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Abstract: This paper deals with the initial boundary value problem for the double dispersion equation
with nonlinear damped term and exponential growth nonlinearity in two space dimensions. We first
establish the local well-posedness in the natural energy space by the standard Galërkin method and
contraction mapping principle. Then, we prove the solution is global in time by taking the initial data
inside the potential well and the solution blows up in finite time as the initial data in the unstable set.
Moreover, finite time blow-up results are provided for negative initial energy and for arbitrary positive
initial energy respectively.
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1. Introduction

This paper is devoted to the following initial-boundary value problem for the double dispersion
equation 

utt − ∆utt − ∆u + ∆2u − ∆h(ut) + ∆ f (u) = 0 in Ω × R+

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω

u(x, t) = ∆u(x, t) = 0 on ∂Ω × R+,

(1.1)

where Ω is a bounded domain of R2 having smooth boundary ∂Ω and u = u(x, t) : Ω × R+ → R.
The damped term h(ut) is given by h(ut) = |ut|

q−1ut with q > 1, and the nonlinearity f ∈ C1(R,R) admits

(H1) for each β > 0, there exists a positive constant Cβ > 0 depending only on β such that

| f (t)| ≤ Cβeβt2 , | f ′(t)| ≤ Cβeβt2 , for all t ∈ R.
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On account of the possibility of energy exchange through lateral surfaces of the waveguide in the
physical study of nonlinear wave propagation in waveguide, the longitudinal displacement u(x, t) of
the rod satisfies the following double dispersion equation (DDE) [1, 2]

utt − uxx =
1
4

(
6u2 + autt − buxx

)
xx
,

and the general cubic double dispersion equation (CDDE)

utt − uxx =
1
4

(
cu3 + 6u2 + autt − buxx + dut

)
xx
. (1.2)

Here a, b, c > 0 and d , 0 are some constants depending on the Young modulus, the shearing modulus,
the density of the waveguide and the Poisson coefficient.

Due to the wide applications in the real world, the initial value problem and initial-boundary value
problem of double dispersion equation have drawn much attention from mathematicians. In [3–5], the
authors studied global solutions with f ′(s) ≥ C (bounded below) for following the generalized DDE
which includes Eq (1.2) as special cases,

utt − auxxtt + buxxxx − uxx − duxxt = f (u)xx. (1.3)

Moreover, they also showed the nonexistence of the global solution under some other conditions. When
d = 0, Liu [6] investigated the global existence and nonexistence of solutions for the initial-boundary
value problem of (1.3) with | f (u)| ≤ C|u|p.

For the multidimensional generalized form of (1.3)

utt − ∆u − a∆utt + b∆2u − d∆ut = ∆ f (u), (1.4)

Polat [7] researched the existence of global solutions also in the cases of f ′(s) ≥ C. Wang [8] consid-
ered the global existence and asymptotic behavior of the small amplitude solution in the time-weighted
Sobolev space for the Cauchy problem of (1.4) with | f (u)| ≤ C|u|α− j. Wang [9, 10] investigated the
asymptotic profile of solutions for the Cauchy problem of (1.4) with f (u) = O(u2). Su [11] researched
the existence and nonexistence of a global solution in the natural energy space for the initial-boundary
value problem of (1.4) with f (u) = β|u|p−1u. So, motivated by this fact and the so-called Moser-
Trudinger type inequalities [12–15], it was natural to consider nonlinearities with exponential growth.

For the generalized double dispersion (1.4) with exponential nonlinearity, Zhang [16, 17] proved
the existence and nonexistence of global weak solution for the Cauchy problem of (1.4) with d = 0.
Guo [18] established the sufficient conditions of finite time blow-up of solutions in the cases of arbitrary
positive initial energy for the Cauchy problem of (1.4) with d = 0. As far as we are concerned, there
are no results on the global existence and finite time blow-up of solutions for the initial-boundary value
problem of (1.4) with both nonlinear damped and exponential nonlinearity.

Furthermore, there are many works that focus on the wave equation with exponential nonlinearity.
Global well-posedness in the defocusing case was established by Nakamura [19] for small data, Atallah
[20] in the radial case, then by Ibrahim [21] and Struwe [22,23], see also [24–29] and their references.

It is the aim of this manuscript to obtain results about the global existence and finite time blow-up
of solutions under sufficient conditions for the problem (1.1) in the case that f is a source term and
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admits an exponential growth and h(ut) is polynomial growth. This is the first attempt in the literature
to take into account both nonlinear damped term and the exponential nonlinear source for the problem
(1.1).

This paper is organized as follows. We first establish the local well-posedness by the standard
Galërkin method and contraction mapping principle(see Theorem 3.1). By means of the potential
well theory, we provide the sufficient conditions of global solutions with subcritical initial energy (see
Theorem 4.1). In the case of the negative initial energy or the initial data in the potential well, we
prove the local solutions will blow up in finite time (see Theorems 5.1 and 5.2 ). Moreover, we also
constructed the sufficient conditions of finite time blow-up of solutions in the case of arbitrary positive
initial energy (see Theorem 5.3).

It is worth mentioning here that the sufficient conditions of blow-up of solutions can be investigated
based on the concave method [17,18,27] in the absence of the nonlinear damped term h(ut) or h(ut) = ut

in (1.1). However, when nonlinear damping and exponential source terms are both present in the
equation, it seems that their method does not work on our problem directly. We research the blow-up
of solutions in the cases of E(0) < 0 or subcritical initial energy mainly by exploiting an argument
from the one devised in [30–32], which investigated the blow-up of solutions to the wave equations
with polynomial-type nonlinearity of form |s|ms, and the case of E(0) > 0 mainly by [33].

We conclude this section with several notations given. The notation (·, ·) stands for the L2-inner
product and 〈·, ·〉 is used for the notation of duality pairing between dual space. For brevity, we use the
same letter C to denote different positive constants, and C(· · ·) to denote positive constants depending
on the quantities appearing in the parenthesis.

2. Preliminaries

For brevity, we use the following abbreviations:

Lp = Lp(Ω) H1
0 = H1

0(Ω), ‖ · ‖ = ‖ · ‖L2 , ‖ · ‖2H1
0

= ‖ · ‖2 + ‖∇ · ‖2,

with 1 ≤ p ≤ ∞. H−1 = H−1(Ω) is the dual space of H1
0 . Let A = −∆. Then, 〈Au, v〉 = (∇u,∇v), for

u, v ∈ H1
0 and the domain of A is D(A) = H2 ∩ H1

0 ; A is a positive, self-adjoint and invertible operator
and the inverse operator A−1 is compact [34]. Consequently, the operator A possesses an infinitely
countable positive eigenvalues:

0 < λ1 < λ2 < · · · < λ j < · · · → +∞,

and a corresponding sequence of eigenfunctions {e j : j = 1, 2, · · · } that forms an orthogonal basis for
L2. Also, the sequence {e j : j = 1, 2, · · · } is an orthogonal basis for H1

0 . In addition, the linear span of
{e j : j = 1, 2, · · · } is dense in Lp for any 1 ≤ p < ∞. Since the domain Ω is smooth, then e j ∈ C∞(Ω).

For any u ∈ L2, there exists u j = u j(t) = (u, e j) such that

u =

∞∑
j=1

u je j, ‖u‖2 =

∞∑
j=1

|u j|
2.

The powers of A are defined as follows [34]

Asu =

∞∑
j=1

λs
ju je j, s ∈ R.
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For s ≥ 0, As : D(As) ⊂ L2 → L2, and the domain of As is given by

D(As) = {u ∈ L2 : u =

∞∑
j=1

u je j,

∞∑
j=1

λ2s
j |u j|

2 < ∞},

which endowed with the graph norm

‖u‖D(As) = ‖Asu‖ =

 ∞∑
j=1

λ2s
j |u j|

2


1
2

and the associated scalar product

(u, v)D(As) =

∞∑
j=1

λ2s
j u jv j,

where v j = (v, e j). Especially, D(As) = H2s
0 for 1

4 < s ≤ 1
2 (see [35]).

It worth to be mentioned that we introduce the space Hs (with s > 0) as the domain D(As) equipped
with the graph norm ‖u‖D(As) = ‖Asu‖. If s is negative, we define Hs as the completion of L2 with
respect to the norm ‖u‖D(As) = ‖A−|s|u‖.

By the Poincaré inequality, one can easily see that if u ∈ L2 then (−∆)−
1
2 u ∈ L2. So, we can define a

Hilbert space as follows
H = (L2, (·, ·)H ),

where the scalar product (·, ·)H is defined by

(u, v)H = (u, v) +
(
(−∆)−

1
2 u, (−∆)−

1
2 v

)
and the norm ‖ · ‖H is defined by

‖u‖2
H

= ‖u‖2 +
∥∥∥∥(−∆)−

1
2 u

∥∥∥∥2
. (2.1)

We note that the Poincaré inequality implies that the norms ‖ · ‖ and ‖ · ‖H are equivalent norms on L2.
Applying the operator (−∆)−1 to (1.1). Then (1.1) becomes

(−∆)−1utt + utt + u + (−∆)−1∆2u + h(ut) − f (u) = 0. (2.2)

Since (−∆)−1∆2u = −∆u, for any u ∈
{
u ∈ H4 ∩ H1

0 : ∆u |∂Ω= 0
}

(see [34, Lemma 1.7]), then the Eq
(2.2) can be written as

(−∆)−1utt + utt + u − ∆u + h(ut) − f (u) = 0. (2.3)

Then, the weak solution of (2.3) with the initial data of (1.1) and boundary value condition u |∂Ω= 0 is
said to be the weak solution of the problem (1.1). This leads to the following definition.

Definition 2.1 (weak solution). A function u ∈ C
(
[0,T ]; H1

0

)
∩C1

(
[0,T ]; L2

)
with ut ∈ Lq+1((0,T )×Ω)

is said to be a weak solution to the problem (1.1) over [0,T ], if and only if for any t ∈ [0,T ], it satisfies(
(−∆)−

1
2 ut, (−∆)−

1
2ϕ

)
+ (ut, ϕ) +

∫ t

0

[
(u, ϕ) + (∇u,∇ϕ) + 〈h(ut), ϕ〉 − ( f (u), ϕ)

]
dτ
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=
(
(−∆)−

1
2 u1, (−∆)−

1
2ϕ

)
+ (u1, ϕ),

for all test functions ϕ ∈ H1
0 , and

u(x, 0) = u0(x) ∈ H1
0 , ut(x, 0) = u1(x) ∈ L2.

Now, we give the Trudinger-Moser inequality [14,15] which will be used repeatedly to estimate the
exponential nonlinearity.

Lemma 2.1. For all u ∈ W1,n
0 (n ≥ 2)

eα|u|
n

n−1
∈ L1, for all α > 0, (2.4)

and there exist positive constants C(n) which depends on n only, such that

sup
‖u‖

W1,n
0
≤1

∫
Ω

eα|u|
n

n−1 dx ≤ C(n)|Ω|, for all α ≤ α(n),

where |Ω| =
∫

Ω
dx, α(n) = nw

1
n−1
n−1, and wn−1 is the (n − 1)-dimensional measure of the (n − 1)-sphere.

Remark 2.1. From Lemma 2.1, we know that f (u) ∈ L1 (in fact, from (2.4), f (u) ∈ Lp for any p ≥ 1 )
for all u ∈ H1

0 , and let

F(u) =

∫ u

0
f (τ)dτ,

we also infer that F(u) ∈ L1 and
|F(u)| ≤ Cβ|u|eβ|u|

2
.

The following lemma is for the convergence of the approximate solutions.

Lemma 2.2 ( [36]). Let X and Y be Banach spaces, X′ and Y ′ be the dual spaces of X and Y respec-
tively, and X a dense subset of Y and the inclusion map of X into Y continuous. Assume that

un → u weakly-star in L∞(0,T ; X′);
unt → χ weakly-star in L∞(0,T ; Y ′)

then χ = ut in L∞(0,T ; Y ′).

The next lemma is straightforward and follows from the continuity and monotonicity of the function
h(u) = |u|q−1u = |u|qsgn(u).

Lemma 2.3. Let h(u) = |u|q−1u = |u|qsgn(u). Then h generates a monotone operator from L1+ 1
q (Ω) into

L1+ 1
q (Ω), i.e.,

〈h(u) − h(v), u − v〉 ≥ 0 ∀u, v ∈ Lq+1.

Moreover, the mapping λ 7→ 〈h(u + λv), η〉 is continuous from R to R for every fixed u, v, η ∈ Lq+1.

The continuity of the solutions needs the following result which can be found in [37].

Lemma 2.4. Let V and Y be Banach spaces, V reflexive, V a dense subset of Y and the inclusion map
of V into Y continuous. Then,

L∞(0,T ; V) ∩Cω([0,T ]; Y) = Cω([0,T ]; V),

where

Cw([0,T ]; Y) = {u ∈ L∞(0,T ; Y); 〈u(t), y′〉 is continuous on [0,T ], for all y′ ∈ Y ′} .
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3. Local solutions

This section focus on the local well-posedness of (1.1) in the natural energy space. First, we es-
tablish the existence of a local weak solution to the corresponding linear problem of (1.1) by using a
standard Galerkin approximation scheme based on the eigenfunctions {e j}

∞
j=1 of the operator A = −∆.

The well-posedness of the nonlinear problem (1.1) shall be researched by the contraction mapping
principle, and mainly by the Trudinger-Moser inequality to deal with the nonlinearity.

Theorem 3.1. Let f satisfy (H1), u0 ∈ H1
0 , and u1 ∈ L2. Then there exists a unique weak solution u of

(1.1) in Ω× (0,Tmax), where Tmax is the life time of solutions. In addition, u satisfies the energy identity

E(t) +

∫ t

0
‖uτ‖

q+1
q+1dτ = E(0), (3.1)

where

E(t) =
1
2

(
‖ut‖

2
H

+ ‖u‖2H1
0

)
−

∫
Ω

F(u)dx.

Here and after ‖ · ‖H is denoted by (2.1). Moreover, if

sup
t∈[0,Tmax)

(
‖ut‖

2
H

+ ‖u‖2H1
0

)
< ∞

then Tmax = ∞.

In order to prove Theorem 3.1, we firstly consider the following auxiliary result.

Lemma 3.1. Let T > 0, u0 ∈ H1
0 , u1 ∈ L2, and u ∈ C

(
[0,T ]; H1

0

)
with the norm max

t∈[0,T ]
‖u‖H1

0
≤ R for

some constant R > 0. Assume that f satisfies (H1). Then, there exists a unique

v ∈ C
(
[0,T ]; H1

0

)
∩C1

(
[0,T ]; L2

)
, vt ∈ Lq+1(Ω × (0,T ))

which solves the linear problem
(−∆)−1vtt + vtt − ∆v + v + h(vt) − f (u) = 0, in Ω × R+,

v(x, 0) = u0(x), vt(x, 0) = u1(x), in Ω,

v |∂Ω= 0, on ∂Ω × R+.

(3.2)

Proof. Let {e j}
∞
j=1 be the orthonormal basis for L2, as described in Section 2. For m ∈ N given, we seek

m functions g1,m, g2,m, ..., gm,m ∈ C2[0,T ] such that

vm(x, t) =

m∑
j=1

g j,me j(x) (3.3)

solves the problem (
(−∆)−1vmtt + vmtt + vm − ∆vm + h(vmt) − f (u), η

)
= 0, (3.4)
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vm(x, 0) =

m∑
j=1

ρ je j → u0 in H1
0 , as m→ ∞, (3.5)

vmt(x, 0) =

m∑
j=1

ξ je j → u1 in L2, as m→ ∞, (3.6)

for every η ∈ Span{e1, e2, . . . , em}. Taking η = e j in (3.4) yields the following Cauchy problem for a
linear ordinary differential equation with unknown g j,m:

(1 + λ−1
j )g′′j,m + (1 + λ j)g j,m +

(
h(vmt), e j

)
= ( f (u), e j),

g j,m(0) = ρ j, g′j,m(0) = ξ j ( j = 1, 2, ...,m).

Then, by the standard ordinary differential equations theory, for all j , the above Cauchy problem yields
a unique global solution g j,m ∈ C2(0, tm). In turn, this gives a unique vm(t) ∈ H2∩H1

0 for every t ∈ (0, tm)
defined by (3.3) and satisfying (3.4)–(3.6). Taking η = vmt in (3.4), and integrating over [0, t] ⊂ (0, tm),
we obtain

1
2

(
‖vmt‖

2
H

+ ‖vm‖
2
H1

0

)
+

∫ t

0
‖vmτ‖

q+1
Lq+1dτ =

1
2

(
‖vmt(x, 0)‖2H + ‖vm(x, 0)‖2H1

0

)
+

∫ t

0

∫
Ω

f (u)vmτdxdτ. (3.7)

We estimate the last term in the right-hand side of (3.7) thanks to the assumption (H1), the Hölder
inequality. More precisely,∫ t

0

∫
Ω

f (u)vmτdxdτ ≤ Cβ

∫ t

0

∫
Ω

eβu2
|vmτ|dxdτ ≤ Cβ

∫ t

0
‖vmτ‖Lq+1

(∫
Ω

e
q+1

q βu2
dx

) q
q+1

dτ.

By means of the Young inequality, we achieve∫ t

0

∫
Ω

f (u)vmτdxdτ ≤ ε
∫ t

0
‖vmτ‖

q+1
Lq+1 dτ + Cβ,ε

∫ t

0

∫
Ω

e
q+1

q βu2
dxdτ,

for a appropriate small constant 0 < ε < 1. Since the assumption on u that max
t∈[0,T ]

‖u‖H1
0
≤ R, we find

∫
Ω

e
q+1

q βu2
dx =

∫
Ω

e
q+1

q β‖u‖2
H1

0

 |u|
‖u‖

H1
0

2

dx ≤
∫

Ω

e
q+1

q βR2

 |u|
‖u‖

H1
0

2

dx.

With the Moser-Trudinger inequality, for each β < 4qπ
(q+1)R2 , we get∫

Ω

e
q+1

q βu2
dx ≤ C(β,Ω).

Thus, ∫ t

0

∫
Ω

f (u)vmτdxdτ ≤ ε
∫ t

0
‖vmτ‖

q+1
Lq+1 dτ + CT . (3.8)
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From the facts (3.5)–(3.8) we obtain

‖vmt‖
2
H

+ ‖vm‖
2
H1

0
+

∫ t

0
‖vmτ‖

q+1
Lq+1dτ ≤ CT , (3.9)

for every m ≥ 1, where CT > 0 is independent of m. So we can extend the approximated solutions vm

to the whole interval [0,T ] and the uniform estimate (3.9) also holds on [0,T ]. Besides we get

vm is bounded in L∞(0,T ; H1
0),

vmt is bounded in L∞(0,T ; L2) ∩ Lq+1((0,T ) ×Ω).

By the definition of h(vmt), we have∫ t

0

∫
Ω

|h(vmτ)|
q+1

q dxdτ =

∫ t

0

∫
Ω

|vmτ|
q+1dτ ≤ CT .

That means
h(vmt) is bounded in L

q+1
q ((0,T ) ×Ω).

Moreover, by the Eq (3.4) we know that

vmtt is bounded in L
q+1

q (0,T ; H−1).

Therefore, we can extract from the sequence {vm} a subsequence which we still denote by {vm} such
that

vm → v weakly-star in L∞(0,T ; H1
0), (3.10)

h(vmt)→ χ weakly in L
q+1

q ((0,T ) ×Ω).

Since n = 2 and Ω is bounded we deduce immediately that u ∈ H1
0 ↪→ Lr for all 1 ≤ r < +∞. From

Lemma 2.2, we have that

vmt → vt weakly-star in L∞(0,T ;H) ∩ Lq+1((0,T ) ×Ω), (3.11)

vmtt → vtt weakly-star in L
q+1

q (0,T ; H−1).

Integrating (3.4) with respect to t from 0 to t and let m→ ∞ we obtain(
(−∆)−

1
2 vt, (−∆)−

1
2η

)
+ (vt, η) +

∫ t

0

[
(v, η) + (∇v,∇η) + 〈χ, η〉 − ( f (u), η)

]
dτ

=
(
(−∆)−

1
2 u1, (−∆)−

1
2η

)
+ (u1, η),

for all test functions η ∈ H1
0 . So, we get a solution v to the following initial-boundary problem

(−∆)−1vtt + vtt − ∆v + v + χ − f (u) = 0, in Ω × R+,

v(x, 0) = u0(x), vt(x, 0) = u1(x), in Ω,

v |∂Ω= 0, on ∂Ω × R+,
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and
v ∈ L∞(0,T ; H1

0), vt ∈ L∞(0,T ; L2), vtt ∈ L
q+1

q (0,T ; H−1).

Consequently,

v ∈ H1(0,T ; L2) ↪→ C([0,T ]; L2), vt ∈ H1(0,T ; H−1) ↪→ C([0,T ]; H−1).

By making use of Lemma 2.4, we deduce immediately that

v ∈ Cw([0,T ]; H1
0), vt ∈ Cw([0,T ]; L2). (3.12)

Noting that

vtt − ∆v = (I − ∆)−1∆( f (u) + h(vt)) ∈ L∞(0,T ; L2) + L1+ 1
q ((0,T ) ×Ω) ,

then form Corollary 4.1 of Starauss in [37], we conclude that ‖vt‖
2 + ‖∇v‖2 is a continuous function of

t. Combining with (3.12), we have

v ∈ C([0,T ]; H1
0), vt ∈ C([0,T ]; L2).

So far, we shall have proved the existence of the solution of (3.2), if we show that χ = h(vt). Observing
the monotonicity and continuity of h(vt), we follow the idea of monotonicity argument used in [38].

On the one hand, noting that

(−∆)−1vtt + vtt + v − ∆v = −χ + f (u) ∈ L
q+1

q ((0,T ) ×Ω) + L1(0,T ; L2),

and by considering ideas from [37, Theorem 4.1], v satisfies for all t ∈ (0,T ] the energy identity

1
2

(
‖vt‖

2
H

+ ‖v‖2H1
0

)
+

∫ t

0
〈χ, vτ〉dτ =

1
2

(
‖u1‖

2
H

+ ‖u0‖
2
H1

0

)
+

∫ t

0

∫
Ω

f (u)vτdxdτ. (3.13)

On the other hand, it follows from (3.7), (3.10) and (3.11) that

1
2

(
‖vt‖

2
H

+ ‖v‖2H1
0

)
+ lim inf

m→∞

∫ t

0
〈h(vmτ), vmτ〉dτ ≤

1
2

(
‖u1‖

2
H

+ ‖u0‖
2
H1

0

)
+

∫ t

0

∫
Ω

f (u)vτdxdτ. (3.14)

Therefore, (3.13) and (3.14) yield

lim inf
m→∞

∫ t

0
〈h(vmτ), vmτ〉dτ ≤

∫ t

0
〈χ, vτ〉dτ. (3.15)

Now, let ϕ ∈ L1+ 1
q (0,T ×Ω) be arbitrary. Then it follows from Lemma 2.3 and (3.15) that

0 ≤ lim inf
m→∞

∫ t

0
〈h(vmτ) − h(ϕ), vmτ − ϕ〉dτ ≤

∫ t

0
〈χ − h(ϕ), vτ − ϕ〉dτ. (3.16)

By choosing ϕ(t) = vt − λψ(t), where λ ∈ R, (3.16) yields∫ t

0
〈χ − h (vτ − λψ(t)) , ψ(t)〉dτ ≥ 0,
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for all λ ≥ 0 and ψ ∈ Lq+1(0,T ×Ω). By letting λ→ 0 and recalling the continuity of h, we achieve∫ t

0
〈χ − h(vτ), ψ(t)〉dτ ≥ 0, ∀ψ ∈ Lq+1(0,T ×Ω),

which implies χ = h(vt).
The last work is the uniqueness of solutions, which follows arguing for contradiction: if v and w are

two solutions of (3.2) which share the same initial data, by subtracting the equations and v is substituted
by v − w, we would get

1
2

(
‖vt − wt‖

2
H

+ ‖v − w‖2H1
0

)
+

∫ t

0

∫
Ω

(h(vτ) − h(wτ))(vτ − wτ)dτ = 0. (3.17)

Observing the Mazur inequality

2−p |x − y|p+1
≤ |x|x|p − y|y|p| ≤ (p + 1)|x − y| (|x|p + |y|p) , ∀p ≥ 0, x, y ∈ R,

we get (
|s|q−1s − |t|q−1t

)
(s − t) ≥ C|s − t|q+1, for all s, t ∈ R. (3.18)

So, (3.17) can be estimated as

1
2

(
‖vt − wt‖

2
H

+ ‖v − w‖2H1
0

)
+ C

∫ t

0
‖vτ − wτ‖

q+1
Lq+1dτ ≤ 0,

which immediately yields w ≡ v. The proof of Lemma 3.1 is now completed.

Now we turn to the nonlinear problem (1.1) by using the contraction mapping principle.
Proof of Theorem 3.1 Taking (u0, u1) ∈ H1

0 × L2, let R2 = 2(‖u0‖
2
H1

0
+ ‖u1‖

2
H

) and for any T >

0 considering a closed convex set MT to be a ball of radius R in the space M = C
(
[0,T ]; H1

0

)
∩

C1
(
[0,T ]; L2

)
,

MT =
{
u ∈ M : ‖u‖MT ≤ R

}
with the norm ‖u‖2

MT
= max

t∈[0,T ]

{
‖u‖2

H1
0

+ ‖ut‖
2
H

}
and metric d(u, v) = ‖u − v‖MT . Obviously, (MT , d)

is a complete metric space. By Lemma 3.1, for any u ∈ MT we may define v = Φ(u), being v the
unique solution to problem (3.2). We claim that, for a suitable T > 0, Φ is a contractive map satisfying
Φ(MT ) ⊆ MT .

It follows from the fact (3.13) that

1
2

(
‖vt‖

2
H

+ ‖v‖2H1
0

)
+

∫ t

0
‖vτ‖

q+1
Lq+1dτ =

1
2

(
‖u1‖

2
H

+ ‖u0‖
2
H1

0

)
+

∫ t

0

∫
Ω

f (u)vτdxdτ. (3.19)

For the last term, we argue in the same spirit (although slightly differently) as for (3.8) and we get∣∣∣∣∣∣
∫ t

0

∫
Ω

f (u)vτdxdτ

∣∣∣∣∣∣ ≤ε
∫ t

0
‖vτ‖

q+1
Lq+1 dτ + C(β,Ω)T. (3.20)
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Combining (3.19) with (3.20) and taking the maximum over [0,T ] gives

‖v‖2MT
≤

1
2

R2 + C(β,Ω)T.

Choosing T sufficiently small, we get ‖v‖MT
≤ R, which shows that Φ(MT ) ⊆ MT . Now, taking w1 and

w2 inMT , subtracting the two equations (3.2) for v1 = Φ(u1) and v2 = Φ(u2), and setting z = v1 − v2

then z is the unique solution of the problem
(−∆)−

1
2 ztt + ztt − ∆z + z + h(v1t) − h(v2t) = f (u1) − f (u2), in Ω × R+,

z(x, 0) = 0, zt(x, 0) = 0, in Ω,

z |∂Ω= 0, on ∂Ω × R+.

Taking the assumption (H1) into account, we have

| f (u1) − f (u2)| ≤ Cβ

(
eβ|u1 |

2
+ eβ|u2 |

2)
|u1 − u2|. (3.21)

Using (3.18) again it holds

1
2

(
‖zt‖

2
H

+ ‖z‖2H1
0

)
+ C

∫ t

0
‖zτ‖

q+1
Lq+1dτ ≤

∫ t

0

∫
Ω

( f (u1) − f (u2))zτdxdτ.

By (3.21), Lemma 2.1, the Hölder inequality and the Sobolev imbedding inequality, it deduces that∫ t

0

∫
Ω

( f (u1) − f (u2))zτdxdτ ≤Cβ

∫ t

0

∫
Ω

(
eβ|u1 |

2
+ eβ|u2 |

2)
|u1 − u2||zτ|dxdτ

≤Cβ

∫ t

0
‖zτ‖‖u1 − u2‖Lq+1

∫
Ω

(
e

2(q+1)
q−1 β|u1 |

2
+ e

2(q+1)
q−1 β|u2 |

2
)

dxdτ

≤C(β,Ω)
∫ t

0
‖zτ‖2‖u1 − u2‖

2
H1

0
dτ, (3.22)

for each β < 2(q−1)π
(q+1)R2 , where we have used the fact that 1

2 + 1
q+1 +

q−1
2(q+1) = 1. Using the Young inequality,

the estimate (3.22) becomes∫ t

0

∫
Ω

( f (u1) − f (u2))zτdxdτ ≤
1
2

C2(β,Ω)T‖u1 − u2‖
2
MT

+
1
2

∫ t

0
‖zτ‖2dτ.

Consequently,

1
2

(
‖zt‖

2
H

+ ‖z‖2H1
0

)
+ C

∫ t

0
‖zτ‖

q+1
Lq+1dτ ≤

1
2

C2(β,Ω)T‖u1 − u2‖
2
MT

+
1
2

∫ t

0
‖zτ‖2dτ.

Applying Gronwall inequality and taking the maximum over [0,T ], it follows that

‖z‖MT = ‖Φ(u1) − Φ(u2)‖MT ≤ δ‖u1 − u2‖MT ,

for some δ < 1 provided T is sufficiently small. By the contraction mapping principle, there exists
a unique solution u to (1.1) defined on [0,T ], u ∈ C

(
[0,T ]; H1

0

)
∩ C1

(
[0,T ]; L2

)
and from (3.19) the

energy equality (3.1) holds. Theorem 3.1 is proved.
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4. Global solutions

The goal of this section is to prove that the local solution established in Theorem 3.1 can be
extended globally in time when the initial data inside the potential well. So that we firstly introduce
Nehari functional, Nehari manifold and the stable sets. Let

J(u) =
1
2
‖u‖2H1

0
−

∫
Ω

F(u)dx,

and
I(u) = ‖u‖2H1

0
−

∫
Ω

u f (u)dx.

Related to the functional J, we have the well known Nehari manifold

N =
{
u ∈ H1

0 \ {0}; I(u) = 0
}
.

Let f : R→ R is a C1 function verifying both the assumption (H1) and the following properties:

(H2) The function f satisfies the following condition near the origin

lim
t→0

f (t)
t

= 0.

(H3) There exists θ > 2 such that

0 < θF(t) < f (t)t for all t ∈ R \ {0}. (4.1)

(H4) There are constants R0,M0 > 0 such that, for all |t| ≥ R0,

0 < F(t) ≤ M0| f (t)|.

Then, it can be checked that the mountain-pass level d can be characterized as

d = inf
{

sup
λ≥0

J(λu) : u ∈ H1
0 , u , 0

}
= inf

u∈N
J(u) > 0.

The proof is refered to [17, 27].
Hereafter, we will denote by W and V the following sets:

W =
{
u ∈ H1

0 ; I(u) > 0, J(u) < d
}
∪ {0},

V =
{
u ∈ H1

0 ; I(u) < 0, J(u) < d
}
.

Under the assumptions imposed on f , it is can be proved that W and V are invariant sets related to
(1.1) (Lemmas 4.1 and 5.1), which provide the possibilities for us to establish the global existence and
nonexistence of the solutions.

Remark 4.1. An interesting question is whether there is a function that meets the conditions (H1)–
(H4). Now, we construct explicitly an example such that all assumptions (H1)–(H4) are satisfied.

Example 1. Let f (t) = |t|p−1te
β
2 t2 with p > 1. Then f (t) satisfies (H1)–(H4).
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Proof. It follows from the fundamental inequality

tb ≤

(
b
ea

)b

eat, for a > 0, b > 0, t ∈ (0,+∞)

that

| f (t)| = |t|pe
β
2 t2 ≤

(
2p
eβ

)p

e
β
2 te

β
2 t2 ≤ Ceβt2 .

Which shows f (t) satisfies (H1). Obviously, f (t) satisfies (H2).
For (H3), by the definition of F(t), we get

F(t) =

∫ t

0
f (τ)dτ =

∫ t

0
|τ|p−1τe

β
2 |τ|

2
dτ =

∫ t

0
|τ|p−1τ

+∞∑
n=0

(
β

2

)n
|τ|2n

n!
dτ

=

∫ t

0

+∞∑
n=0

(
β

2

)n
|τ|2n+p−1τ

n!
dτ =

+∞∑
n=0

(
β

2

)n
|t|2n+p+1

n!(2n + p + 1)
. (4.2)

For p > 1, we have

(p + 1)F(t) < |t|p+1
+∞∑
n=0

(
β

2

)n
|t|2n

n!
= |t|p+1e

β
2 |t|2 = t f (t). (4.3)

Thus, f (t) satisfies (H3).
At last, we show f verifies (H4). It follows from (4.2) that

F(t) =|t|p
+∞∑
n=0

(
β

2

)n
|t|2n+1

n!(2n + p + 1)
= |t|p

+∞∑
n=1

(
β

2

)n−1
|t|2n−1

(n − 1)!(2(n − 1) + p + 1)

=|t|p
+∞∑
n=1

(
β

2

)n
|t|2n

n!
·

2n
β(2(n − 1) + p + 1)|t|

.

Obviously, for any constant R0 > 0, |t|−1 < 1
R0

for |t| > R0, and 2n
β(2(n−1)+p+1) <

1
β
. Thus,

F(t) ≤ M0|t|p
+∞∑
n=1

(
β

2

)n
|t|2n

n!
≤ M0|t|p

+∞∑
n=0

(
β

2

)n
|t|2n

n!
= M0| f (t)|,

where M0 = 1
βR0

. f satisfies (H4).

The following result is about the invariance of the set W under the flow of (1.1).

Lemma 4.1 ( [17, 27]). Let f satisfy (H1)–(H4) and u be the unique local solution to (1.1). Assume
that E(0) < d, then for all t ∈ [0,T ], u belongs to W provide that u0 belongs to W, and

‖u‖2H1
0
<

2θd
θ − 2

.
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Now we concerned with the global existence of the solution for the problem (1.1).

Theorem 4.1 (Global solutions for E(0) < d). Let f (u) satisfy (H1)–(H4), and u be the unique local
solution to (1.1). Assume that E(0) < d, and I(u0) > 0 or ‖u0‖H1

0
= 0. Then, u exists globally and

u ∈ W, for all t ∈ [0,∞).

Proof. From (4.1) we have

E(t) =
1
2
‖ut‖

2
H

+
1
2
‖u‖2H1

0
−

∫
Ω

F(u)dx

≥
1
2
‖ut‖

2
H

+
θ − 2

2θ
‖u‖2H1

0
+

1
θ

(
‖u‖2H1

0
−

∫
Ω

u f (u)dx
)

=
1
2
‖ut‖

2
H

+
θ − 2

2θ
‖u‖2H1

0
+

1
θ

I(u).

Since E(0) < d and I(u0) > 0 or u0 = 0, it follows from Lemma 4.1 that I(u) > 0 or ‖u‖H1
0

= 0 for all
t ∈ [0,Tmax), which implies that

1
2
‖ut‖

2
H

+
θ − 2

2θ
‖u‖2H1

0
+

∫ t

0
‖uτ‖

q+1
Lq+1dτ < E(0) < d,

for all t ∈ [0,Tmax) and θ > 2. Therefore, by virtue of Theorem 3.1 it yields Tmax = ∞.

5. Blow-up of solutions

This section is concerned with results on finite time blow-up of the solutions for the problem
(1.1) with f (u) = |u|p−1ue

β
2 |u|

2
, p > 1. We firstly prove that when the initial energy is negative, the local

solution can not be extended globally in time. Secondly, in the case of E(0) < d, we prove that when
the initial data u0 ∈ V , the local solution blows up in finite time. Lastly, we construct the sufficient
conditions of finite time blow-up of the solutions with arbitrary positive initial energy.

Now, we state the main results on the finite time blow-up of the solutions.

Theorem 5.1 (Blow-up for E(0) ≤ 0). Let f (u) = |u|p−1ue
β
2 |u|

2
for p > 1, and u be the unique local

solution to (1.1). Assume that E(0) < 0 or E(0) = 0 and (u0, u1)H > 0. Then, the problem (1.1) does
not admit any global weak solution.

From Theorem 5.1 we can easily obtain the following result.

Corollary 5.1. Let f (u) = |u|p−1ue
β
2 |u|

2
with p > 1 and u be the unique local solution to (1.1). If there

exists t0 ∈ [0,T ] such that E(t0) < 0, then the problem (1.1) does not admit any global weak solution.

The result about finite time blow-up of the solutions with the subcritical initial energy is based on
the following three lemmas.

Lemma 5.1 ( [17, 27]). Let f (u) = |u|p−1ue
β
2 |u|

2
with p > 1 and u be the unique local solution to (1.1).

Assume that E(0) < d, then for all t ∈ [0,T ], u belongs to V provide that u0 belongs to V, and

‖u‖2H1
0
> 2d. (5.1)
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Lemma 5.2. Let f (u) = |u|p−1ue
β
2 |u|

2
with p > 1 and

ϕ(λ) =
1
2

∫
Ω

λu f (λu)dx −
∫

Ω

F(λu)dx.

Then ϕ(λ) is strictly increasing on 0 < λ < ∞.

Proof. By a simple calculation, we check

u
(
u f ′(u) − f (u)

)
≥ 0, (5.2)

and the equality holds only for u = 0. With (5.2) we get

d
dλ
ϕ(λ) =

1
2

∫
Ω

u f (λu)dx +
1
2

∫
Ω

λu2 f ′(λu)dx −
∫

Ω

u f (λu)dx

=
1
2

(∫
Ω

λu2 f ′(λu)dx −
∫

Ω

u f (λu)dx
)

=
1

2λ

∫
Ω

λu
(
λu f ′(λu) − f (λu)

)
dx ≥ 0,

the equality holds only for u = 0. Thus, the proof of Lemma 5.2 is completed.

Lemma 5.3. Let f (u) = |u|p−1ue
β
2 |u|

2
with p > 1 and u be the unique local solution to (1.1). Assume

that u belongs to V then
I(u) < −2(d − E(0))

Proof. We define the function W(λ) = I(λu) for λ > 0. Observe that W(1) = I(u) < 0 and

W(λ) = λ2‖u‖2H1
0
−

∫
Ω

λu f (λu)dx > 0

for λ sufficiently small. Hence there exists some λ0 ∈ (0, 1) such that W(λ0) = I(λ0u) = 0. That is
λ2

0‖u‖
2
H1

0
=

∫
Ω
λ0u f (λ0u)dx. By the definition of d, we obtain

d = inf
u∈N

J(u) ≤ J(λ0u)

=
1
2
λ2

0‖u‖
2
H1

0
−

∫
Ω

F(λ0u)dx

=
1
2

∫
Ω

λ0u f (λ0u)dx −
∫

Ω

F(λ0u)dx.

It follows from Lemma 5.2 that

1
2

∫
Ω

λ0u f (λ0u)dx −
∫

Ω

F(λ0u)dx

<
1
2

∫
Ω

u f (u)dx −
∫

Ω

F(u)dx

=
1
2
‖u‖2H1

0
−

∫
Ω

F(u)dx −
1
2

(
‖u‖2H1

0
−

∫
Ω

u f (u)dx
)
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=J(u) −
1
2

I(u) ≤ E(t) −
1
2

I(u) ≤ E(0) −
1
2

I(u).

That is,
I(u) < 2(E(0) − d).

This completes the proof of Lemma 5.3.

Theorem 5.2 (Blow-up for E(0) < d). Let f (u) = |u|p−1ue
β
2 |u|

2
with p > 1 and u be the unique local

solution to (1.1). Assume that E(0) < γd for some constant 0 < γ ≤ 1
2 , and u0 ∈ V. Then, the problem

(1.1) does not admit any global weak solution.

Theorem 5.3 (Blow-up for E(0) > 0). Let f (u) = |u|p−1ue
β
2 |u|

2
with p > 1 and u be the unique local

solution to (1.1). Assume that E(0) > 0, and

(u0, u1)H >
q

q + 1
M

1
q E(0) > 0, (5.3)

then the problem (1.1) does not admit any global weak solution, where M is the root of the equation

K(M)
ω(M)

=
qM

1
q

q + 1

on (M0,+∞),

M0 =


Cβ,Ω(p+1)
(q+1)(p−1) , if p ≤ q,
(q−1)λ1+p−q

(p−1)2λ1
, if p > q,

K(M) =

(p + 1)
(
1 − Cβ,Ω

(q+1)M

)
, if p ≤ q,

p + 1 − q−1
M(p−1) , if p > q,

ω(M) =


√
λ1(K(M) + 2)(K(M) − 2), if p ≤ q,√
(K(M) + 2)

[
(K(M) − 2)λ1 −

p−q
(p−1)M

]
, if p > q,

Cβ,Ω > 0 is a constant depending on β and Ω , and λ1 is the first eigenvalue of −∆ with zero Dirichlet
boundary data on the smooth bounded domain Ω ⊂ R2.

Now, we concerned with our proofs of Theorems 5.1–5.3.
Proof of Theorem 5.1 Arguing by contradiction, we suppose that Tmax = +∞. For any 0 < T <

∞, we define

G(t) = ‖u‖2
H

=
∥∥∥∥(−∆)−

1
2 u

∥∥∥∥2
+ ‖u‖2, ∀t ∈ [0,T ]. (5.4)

Then,
G′(t) = 2

(
(−∆)−

1
2 u, (−∆)−

1
2 ut

)
+ 2(u, ut).

Note that the standard approximation argument shows that G′′(t) exists and by the Eq (2.3), we have

G′′(t) = − 2‖u‖2H1
0

+ 2 ‖ut‖
2
H

+ 2
∫

Ω

u f (u)dx − 2
∫

Ω

uh(ut)dx

=4 ‖ut‖
2
H
− 4E(t) + 2

∫
Ω

(u f (u) − 2F(u)) dx − 2
∫

Ω

|ut|
q−1utudx.
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Let
H(t) = −E(t).

It follows from the energy equality (3.1) that

H′(t) = ‖ut‖
q+1
Lq+1 ≥ 0.

So that H(t) is increasing on [0,T ] and noting the fact (4.3), we have

0 ≤ −E(0) = H(0) ≤ H(t) ≤
∫

Ω

F(u)dx <
1

p + 1

∫
Ω

u f (u)dx. (5.5)

Now considering the following function defined on [0,T ]

L(t) = H1−α(t) + εG′(t),

where 0 < α < 1 and ε > 0 are sufficiently small and given later. A simple computation entails

L′(t) =(1 − α)H−α(t)H′(t) + εG′′(t)

=(1 − α)H−α(t)H′(t) + 4ε ‖ut‖
2
H
− 4εE(t) + 2ε

∫
Ω

(u f (u) − 2F(u)) dx − 2ε
∫

Ω

|ut|
q−1utudx. (5.6)

By the Young inequality we have∣∣∣∣∣∫
Ω

|ut|
q−1utudx

∣∣∣∣∣ ≤ δq+1

q + 1
‖u‖q+1

Lq+1 +
q

q + 1
δ−

q+1
q ‖ut‖

q+1
Lq+1 , (5.7)

for some δ > 0 to be fixed later. Substituting (5.7) into (5.6), and noting H(t) = −E(t) we obtain

L′(t) ≥
[
(1 − α)H−α(t) −

2εq
q + 1

δ−
q+1

q

]
H′(t) + 4ε ‖ut‖

2
H

+ 4εH(t)

+ 2ε
∫

Ω

(
f (u)u − 2F(u) −

δq+1

q + 1
‖u‖q+1

Lq+1

)
dx. (5.8)

Taking δ such that δ−
q+1

q = kH−α(t), the constant k > 0 will be chosen later, then from (5.5), we have

δq+1 = k−qHαq(t) ≤ k−q

(∫
Ω

F(u)dx
)αq

≤ (p + 1)−αqk−q

(∫
Ω

u f (u)dx
)αq

.

For any m > q, by means of the Hölder inequality, we obtain

‖u‖q+1
Lq+1 ≤ CΩ‖u‖

q+1
Lm+1 = CΩ

(∫
Ω

|u|m+1dx
) q+1

m+1

.

Taking m > p, it holds∫
Ω

|u|m+1dx =

∫
Ω

|u|p+1|u|m−pdx ≤ C(β)
∫

Ω

|u|p+1e
β
2 u2

dx = C(β)
∫

Ω

u f (u)dx. (5.9)
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Then, taking m > max{p, q}, we arrive at

‖u‖q+1
Lq+1 ≤ CΩ,β

(∫
Ω

u f (u)dx
) q+1

m+1

.

Thus,

δq+1‖u‖q+1
Lq+1 ≤ CΩ,β(p + 1)−αqk−q

(∫
Ω

u f (u)dx
)αq+

q+1
m+1

.

Taking 0 < α ≤ m−q
q(m+1) such that αq +

q+1
m+1 ≤ 1 and s = αq +

q+1
m+1 − 1 ≤ 0. By (5.5) again,

δq+1‖u‖q+1
Lq+1 ≤ CΩ,β(p + 1)−αq+sk−qH(0)s

∫
Ω

u f (u)dx.

Therefore, (5.8) can be estimated by

L′(t) ≥
[
(1 − α) −

2εkq
q + 1

]
H−α(t)H′(t) + 4ε ‖ut‖

2
H

+ 4εH(t)

+ 2ε
(
1 −

2
p + 1

−CΩ,β(p + 1)
q+1
m+1−1k−qH(0)s

) ∫
Ω

u f (u)dx.

Taking k > 0 sufficiently large such that 1 − 2
p+1 − CΩ,β(p + 1)

q+1
m+1−1k−qH(0)s > 0, and for the fixed k

picking ε > 0 appropriate small such that (1 − α) − 2εkq
q+1 > 0 and

L(0) = H1−α(0) + 2ε(u0, u1)H > 0, (5.10)

for H(0) > 0. Thus, we have

L′(t) ≥γε
(
H(t) + ‖ut‖

2
H

+

∫
Ω

u f (u)dx
)
. (5.11)

On the other hand, by the Hölder inequality and the Young inequality, we have

G′(t)
1

1−α ≤2
1

1−α |(u, ut)H |
1

1−α

≤C
∥∥∥∥(−∆)−

1
2 u

∥∥∥∥ 1
1−α

∥∥∥∥(−∆)−
1
2 ut

∥∥∥∥ 1
1−α

+ C ‖u‖
1

1−α ‖ut‖
1

1−α

≤C
(
‖u‖

2
1−2α
H

+ ‖ut‖
2
H

)
≤ C

(
‖u‖

2
1−2α + ‖ut‖

2
H

)
,

for 0 < α < 1
2 .

Case 1. When ‖u‖ ≥ 1, taking α ≤ p−1
2(p+1) such that 2

1−2α ≤ p + 1, then by the Hölder inequality, we
achieve

‖u‖
2

1−2α = ‖u‖−(p+1)+ 2
1−2α ‖u‖p+1 ≤ C‖u‖p+1

Lp+1 ≤ C
∫

Ω

u f (u)dx

Case 2. When ‖u‖ ≤ 1, it follows from the energy equality (3.1), the assumption E(0) < 0 and the last
inequality of (5.5) that

1
2
‖u‖2 ≤

∫
Ω

F(u)dx ≤
1

p + 1

∫
Ω

u f (u)dx.
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Noting that 2
1−2α > 2, then

‖u‖
2

1−2α ≤ ‖u‖2 ≤
2

p + 1

∫
Ω

u f (u)dx.

Therefore, we obtain

G′(t)
1

1−α ≤ C
(∫

Ω

u f (u)dx + ‖ut‖
2
H

)
.

Consequently, by taking 0 < α ≤ min
{

m−q
q(m+1) ,

p−1
2(p+1)

}
and from the above argument we have

L
1

1−α (t) =
(
H1−α(t) + 2εG′(t)

) 1
1−α
≤ C

(
H(t) + ‖ut‖

2
H

+

∫
Ω

u f (u)dx
)
.

Combining with (5.11), it holds that

L′(t) ≥ CL(t)
1

1−α , ∀t ∈ [0,T ].

The fact (5.10) and the assumption (u0, u1)H > 0 if E(0) = 0 entail L(0) > 0 for E(0) ≤ 0. Then by a
calculation we have

L(t) ≥
[
L(0)−

α
1−α −

αC
1 − α

t
]− 1−α

α

, ∀t ∈ [0,T ],

which shows that L(t) blows up in finite time

Tmax ≤
1 − α
αC

L(0)−
α

1−α .

This completes the proof of Theorem 5.1.
The proof of Theorem 5.2 Arguing by contradiction, we suppose that Tmax = +∞. Taking d1 ∈

(E(0), γd) for 0 < γ ≤ 1
2 and setting

H̃(t) = d1 − E(t).

It follows from the energy equality (3.1) that

H̃′(t) = ‖ut‖
q+1
Lq+1 ≥ 0.

So that H̃(t) is increasing on [0,T ]. Noting that u(t) ∈ V we conclude from (5.1) that

1
2
‖u‖2H1

0
− d1 > d − d1 > 0,

which deduce that

0 < H̃(0) ≤ H̃(t) ≤
∫

Ω

F(u)dx <
1

p + 1

∫
Ω

u f (u)dx, ∀t ∈ [0,T ].

Considering the following function defined on [0,T ]

L̃(t) = H̃1−α(t) + εG′(t),
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where G(t) is defined by (5.4), 0 < α < 1 and ε > 0 are sufficiently small and given later. By the direct
calculation as (5.6), we deduce that

L̃′(t) =(1 − α)H̃−α(t)H̃′(t) + 4ε ‖ut‖
2
H
− 4εE(t) + 2ε

∫
Ω

(u f (u) − 2F(u)) dx − 2ε
∫

Ω

|ut|
q−1utudx

=(1 − α)H̃−α(t)H̃′(t) + 3ε ‖ut‖
2
H
− 2εd1 − ε‖u‖2H1

0

+ 2εH̃(t) + 2ε
∫

Ω

( f (u)u − F(u)) dx − 2ε
∫

Ω

|ut|
q−1utudx

=(1 − α)H̃−α(t)H̃′(t) + 3ε ‖ut‖
2
H
− 2εd1 − εI(u)

+ 2εH̃(t) + ε

∫
Ω

( f (u)u − 2F(u)) dx − 2ε
∫

Ω

|ut|
q−1utudx. (5.12)

It follows from Lemma 5.3 that

−2εd1 − εI(u) > −2εd1 + 2ε(d − E(0)) > 2ε(1 − 2γ)d ≥ 0

for 0 < γ ≤ 1
2 . Substituting the above inequality into (5.12), it holds

L̃′(t) ≥(1 − α)H̃−α(t)H̃′(t) + 3ε ‖ut‖
2
H

+ 2εH̃(t)

+ ε

∫
Ω

( f (u)u − 2F(u)) dx − 2ε
∫

Ω

|ut|
q−1utudx.

The remainder of the argument is analogous to that in (5.6) and so omitted. The proof Theorem 5.2 is
completed.

The proof of Theorem 5.3 Arguing by contradiction, we suppose that Tmax = +∞. For t ∈
[0,+∞), considering the function

L1(t) = G′(t) −
2q

q + 1
M

1
q E(t),

where G(t) is given by (5.4). Similar to the proof of Theorem 5.1, by the estimate (5.7) with δ−
q+1

q = M
1
q ,

we have

L′1(t) = − 2‖u‖2H1
0

+ 2 ‖ut‖
2
H

+ 2
∫

Ω

u f (u)dx − 2
∫

Ω

|ut|
q−1utudx +

2q
q + 1

M
1
q ‖ut‖

q+1
Lq+1

≥ − 2‖u‖2H1
0

+ 2 ‖ut‖
2
H

+ 2
∫

Ω

u f (u)dx −
2

(q + 1)M

∫
Ω

|u|q+1dx.

Case 1. For q ≥ p, by means of the fact (5.9), and recalling the assumption (4.3), we have

L′1(t) ≥ − 2‖u‖2H1
0

+ 2 ‖ut‖
2
H

+ 2
(
1 −

Cβ,Ω

(q + 1)M

) ∫
Ω

u f (u)dx

≥ − 2‖u‖2H1
0

+ 2 ‖ut‖
2
H

+ 2(p + 1)
(
1 −

Cβ,Ω

(q + 1)M

) ∫
Ω

F(u)dx.

Taking M > M0 =
(p+1)Cβ,Ω

(q+1)(p−1) such that (p + 1)
(
1 − Cβ,Ω

(q+1)M

)
− 2 > 0, and by using the Poincaré inequality,

we deduce

L′1(t) ≥λ1

[
(p + 1)

(
1 −

Cβ,Ω

(q + 1)M

)
− 2

]
‖u‖2

H
+

[
(p + 1)

(
1 −

Cβ,Ω

(q + 1)M

)
+ 2

]
‖ut‖

2
H
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− 2(p + 1)
(
1 −

Cβ,Ω

(q + 1)M

)
E(t)

=λ1 (K(M) − 2) ‖u‖2
H

+ (K(M) + 2) ‖ut‖
2
H
− 2K(M)E(t).

By using the Cauchy inequality,

λ1 (K(M) − 2) ‖u‖2
H

+ (K(M) + 2) ‖ut‖
2
H
≥2

√
λ1 (K(M) − 2) (K(M) + 2)(u, ut)H

= 2ω(M)(u, ut)H ,

we get

L′1(t) ≥ ω(M)
(
2(u, ut)H −

2K(M)
ω(M)

E(t)
)

(5.13)

By a simple calculation, we have

lim
M→M0

K(M)
ω(M)

= +∞, lim
M→M0

q
q + 1

M
1
q =

q
q + 1

M
1
q

0

lim
M→+∞

K(M)
ω(M)

=
p + 1√

λ1(p − 1)(p + 3)
, lim

M→+∞

q
q + 1

M
1
q = +∞.

Obviously, there exists M > M0 such that

K(M)
ω(M)

=
q

q + 1
M

1
q ,

and the estimate (5.13) becomes
L′1(t) ≥ ω(M))L1(t).

The condition (5.3) guarantees L1(0) > 0. Thus, it yields

L1(t) ≥ L1(0)eω(M)t, ∀t ≥ 0.

By the assumption that u is the global solution, we have, from Corollary 5.1, we have 0 ≤ E(t) ≤ E(0).
Thus,

G′(t) ≥ L1(0)eω(M)t, ∀t ≥ 0.

Therefore,

G(t) = ‖u‖2
H
≥ ‖u0‖

2
H

+
1

α(M)
L1(0)

(
eω(M)t − 1

)
, ∀t ≥ 0. (5.14)

Case 2. For q < p, observe that the function

g(y) =
ay

y
, a ≥ 0, a , 1, y > 0

is convex. By the properties of convex functions, we have

1
q + 1

∫
Ω

|u|q+1dx ≤
p − q

2(p − 1)

∫
Ω

|u|2dx +
q − 1

(p + 1)(p − 1)

∫
Ω

|u|p+1dx
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≤
p − q

2(p − 1)
‖u‖2 +

q − 1
(p + 1)(p − 1)

∫
Ω

u f (u)dx.

Thus, by the the Poincaré inequality we have

L′1(t) ≥ − 2‖u‖2H1
0
−

p − q
M(p − 1)

‖u‖2 + 2 ‖ut‖
2
H

+ 2
(
1 −

q − 1
M(p + 1)(p − 1)

) ∫
Ω

u f (u)dx

≥ − 2‖u‖2H1
0
−

p − q
M(p − 1)

‖u‖2 + 2 ‖ut‖
2
H

+ 2
(
p + 1 −

q − 1
M(p − 1)

) ∫
Ω

F(u)dx

≥

[
(K(M) − 2)λ1 −

p − q
M(p − 1)

]
‖u‖2

H
+ [K(M) + 2] ‖ut‖

2
H
− 2K(M)E(t),

where K(M) = p + 1 − q−1
M(p−1) > 0 and

K1(M) , (K(M) − 2)λ1 −
p − q

(p − 1)M
> 0.

By a similar argument to that in Case1, we can obtain (5.14), and in order to avoid redundancy, we
omit it here.

On the other hand, it follows from the Hölder inequality and the Poincaré inequality that

‖u‖H ≤‖u0‖H +

∫ t

0
‖uτ‖Hdτ ≤ ‖u0‖H +

(
1 +

1
√
λ1

) ∫ t

0
‖uτ‖dτ

≤‖u0‖H + C
∫ t

0
‖uτ‖Lq+1dτ ≤ ‖u0‖H + Ct

q
q+1

(∫ t

0
‖uτ‖

q+1
Lq+1dτ

) 1
q+1

≤‖u0‖H + Ct
q

q+1 E(0)
1

q+1 ,

which is a contradiction with (5.14). The proof of Theorem 5.3 is completed.

Remark 5.1. Asymptotic behavior of solutions for the problem (1.1) is also an interesting and impor-
tant work, which is the further work to be considered.
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