embedding 

determines the modeling capability, the embedding size was set to 200 for all methods for a fair 

comparison. Tables 5 and 6 show a comparison of the results of the RMSE and MAE values for the 

graph-capsule-LSTM model and baseline methods on the same dataset. From the experimental results, 

the following was found: 

(1) Overall, our proposed graph-capsule-LSTM model has the best performance and the smallest 

prediction error. As can be seen in Table 5, on the RMSE metric, our model reduced the error by 5.18%, 

0.57%, 3.43%, 6.28%, 1.93% and 0.29%, respectively, in the future 6 hours, relative to the minimum 

error in the baseline models, with an average reduction of 2.95%.  

(2) As can be seen in Table 6, in the case of the MAE indicator, our model reduced the error by 

4.59%, 0.85%, 2.04%, 8.54%, 1.10% and 0.30%, respectively, in the future 6 hours, relative to the 

minimum error in the baseline models, with an average reduction of 2.90%. 

(3) It is worth noting that the graph capsule network uses only one layer of convolution and three 

times of dynamic routing, and its performance already exceeds that of other methods. In other words, 

starting from the main capsule layer, the present model requires only three dynamic routes to generate 

a better capsule feature representation than the previous methods, while the other methods perform a 

three-layer aggregation process in the feature extraction process. Thus, it can be demonstrated that the 

capsule network is more suitable for the job of feature extraction than various convolutional networks. 

(4) The advantages of our method in the task of predicting PM2.5 can also be proved from Table 7. 

Table 7 shows the PM2.5 values calculated by all methods and a comparison with the real values. Our 

chosen time and place are as follows: time: 1:00 to 6:00 AM, December 30, 2014; location: Tianjin, 

China. In Table 7, |P-T| represents |Predicted PM2.5 - True PM2.5|. The smaller the value of |P-T|, the 

closer is Predicted PM2.5 to True PM2.5. As can be seen in Table 7, the prediction accuracy of our 

model exceeded all baseline methods, with the error between the predicted and the true values in the 

future 1 to 6 hours being 10, 15, 17, 20, 25 and 29, respectively, which is much lower than the 

prediction error of other methods. 
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Table 5. Comparison of RMSE of graph-capsule-LSTM (G-C-LSTM) and baseline 

methods for future 6-hour PM2.5 prediction. Bold indicates the best results. An underline 

means second best. 

Number Model Metric +1 h +2 h +3 h +4 h +5 h +6 h 

1 CNN-RNN RMSE 31.90 37.91 40.19 42.30 45.13 46.20 

2 CNN-GRU RMSE 28.91 33.37 35.91 37.01 40.26 41.31 

3 CNN-LSTM RMSE 29.51 34.22 36.19 37.91 40.11 42.49 

4 GCN-GRU RMSE 25.33 31.05 33.91 34.58 36.18 36.79 

5 GAT-LSTM RMSE 22.76 26.51 31.24 34.06 34.22 34.38 

6 G-C-LSTM RMSE 21.58 26.36 30.17 31.92 33.56 34.28 

  Relative Improve 5.18% 0.57% 3.43% 6.28% 1.93% 0.29% 

  Average improve 2.95% 

Table 6. Comparison of MAE of graph-capsule-LSTM (G-C-LSTM) and baseline methods 

for future 6-hour PM2.5 prediction. Bold indicates the best results. An underline means 

second best. 

Number Model Metric +1 h +2 h +3 h +4 h +5 h +6 h 

1 CNN-RNN MAE 20.23 23.94 26.01 28.30 30.22 28.99 

2 CNN-GRU MAE 18.07 22.39 23.08 25.13 27.01 27.71 

3 CNN-LSTM MAE 18.97 22.83 24.31 26.47 27.12 27.28 

4 GCN-GRU MAE 16.10 19.18 20.49 24.03 23.48 24.52 

5 GAT-LSTM MAE 15.02 17.55 19.14 22.59 22.77 23.01 

6 G-C-LSTM MAE 14.33 17.40 18.75 20.66 22.52 22.94 

  Relative Improve 4.59% 0.85% 2.04% 8.54% 1.10% 0.30% 

  Average improve 2.90% 

Table 7. Predicting PM2.5 values comparison between graph-capsule-LSTM and baseline 

methods. |P-T| represents |Predicted PM2.5 - True PM2.5|. The smaller the value of |P-T|, 

the closer is Predicted PM2.5 to True PM2.5. Bold indicates the best predicted PM2.5 

values, and an underline means the true PM2.5 values. 

Number Model +1 h |P-T| +2 h |P-T| +3 h |P-T| +4 h |P-T| +5 h |P-T| +6 h |P-T| 

1 CNN-RNN 355 74 345 79 310 70 289 66 266 73 239 79 

2 CNN-GRU 247 34 225 41 202 38 181 42 143 50 218 58 

3 CNN-LSTM 248 33 227 39 203 37 183 40 142 51 217 57 

4 GCN-GRU 304 23 290 24 265 25 253 30 237 44 205 45 

5 GAT-LSTM 300 19 284 18 258 18 248 25 233 40 206 46 

6 G-C-LSTM 291 10 281 15 257 17 243 20 218 25 189 29 

 True PM2.5 281  266  240  223  193  160  

4.3.2. Effect of dynamic routing counts on the model for graph capsule networks 

By introducing graph capsule networks, the number of dynamic routes is a hyperparameter that 

affects the performance of the model. The so-called dynamic routing is a cyclic aggregation process, 

where the similarity between the capsules before and after aggregation is calculated for each route to 
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be used as a coefficient for the next aggregation, which is equivalent to a voting or clustering process. 

To verify the impact of this hyperparameter, Node 1 (Beijing) is taken as the target node, and dynamic 

routing was set 1, 2, 3, 4, 5 and 6 times in sequence. Tables 8 and 9 show the impact of the number of 

dynamic routes on the model prediction results. 

Table 8. RMSE values of graph-capsule-LSTM model for 1–6 dynamic routing cases. Bold 

indicates the best results. 

Dynamic 

Routing 

Metric +1 h +2 h +3 h +4 h +5 h +6 h Predicting 

Time/s 

1 RMSE 26.87 32.06 37.55 40.18 41.05 41.74 45 

2 RMSE 22.11 29.48 32.97 35.89 37.82 37.28 56 

3 RMSE 21.58 26.36 30.17 31.92 33.56 34.28 70 

4 RMSE 21.09 26.14 29.18 30.33 32.73 33.01 88 

5 RMSE 21.37 26.44 30.03 30.46 32.16 33.75 117 

6 RMSE 21.28 27.42 31.87 32.45 33.36 34.06 141 

Table 9. MAE values of graph-capsule-LSTM model for 1–6 dynamic routing cases. Bold 

indicates the best results. 

Dynamic Routing Metric +1 h +2 h +3 h +4 h +5 h +6 h Predicting 

Time/s 

1 MAE 18.71 21.47 22.18 23.59 24.63 24.47 45 

2 MAE 15.96 19.30 21.47 22.78 23.17 24.56 56 

3 MAE 14.33 17.40 18.75 20.66 22.52 22.94 70 

4 MAE 14.58 17.26 18.42 20.51 21.62 23.14 88 

5 MAE 14.03 17.34 18.59 20.78 22.53 23.57 117 

6 MAE 14.98 17.44 18.85 21.26 22.83 23.92 141 

Observing the experimental results in Tables 8 and 9, it can be found that the values of RMSE and 

MAE were 26.87 and 18.71, respectively, when one dynamic routing was used for PM2.5 prediction 

in the next hour. The values of both metrics decreased to 22.11 and 15.95 when one dynamic routing 

was added, which is a larger reduction in error. When three times dynamic routing was applied, the 

RMSE further decreased to 21.58 and the MAE decreased to 14.33. After that, the RMSE and MAE 

decreased more slowly. The distribution of the bold data (minimum error values) in the two tables 

shows that the model achieved essentially the smallest error values and the best performance at four 

routings. The last column in the table shows the prediction time due to different dynamic routing counts. 

4.3.3. Effects of different embedding sizes of the graph capsule network output 

In the embedding-based approach, the size of the embedding is theoretically a hyperparameter that 

can be set arbitrarily, and it is a key factor affecting the model performance. To verify the impact of 

this hyperparameter, different output embedding dimensions (the final size of the output capsule 

determined by the weight matrix 𝑊𝑖𝑗  of Eq (4)) were set for the graph capsule network in each 

experiment to test the impact of this parameter on the model performance. The capsule lengths were 

sequentially set to 50, 100, 150, 200, 250 and 300 dimensions by the column dimension of 𝑊𝑖𝑗 for the 
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comparison experiments. Figures 6 and 7 respectively show the convergence trends of the RMSE and 

MAE of the model when predicting the future 1-hour PM2.5 values in the target city (Beijing) for 

different capsule lengths. The horizontal coordinates denote the number of generations of model 

training, and the models of each length are denoted as Graph-Capsule-LSTM-50, Graph-Capsule-

LSTM-100, Graph-Capsule-LSTM-150, Graph-Capsule-LSTM-200, Graph-Capsule- LSTM-250 and 

Graph-Capsule-LSTM-300, where the last number of each name represents the length of the capsule 

in the model. 

 

Figure 6. Trends of RMSE during training for graph-capsule-LSTM models with different 

embedding sizes. 

 

Figure 7. MAE trends of graph-capsule-LSTM models with different embedding sizes 

during training. 

Figure 6 shows that, on the PM2.5 prediction assessment metric RMSE, Graph-Capsule-LSTM-

50 and Graph-Capsule-LSTM-100 started to converge at about 200 epochs and the minimum training 

error for these two models was 28.16 and 28.22, respectively. For the Graph-Capsule-LSTM-150 
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model, the RMSE converged much faster, having begun to converge by 175 epochs of training and 

dropping to a minimum of 18.35 by 275 generations. However, when increasing the length of the 

features extracted by the graph capsule to 200, 250 or 300 dimensions, the model's ability to predict 

PM2.5 stalled and the RMSE essentially stopped decreasing. 

From Figure 7, Graph-Capsule-LSTM-50 and Graph-Capsule-LSTM-100 started to converge 

when they were trained to about 200 epochs. From the observations, the minimum MAE reached 

during training was 21.05 for Graph-Capsule-LSTM-50 and 16.72 for Graph-Capsule-LSTM-100 on 

the training set. When the graph capsule output vector length was 150, the model Graph-Capsule-

LSTM-150 started to converge at around epochs 175 with a minimum MAE of 12.24. When the length 

of the model’s output embedding continued to increase, Graph-Capsule-LSTM-200, Graph-Capsule-

LSTM-250 and Graph-Capsule-LSTM-300 performance did not improve significantly. 

As can be seen in Figures 6 and 7, in general, the larger the dimensionality of the node feature 

vector of the capsule network output, the better the prediction of the model. For the dataset of the 

model in this chapter, it can be seen from the figure that both the RMSE and MAE values reached the 

optimum when the output size of the capsule was set to 150. 

4.3.4. Effects of using different distance thresholds to construct the urban adjacency matrix on the 

prediction results 

Taking the predicted PM2.5 concentration value of Node 1 (Beijing) in the next 1-hour as an 

example, in order to determine the appropriate neighbor distance, the distance thresholds were set to 

100, 150, 200, 250, 300, 350, 400 and 450 km, respectively. Neighborhood information of each node 

was obtained at each threshold and fed into the capsule network to learn the spatial characteristics of 

the target node. Figures 8 and 9 respectively show the RMSE and MAE values of the graph-capsule-

LSTM model on the test set for different distance thresholds. 

 

Figure 8. RMSE values of graph-capsule-LSTM model on the test set for different distance 

thresholds. 
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Figure 9. MAE values of the graph-capsule-LSTM model on the test set for different 

distance thresholds. 

The graph-capsule-LSTM model was tested on the test set. From Figures 8 and 9, it can be seen 

that the model can obtain the best performance when cities within a 200-km distance were selected as 

neighboring cities; the RMSE and MAE reached minimum values of 21.58 and 14.33, respectively. 

That is, for the dataset, the graph-capsule-LSTM model should select neighboring cities within 200 

km and send their feature data to the capsule network to obtain the neighboring feature embeddings of 

the target node. Then, this feature and the local feature data of the target node are combined to form a 

time series, which is sent to the LSTM network for training and prediction. 

5. Conclusions 

In this paper, a PM2.5 prediction model based on a graph capsule network and an LSTM RNN is 

proposed to address the “invariance” problem of GCNs. First, we analyzed the “invariance” defect of 

traditional convolutional networks, which led to the conclusion that GCNs and GATs also cause PM2.5 

prediction errors due to “invariance”. In order to solve this problem, a “graph capsule network” has 

been proposed to replace the GCN or GAT. The model is divided into two stages. In the first stage, the 

first-order neighbor feature matrix of the target city is fed into the capsule network to learn the neighbor 

feature embedding vector of the target node. In the second stage, for the target city, the neighbor feature 

vectors of the target city at each time step are obtained on the timeline and then combined with the 

local features of the target nodes before being fed into the LSTM RNN to learn and predict the PM2.5 

values of the target city at future time steps. In the end, the effectiveness of the model was validated 

on the dataset and analyzed in comparison with baseline models. 

Further, we will improve our work in the following directions in the future. 

(1) More emphasis should be placed on the trade-off between the complexity of the model 

architecture and the overall performance of the model. This method tends to consider the tendency of 

more complex models at the expense of examining the ability to perform modeling tasks with simpler 

models. Sometimes, the complexity of the model can also undermine the overall performance of the 

model. 

(2) In addition to the effective replicability, predictability and structure of the model, the model 

proposed in this paper should be evaluated in terms of computational penalties and running time, as 

these are essential factors for the model to be sufficiently useful in real-world modeling tasks. 
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(3) Uncertainty analysis of the model results should also be studied more in future work. In order 

to allow deep learning models to be fully implemented in practical applications, future efforts should 

be made toward quantifying the uncertainty of the model results. 

(4) The training of the model should be analyzed for additional factors that may affect the 

performance of the model, such as a) the impact of the length of the training data utilized on the overall 

performance of the deep learning model, b) the impact of the chosen predictors and the model structure 

utilized on the complexity and overall performance of the deep learning model, c) the connection 

between the chosen data normalization scheme and the activation function utilized and d) the impact 

of the adjusted impact of the initialization scheme of weights, biases and other training parameters on 

the overall performance of the deep learning model. 
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