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Abstract: In recent years, UAV industry is developing rapidly and vigorously. However, so far, there 
is no relevant research on the fatigue detection method for UAV remote pilot, which is the core 
technology to ensure the flight safety of UAV. Aiming at this problem, a fatigue detection method for 
UAV remote pilot is proposed in this paper. Specifically, we first build a UAV operator fatigue detection 
database (OFDD). By analyzing the fatigue features in the database, we find that multiple facial 
features are highly correlated to the fatigue state, especially the head posture, and the temporal 
information is essential for distinguish between yawn and speaking in the study of UAV remote pilot 
fatigue detection. Based on these findings, a fatigue detection method for UAV remote pilots was 
proposed by efficiently locating the related facial regions, a multiple features extraction module to 
extract the eye, mouth and head posture features, and an efficient temporal fatigue decision module 
based on SVM. The experimental results show that this method not only performs well on the 
traditional driver dataset, but also achieves an accuracy rate of 97.05%; and it achieves the highest 
detection accuracy rate of 97.32% on the UAV remote pilots fatigue detection dataset OFDD. 
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1. Introduction  

Civil unmanned aerial vehicles (UAVs) are growing rapidly in the last few years, thanks to their 
agility, flexibility and superior mobility. These benefits enable civil UAVs to be applied in a wide range 
of fields, such as film and television, logistics and distribution, agriculture and plant protection, land 



443 

Electronic Research Archive  Volume 31, Issue 1, 442–466. 

surveying and mapping, energy and power line inspection.  
Up to now, the Federal Aviation Administration (FAA) of the United States has issued 280,418 

remote pilot licenses for UAVs [1] and 120,844 remote pilot licenses have been issued by the Civil 
Aviation Administration of China (CAAC) [2]. 

Fatigue has been proved to have a negative impact on people and reduce their work efficiency. N. 
Aung and P. Tewogbola [3] discussed the impact of emotional labor on the health of employees in the 
workplace, pointing out that such negative factors as burnout and fatigue will affect employees’ 
emotions, not only reducing their work efficiency but also seriously affecting their physical and mental 
health. M. Hoang et al. [4] investigated the influence of call frequency, worry, fatigue and other 
negative factors on work efficiency. Studies [5–7] have consistently demonstrate a vigilance decrement 
of remote pilots about 20–35 minutes after task initiation and the dramatic increasement of fatigue 
after 12 hours working [8]. However, so far, there is no relevant work have applied in fatigue detection 
field for UAV remote pilot. 

At present, the researches on fatigue detection are mainly concentrated in the field of traditional 
drivers. It is widely recognized that the fatigue can be detected by four different features, including 
physiological features [9], psychological features [10], speech features [11] and visual features [12]. 
Fatigue detection methods based on physiological features collect physiological signals and extract t 
electromyography signal and electrocardiograph signal through sensors [13]. Another natural idea is 
using psychological features. X. Li et al. [14] proposed a fatigue driving detection method based on 
psychoacoustic perceptual masking processing steps so as to the high fatigue sensitive frequency 
components in the speaking process can be highlighted. However, the above two kinds of methods are 
inapplicable to UAV remote pilot due to sensor intrusion [15,16]. The fatigue detection methods based 
on speech feature are only applicable to some specific scenarios with standard callouts and responses, 
and the conversation databases are limited or insufficient in quantity.  

The methods based on visual features are the last kind of fatigue detection method. Some facial 
movement features always reflect the fatigue state, such as the number of blinks increases, the blinking 
speed becomes slower, the number of nods increases, and frequent yawing. Researchers have been 
working on techniques to detect the fatigue of driver based on these visual signs and those visual 
features based methods can be divided into two parts: based on expert rules or based on deep learning. 

The first part of visual features based methods is fully rely on the rules design by experts. Those 
hand designed features and detection standards result in a slow detection speed and a low detection 
accuracy [17] for detecting driver fatigue. The second part of visual features based methods applies 
machine learning to detect driver fatigue. With the successful application of neural network 
architecture such as convolutional neural network in the field of computer vision, such as image 
classification, semantic segmentation and object detection [18]. In the field of face recognition, F. Liu 
et al. [19] comprehensively reviewed the existing deep learning based single sample face recognition 
methods, classifying them into virtual sample methods and generic learning methods, and discussed 
the advantages and the common defects of these methods. Y. Ed-doughmi et al. [20] proposed a fatigue 
detection method for drivers based on RNN; Z. Chang et al. [21] proposed a fatigue detection method 
based on Haar feature and extreme learning machine; R. Huang et al. [22] applied the functional 
calibration depth convolutional model RF-DCM to solve the problem of speaking and yawning 
distinguishing problems based on mouth feature fatigue detection; W. Gu et al. [23] employed multi-
scale pooling for eye and mouth state detection, which was then applied in hierarchical CNN based 
model for driver fatigue detection. S. Dey et al. [24] used the positions of eyes, nose and mouth to 
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extract the deep information, such as the eye aspect ratio (EAR), the mouth opening ratio and the nose 
length ratio, by a histogram of oriented gradient (HOG) with support vector machine (SVM) pretrained 
model. Z. Xiao et al. [25] proposed a method for driver fatigue detection by deep cascaded multi-task 
long short-term memory (LSTM) model. W. Liu et al. [26] proposed a driver fatigue detection model 
based on multiple facial features and two stream convolution neural network, which can combine static 
and dynamic information. L. Geng et al. [27] proposed a real time fatigue detection method based on 
morphology infrared features and deep learning, which solves the problem of detecting driver fatigue 
in an underlit scene. F. Liu et al. [28] introduced the integration of RGB-D camera and deep learning 
where Generative Adversarial Networks and multi-channel scheme are used to improve the performance, 
proving that the features extracted by depth learning method are effective for fatigue detection.  

To sum up, the current fatigue detection methods are aimed at the traditional driver, while the 
fatigue detection for UAV remote pilot, to our best knowledge, has not yet been carried out and they 
are inapplicable to UAV remote pilot fatigue detection due to the following three reasons: 1) the 
visibility of driver’s working space is invariable and is not affected seriously by the outside 
environment. However, UAV remote pilots often work outdoors, greatly affecting by the visibility. 2) 
remote pilots always need to communicate with the air traffic controller frequently, which means a 
higher speaking time as well as the speaking frequency, resulting in a confusion between “yawn” and 
“speaking” that is critical and must be determined in fatigue detection practice. 3) the robustness of 
multi-facial features. Depending on the change of head posture, common fatigue state features are 
easily lost. 

In view of the above problems, this paper proposed a fatigue detection method for UAV remote 
pilot. In brief, the main contributions of this paper are summarized as follows. 

1) We establish a UAV remote pilots fatigue detection dataset OFDD that consists of 48 videos 
with diverse condition, along with the thorough analysis and finding on our dataset. 

2) We propose a fatigue detection method for UAV remote pilots, which integrates multiple facial 
fatigue features, especially the head posture, and temporal information to solve above challenge. 

3) The experimental results show that this method not only performs well on the traditional driver 
fatigue detection dataset with accuracy rate of 97.05%, but also achieves the highest detection accuracy 
rate of 97.32% on our OFDD dataset. 

The rest of this paper is organized as follows. In Section 2, we first briefly review the related 
dataset for fatigue detection. Then, the UAV remote pilot fatigue detection dataset OFDD is established 
and analyzed. In Section 3, based on our findings from our OFDD, we propose a fatigue detection 
method for UAV remote pilot. In Section 4, experimental results are given to verify the performance 
of our proposed method. In Section 5, several conclusions are drawn based on the proposed method. 

2. Database 

At present, there are several public fatigue detection datasets available for traditional driver, such 
as YawDD yawning dataset released by the University of Ottawa [29], DriveFace driver driving scene 
facial feature dataset released by the University of California Irvine [30], CEW blinking dataset 
released by Nanjing University of Aeronautics and Astronautics [31] and NTHU-DDD driver 
sleepiness detection dataset of National Tsinghua University [32]. To the best of our knowledge, 
YawDD, DriveFace, CEW and NTHU-DDD are the most popular datasets for traditional driver fatigue 
detection, and they have been widely used in most recent driver fatigue detection work. 
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The YawDD yawning dataset is one of the earliest driver fatigue datasets. YawDD contains 322 
videos captured by on board camera and consists of both male and female drivers, with and without 
glasses/sunglasses, from different ethnicities, and in 3 different situations: 1) normal driving (no 
talking), 2) talking or singing while driving, and 3) yawning while driving under natural and changing 
lighting conditions. For each video, the length ranges from 10 to 120 s. It is mainly used to develop 
and test fatigue detection algorithms and models, and can also be used for face and mouth recognition 
and tracking.  

DriveFace dataset is a public image dataset that contains a sequence of object images when 
driving in a real scene. It consists of 606 samples, and the resolution of each sample is 640 × 480. It 
was obtained from 4 drivers (2 women and 2 men) on different days. These drivers have various face 
accessories, such as wearing glasses and beard. 

CEW blink dataset is provided by Nanjing University of Aeronautics and Astronautics. It contains 
photos of the 2423 testers with the open and closed eyes, including individual differences and various 
environments, such as lighting, blur, and glasses. 

NTHU-DDD is another driver sleepiness detection dataset established by National Tsinghua 
University. The whole dataset contains 36 subjects of different ethnicities recorded with and without 
wearing glasses under a variety of simulated driving scenarios, including normal driving, yawning, 
slow blinking, falling asleep, laughing, etc., under different illumination conditions. Further, the 90 
videos in NTHU-DDD consist of two scenarios, including drowsiness related symptoms (yawning, 
nodding, slow blink rate) and non-drowsiness related actions (talking, laughing, looking at both sides), 
are each recorded about 1.5 minutes long. 

Although these datasets have been widely used in driver fatigue detection, they are not designed 
for UAV remote pilot fatigue detection. Specifically, YawDD yawning dataset and DriveFace dataset 
are video dataset recorded by onboard cameras. The scenes captured are limited to the main driver’s 
seat, while UAV remote pilots often work outdoors and have a wide range of activities. Besides, some 
datasets are mainly designed for eye state, such as CEW. However, UAV remote pilots sometimes need 
to wear sunglasses so as to the eyes will be blocked and we cannot access the fatigue feature. 
Additionally, remote pilots always need to communicate with the air traffic controller frequently, 
resulting in a continuous mouth pose variation, which cannot be found easily in above datasets. 

As analyzed above, the existing fatigue detection datasets are designed for traditional drivers, and 
the working scenes as well as the contents of UAV remote pilots are quite different from those of 
traditional drivers. Up to now, to our best knowledge, there is no dataset for UAV remote pilot fatigue 
detection. In this work, we have established a new UAV remote pilot fatigue detection dataset (OFDD) 
to facilitate future research. The details about our dataset are discussed in the Section 2.1. 

2.1. Database establishment 

We present our OFDD dataset from aspects of category, procedure and peculiarity. 
Category. As pointed out in the literature [33], the face is a non-rigid complex structure. Fatigue 

is determined by many factors, including posture, light, facial expression, etc. Therefore, in order to 
diversify the content of our OFDD and represent the different working states for UAV remote pilot, 
we make our OFDD UAV fatigue detection dataset from the perspectives of gender, lighting, occlusion 
and action, and the keyword hierarchy of video categories is shown in Figure 1. 
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Figure 1. OFDD dataset classification by content. Classify the videos in OFDD according 
to the content. Categories are distinguished from gender, visibility, occlusion and action. 
Each category/subclass contains one video. 

In practice, we asked UAV remote pilots of different genders to wear glasses/sunglasses or not; 
then they were asked to work in three different mouth conditions: 1) keep their mouth closed (without 
speaking), 2) speaking, 3) yawning. Because the UAV remote pilots have to work in different visibility 
environment, we also recorded our video from three different visibility environment: low visibility 
(nighttime), medium visibility (foggy) and high visibility (daytime). The right part of in Figure 1 shows 
the scenes after all conditions combined, and there are 48 combined scenes with different conditions. 

Procedure. In practice, the video is collected by Hikvision E12 camera, and the camera is set in 
front of the UAV remote pilot. The detailed setting includes 640 x 480 resolution, 24-bit true color 
(RGB) and 30 frames per second. In Figure 2, it is a partial picture of our OFDD dataset, which can 
be viewed from left to right under different visibility conditions. During the experiment, each 
participant was asked to free control the UAV during nine different situations with randomly sequence: 
1) high visibility (daytime), no talking, 2) high visibility (daytime), talking, 3) high visibility (daytime), 
yawning, 4) medium visibility (fog), no talking, 5) medium visibility (fog), talking, 6) medium 
visibility (fog), yawning, 7) low visibility (nighttime), no talking, 8) low visibility (nighttime), talking 
and 9) low visibility (nighttime), yawning. Also, each participant was required to do the same things 
with normal glasses and sun glasses orderly. The combination of these completed stages helps to create 
a more realistic scene, distinguish these situations at the same time, and accurately detect the yawning 
posture. The length of each video ranges from 30 to 100 seconds, and after 48 videos were collected, 
with a total duration of 63 minutes and 14 seconds, the audio was deleted in order to reduce the volume. 

Peculiarity. Our OFDD UAV remote pilot fatigue detection dataset has all the following 
important features. 

1) Our OFDD dataset is the first UAV remote pilot fatigue detection dataset. 
2) The subjects were UAV remote pilots working in different visibility. 
3) The position of the camera and the angle of capturing the remote pilot are the same as those in 

the actual control monitoring system. 
4) The remote pilot shall be photographed under various mouth opening conditions, such as 

normal (no talking), talking or yawning conditions and etc. 
5) Face covers, such as wearing glasses and sunglasses, are considered to test the robustness of 

the algorithm. 
6) The dataset is enough to be statistically significant. 
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Figure 2. Six examples of our OFDD dataset. The situations, from top to bottom and left 
to right, are 1) male, medium visibility (fog), with glasses, without talking, 2) female, 
medium visibility (fog), without glasses, without talking, 3) male, high visibility (daytime), 
without glasses, yawning, 4) female, high visibility (daytime), with sun glasses, yawning, 5) 
male, low visibility (nighttime), with glasses, without talking, 6) female, low visibility 
(nighttime), with glasses, yawning, respectively. 

2.2. Database analysis 

In this section, we deeply mined our OFDD UAV remote pilot fatigue detection dataset, and 
further made statistics and analysis on each video. After that, we summarized the correlation and 
difference of fatigue features between traditional car driver and UAV remote pilot. 

 

Figure 3. The number of fatigue symptoms including blinks times, yawning times and 
nodding times of our OFDD dataset (Each yellow and blue scatter point represents a non-
fatigue case and a fatigue case, respectively.). 
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2.2.1. Correlation between multi-facial characteristic features and fatigue of UAV remote pilot 

First, we investigated the relationship between multiple facial features and fatigue state in our 
OFDD dataset. We have counted the number of fatigue symptoms of our OFDD dataset, as shown in 
Figure 3, including blinking times, yawning times and nodding times. We can observe from Figure 3 
that the number of fatigue symptoms of a fatigued UAV remote pilot is much greater than those of non-
fatigued, which is in agreement with traditional car driver. 

This result implies a high correlation between multiple facial features and fatigue of UAV remote 
pilot and we can further infer that the fatigue of UAV pilot can be identified by the frequency of three 
fatigue symptoms: blinking, nodding and yawning. 

 

Figure 4. The speaking frequency distribution of samples under three different visibility 
conditions over OFDD and traditional car driver fatigue dataset YawDD (Each yellow and 
blue scatter point represents one sample in YawDD and OFDD, respectively.). 

2.2.2. Difference between traditional driver fatigue dataset and UAV remote pilot fatigue dataset 

In addition, it is interesting to explore the difference between traditional driver fatigue dataset and 
UAV remote pilot fatigue dataset. We find that UAV remote pilots have two obvious differences 
compared with traditional car drivers: 1 Speaking frequency 2 Visibility condition. Specifically, we 
specially counted the speaking frequency under three different visibility conditions over OFDD and 
YawDD. As shown in Figure 4, the traditional driver is sitting in the driver seat (high visibility) and 
there is no data related to medium visibility (foggy) and low visibility (nighttime) scenes over YawDD 
dataset while UAV remote pilot need to work in all the above scenarios. Secondly, one also finds from 
Figure 4 that the speaking frequency of UAV remote pilots in OFDD dataset is significantly higher 
than that of traditional drivers in YawDD dataset. The reason may be that the UAV remote pilot always 
need to communicate with the air traffic controller frequently during working. 

However, in the traditional driver fatigue detection, the opening and closing aspect ratio of 
driver’s mouth is often used as the key element to judge fatigue, and the time sequence information do 
not be considered. This result implies the traditional fatigue detection method is not suitable for UAV 
remote pilots and temporal information should be introduced to distinguish yawning from speaking. 
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3. Proposed methods 

3.1. Framework 

For detecting fatigue state of UAV remote pilot, we develop a new DNN based detection network 
YPS network. In Figure 5, our whole detection network can be divided into face detection module, 
multi-feature extraction module, and temporal fatigue decision module. According to the findings in 
Section 2, multiple facial fatigue features is highly correlated to the fatigue state, and the temporal 
information is essential for fatigue detection of UAV remote pilots. As such, we first regard two 
contiguous frames 𝑋௧ and 𝑋௧ିଵ as the input of face detection module and the face detection module 
detects the human face through a state-of-the-art convolutional neural network. Then, the detected 
human faces serve as the input of multi-feature extraction module. After feature extraction, the 
temporal fatigue decision module integrates both the variety of different fatigue features and temporal 
information to make a final decision. 

 

Figure 5．Our YPS network architecture is used for face detection, multi-feature extraction 
and fatigue determination, following Yolov5 and PFLD (Note that the training process is 
not annotated in the figure.). 

3.2. Face contour positioning 

In face detection module, we employ the state-of-the-art detection network, YOLOv5 [34]. 
YOLOv5 has four different models including YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. We 
choose YOLOv5s as our face detection model. YOLOv5s has four parts: input, backbone, neck and 
prediction and the inference time is about 0.007 s, that is 140 frame per second. 

In practice, we respectively use the architecture of CSPDarknet53 with an SPP layer as our 
backbone, PANet as Neck. To further optimize the detection performance of human face, we follow 
the origin data enhancement framework of mosaic data enhancement and reset the anchor size to match 
the size of the network receptive field and the image scale. The details about our backbone choice and 
anchor setting are discussed in experiment. 
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3.3. Multi-feature extraction module 

We present our multi-feature extraction module from four subcomponents: face key point 
detection, eye fatigue feature, mouth fatigue feature and head posture fatigue feature. 

3.3.1. Face key point detection 

First, following most of the existing fatigue detection technologies [35–37], we find the key point 
of the face. The number of face key points of traditional face key point detection methods includes 5 
points, 68 points and 106 points, as shown in Figure 6. In practice, we choose 68 key points because 68 
key points can accurately display the local features such as human eyes and mouth of a human head, 
reduce the operation time and improve the real time performance of face recognition [38]. 

 

Figure 6. At present, there are three mainstream facial contour localization methods: (a) 
is the feature map of five key points of the face; (b) is the feature map of 106 key points 
of the face; (c) is a feature map of 68 key points of the face. 

As for the face key point detection model, we choose PFLD face key point detection model [39]. 
Besides, based on our finding in OFDD, we introduce temporal feature and propose a face key point 
detection model for UAV remote pilots. The architecture of face key point detection model is shown 
in Figure 7. 
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Figure 7. Architecture of face key point detection model for predicting 68 face key points 
with extra temporal features, following PFLD. 

The L2 loss function of key point detection module can be expressed as 

 𝐿ଶ ൌ ଵ

ௐ
∑ ∑ ሾ∑ 𝜔௡
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஼
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௡ୀଵ
ௐ
௪ୀଵ  ‖𝑑௡

௪‖ଶ
ଶ (1) 

where 𝑊  is the number of samples; N is the number of feature points; ‖𝑑௡
௠‖  is the distance 

measurement of the n-th feature point in w samples; 𝐶 is the number of different human faces (side 
face, front face, head up, head down, expression and occlusion); 𝜔௡

௖  is the given weight corresponding 
to category 𝐶; 𝐾 ൌ 3 is the three dimensions of face pose, which is namely yaw, pitch, roll angle 
(the higher the angle, the greater the weight); 𝜃 is the deviation value of predicted value in yaw angle, 
pitch angle and roll angle. 

3.3.2. Eye fatigue feature 

In order to better describe the eye state, the midpoint of key points 38 and 39, as shown in Figure 6(c), 
is used to represent the upper eyelid position of the left eye and the midpoint of key points 41 and 42 
is used to represent the lower eyelid position of the left eye. As for the right eye, we use the midpoint 
of key points 44 and 45 to represent the upper eyelid position, and use the midpoint of key points 47 
and 48 to represent the lower eyelid position. As a result, the eye state can be calculated by 
following formula. 

 𝐸 ൌ 𝑑𝑖𝑠𝑡ሺா೗ೠ,ா೗೏ሻ

ௗ௜௦௧ሺா೚೗ೠ,ா೚೗೏ሻ
൅ ௗ௜௦௧ሺாೝೠ,ாೝ೏ሻ

ௗ௜௦௧ሺா೚ೝೠ,ா೚ೝ೏ሻ
 (2) 

 𝐸௟௨ ൌ ቀ௫యఴା௫యవ

ଶ
, ௬యఴା௬యవ

ଶ
ቁ (3) 
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 𝐸௟ௗ ൌ ቀ௫రభା௫రమ
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ଶ
ቁ (4) 

 𝐸௥௨ ൌ ቀ௫రరା௫రఱ

ଶ
, ௬రరା௬రఱ

ଶ
ቁ (5) 

 𝐸௥ௗ ൌ ቀ௫రళା௫రఴ

ଶ
, ௬రళା௬రఴ

ଶ
ቁ (6) 

Among them, 𝐸௟௨，𝐸௟ௗ，𝐸௥௨ and 𝐸௥ௗ respectively represent the upper and lower eyelid positions 
of the left and right eyes, which are calculated according to the coordinates of eye key points in the 
detection process of each frame; 𝑑𝑖𝑠𝑡௢௟௨，𝑑𝑖𝑠𝑡௢௟ௗ，𝑑𝑖𝑠𝑡௢௥௨，𝑑𝑖𝑠𝑡௢௟ௗ represent the distance between 
the upper and lower eyelids in the initial state, which only needs to be calculated once in the initial 
state of the system. The value of distance is calculated by the Euclidean distance. 

3.3.3. Mouth fatigue feature 

According to the findings in Section 2, the temporal information is essential for fatigue detection 
of UAV remote pilots, especially in distinguishing yawning and speaking with mouth fatigue feature. 

There are usually three states of the mouth: normal, speaking and yawning. People yawn more 
frequently when they are tired. Therefore, the features of the mouth are also an important feature for 
judging fatigue. From the Section 2, it can be seen from the statistical data of OFDD dataset that the 
frequency of yawning can effectively reflect the fatigue state of UAV remote pilots. When the UAV 
remote pilot yawns due to fatigue, the mouth will open to the greatest extent, and the mouth will 
increase in height and decrease in width. In order to measure the fatigue state represented by these two 
indicators, the mouth aspect ratio 𝑀 is introduced, and its calculation formula is 

 𝑀 ൌ
ሺ|௬ఱభି௬ఱవ|ሻାሺ|௬ఱయି௬ఱళ|ሻ

ଶሺ௫ఱఱି௫రవሻ
 (7) 

where 𝑥ସଽ and 𝑥ହହ are the abscissa of the two key points on the left and right of the mouth; 𝑦ହଵ, 
𝑦ହଷ, 𝑦ହ଻ and 𝑦ହଽ are the ordinates of the four key points above and below the mouth. 

When determining the fatigue state according to the mouth state, we calculate the ratio between 
the origin distance between left and right corners of the mouth and the current distance between left 
and right corners of the mouth. If the ratio is greater than the given threshold value of 1.2, it is 
recognized as yawning.  

In order to eliminate the interference of speaking and other actions, it is not reliable to judge the 
fatigue state only by the mouth state of current frame, so we introduce extra temporal information of 
mouth feature from last frame to improve the accuracy of judging the fatigue state. As a result, if the 
value of M is greater than the given threshold value of 1.2 for a continuous period of time (2S), it can 
be determined that the current UAV remote pilot is in a fatigue state. 

3.3.4. Head posture fatigue feature 

People tend to nod their heads frequently or lower head their heads for a long time when they are 
in fatigue. Therefore, nodding (lower head) situation can be used as a fatigue characterization 
parameter. When people lower their heads, the distance from the midpoint of eyes to mouth in the 
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photos taken by the camera will be significantly shorter than that when people raise their heads. 
Therefore, the change of this distance is used in this work as the change of nod (lower head) posture. 

In Figure 6(c), the center position of left eye ൣ𝑥௟௘௙௧, 𝑦௟௘௙௧൧ and right eye ൣ𝑥௥௜௚௛௧, 𝑦௥௜௚௛௧൧ can be 

expressed as: 

 

𝑥௟௘௙௧ ൌ ଵ

ସ
ሺ 𝑥ଷ଼ ൅ 𝑥ଷଽ ൅ 𝑥ସଵ ൅ 𝑥ସଶሻ

𝑦௟௘௙௧ ൌ ଵ

ସ
ሺ 𝑦ଷ଼ ൅ 𝑦ଷଽ ൅ 𝑦ସଵ ൅ 𝑦ସଶሻ

𝑥௥௜௚௛௧ ൌ ଵ

ସ
ሺ xସସ ൅ 𝑥ସହ ൅ 𝑥ସ଻ ൅ 𝑥ସ଼ሻ

𝑦௥௜௚௛௧ ൌ ଵ

ସ
ሺ 𝑦ସସ ൅ 𝑦ସହ ൅ 𝑦ସ଻ ൅ 𝑦ସ଼ሻ

 (8) 

Then the linear fitting function of the center of both eyes is 

 
௫ － ௫೗೐೑೟ 

௫ೝ೔೒೓೟ － ௫೗೐೑೟
ൌ

 ௬ － ௬೗೐೑೟ 

௬ೝ೔೒೓೟ － ௬೗೐೑೟
 (9) 

where 𝑥௟௘௙௧, 𝑥௥௜௚௛௧, 𝑦௟௘௙௧ and 𝑦௥௜௚௛௧ are the horizontal and vertical coordinates of the midpoint of 
the left and right eyes respectively; 𝑥 , 𝑦  is the horizontal and vertical coordinates of the linear 
function of the two eyes. When Eq (7) is transformed into standard 𝐴𝑥 ൅ 𝐵𝑦 ൅ 𝐶 ൌ 0, the values of 
𝐴, 𝐵, 𝐶 are 

 ቐ
𝐴 ൌ 𝑦௥௜௚௛௧ െ 𝑦௟௘௙௧

𝐵 ൌ 𝑥௟௘௙௧ െ 𝑦௥௜௚௛௧

𝐶 ൌ 𝑥௥௜௚௛௧𝑦௟௘௙௧ െ 𝑥௟௘௙௧𝑦௥௜௚௛௧

 (10) 

Then, the distance from the midpoint of the two eyes of the face to the line is calculated by using 
point 52, that is, the distance d from the midpoint of the two eyes on the image to the mouth can be 
calculated by 

 𝑑 ൌ
ฬ
ಲೣఱమ శ ಳ೤ఱమ శ ಴

ඥಲమశಳమ
ฬ

௖௢௦ሺ௣௜௧௖௛భሻ
 (11) 

With reference to p80 standard [40], the threshold value of distance d is set to 0.8. In other words, 
when 𝑑 ൑ 0.8𝑑௠௔௫, it can be determined that the driver is in a low head state. If the remote pilot hold 
bow state more than 5 s, it can be directly judged that the pilot is in the fatigue state. If the remote pilot 
hold less than 5 s, the percentage of bow state can be calculated by 

 𝐻 ൌ ௧೏೚ೢ೙

்
ൈ 100% (12) 

where 𝑡ௗ௢௪௡ is the head lowering time; 𝑇 is the total time; 𝐻 is the head lowering frequency. The 
greater the value, the deeper the fatigue degree. 𝐻 can also be used to determine the fatigue state. The 
Euler angle of the remote pilot’s head posture is divided into pitch angle, yaw angle and roll angle, that 
is, the Euler angle of the remote pilot’s head rotating around the 𝑥 , 𝑦  and 𝑧  axes respectively. 
According to the research [41], the maximum angle range of the human head rotating around the 𝑋 
axis of the central axis is [-60.4°, 69.6°], the maximum range of rotating around the 𝑌 axis is [-90°, 75°], 
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and the maximum range of rotating around the 𝑍 axis is [-40.9°, 36.3°]. Thus, the abnormal angle can 
be calculated according to the remote pilot’s real time pitch, yaw and roll. In this paper, the judgment 
of abnormal angle refers to p80 standard [41] in PERCLOS, that is, when the remote pilot’s head angle 
exceeds 80% of the normal range, it is determined as abnormal angle. 

3.4. Temporal fatigue decision module 

In temporal fatigue decision module, the cross-time temporal information integration procedure 
and multi-fatigue feature fusion SVM are proposed. In particular, the cross-time temporal information 
integration procedure can be used to encode temporal information from different frames and the multi-
fatigue feature fusion SVM is developed to cumulate multi-fatigue feature and make a final decision.  

3.4.1. Cross-time temporal information integration procedure 

The fatigued state of the human face can be comprehensively expressed according to the eyes 
(open, closed), mouth (closed, talking, yawning) and head yaw angle, pitch angle and roll angle. After 
the PFLD obtains 68 key points of the face, for the video image frames collected on the continuous 
time node sequence ሺ𝑇௧, 𝑇௧ିଵሻ, each frame image can be used as a state according to the key points of 
the eye, mouth and head posture. Through 68 key points and attitude angles, the fatigue features 𝐸, 
𝑀 and 𝐻 can be obtained according to Eqs (2), (7) and (12). As for the Euler angle, a standard face 
is defined firstly (the average value is taken from a stack of frontal faces), and 11 key points are fixed 
on the main plane of the face as the reference for all training faces. Then, using the corresponding 11 
key points and the reference matrix of the estimated rotation matrix, the Euler angle is calculated by 
the rotation matrix. 

Finally, combining the above features, we can get the following feature matrix (13). 

 ൤
𝑇௧ 𝐸௧ 𝑀௧ 𝐻 𝑦𝑎𝑤௧ 𝑝𝑖𝑡𝑐ℎ௧ 𝑟𝑜𝑙𝑙௧

𝑇௧ିଵ 𝐸௧ିଵ 𝑀௧ିଵ 𝐻 𝑦𝑎𝑤௧ିଵ 𝑝𝑖𝑡𝑐ℎ௧ିଵ 𝑟𝑜𝑙𝑙௧ିଵ
൨ (13) 

where yaw, pitch and roll are the output vector of the PFLD auxiliary subnet (upper left blue box in 
Figure 7) to predict the human face posture during training.  

3.4.2. Multi-fatigue feature fusion SVM 

Support vector machine (SVM) is a highly accurate and efficient supervised machine learning 
algorithm, which is mainly used to solve the data classification problem in the field of pattern 
recognition. After cumulating the deep fatigue features, this work uses SVM algorithm to establish a 
fatigue judgment model for UAV remote pilots. 

Because the collected data of eye, mouth and head features are not regular, this kind of problem 
belongs to nonlinear classification problem. According to the time point when the characteristics 
change, the awake state and the fatigue state are distinguished. The identified fatigue characteristics of 
eyes, mouth and head are classified as fatigue state, and the classification label is 1; classify others as 
awake, and the classification label is 0. 
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4. Experimental results 

In this section, our fatigue detection method of UAV remote pilot is tested, and a comparative 
experiment is carried out on OFDD dataset and other dataset to verify the effectiveness of the algorithm. 

4.1. Settings 

In our experiment, videos in 48 subcategories of OFDD UAV remote pilot fatigue detection 
dataset were randomly divided into training set, verification set and test set. Specifically, we 
intercepted continuous frame images of the video in the 48 subcategories of OFDD dataset. In order 
to balance the data in the experiment, we only clipped the first 30 s of videos in each subcategory for 
training. The resolution of each continuous frame image is 640 × 480, the horizontal resolution is 96 
dpi, the vertical resolution is 96 dpi. In order to evaluate the performance of our proposed fatigue 
detection method for UAV remote pilots, we compared 10 other more effective fatigue detection 
methods. All experiments were conducted on a computer using Intel (R) core (TM) i7-4770. These 
include CPU@3.4 GHz, 16 GB ram and two NVIDIA GeForce GTX 3080 GPU. 

The accuracy of face region and key point marking samples in the self-collected dataset is crucial 
to the accuracy of in depth learning. A picture is intercepted every 2 frames from the videos in the 48 
subcategories in the OFDD dataset. A total of 21,860 frames of pictures are intercepted and the added 
face frame and key point positions are marked, like in Figure 8. 

 

Figure 8. The video in OFDD dataset is intercepted and annotated, and the annotation 
example of the JPG picture of 06611. 

4.2. Performance analysis of our method 

4.2.1. Improved anchor settings 

The setting of anchor is very important for face position. At present, most popular face detection 
algorithms use Anchor mechanism in the detection process, such as Face R-CNN [42], FDRNet [43], 
DSFD [44], RetinaFace [45], DFS [46], S3fd [47], FAN [48], etc. The anchor should cover the target 
to be detected, and the scale of the Anchor should match the size of the network receptive field and the 
image scale. 
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In order to ensure that human face is in the picture frame of the camera, the camera’s angle of 
view should be as wide as possible, so there will be a lot of interference information in the background. 
In order to reduce the impact of other backgrounds, this paper sets an appropriate Anchor according to 
the receptive field of the human head and the scale of the feature map. 

According to the Anchor setting method in DFS, FAN, the aspect ratio of the anchor is set to 1:1.5 
in the three higher-level face detection modules FDM1, FDM2 and FDM3, while the aspect ratio of 
the anchor is set to 1:1 in the lower-level detection modules FDM4 and FDM5. This is because the 
smaller size face is closer to a square than the large-scale front face. In addition, each point in the 
feature map of each face detection module is set with three Anchors of different sizes to improve the 
detection accuracy. The setting of Anchor size and proportion in each level of feature map in the five 
detection modules is shown in Table 1. 

Table 1. In our face detection module, we modify the anchor box size according to the 
particularity of the face. Lists the size and scale of each anchor. 

Detection module Stride Anchor (width) Aspect ratio 
FDM5 4 121,620 1:1 
FDM4 8 243,240 1:1 
FDM3 16 486,480 1:1.5 
FDM2 32 96,128,160 1:1.5 
FDM1 64 192,256,320 1:1.5 

Where the stride indicates the relationship between the size of the current feature map and the 
input image. For example, if Stride is 4, the width and height of the current feature map are 
respectively 1/4 of the width and height of the input image. The corresponding Stride of the detection 
module determines its Anchor interval in the input image. For example, the Stride in DM5 is 4 and the 
Anchor size is 12 × 12, which Indicates that there is a 12 × 12 Anchor for every 4 pixels on the input 
image, and the ratio of anchors is 3–5 times that of Stride, which ensures that anchors of different 
scales have the same density on the image, and faces of various scales can roughly match the same 
number of anchors. In the training process, if the IOU of face annotation box and Anchor is greater 
than 0.5, it is considered that the box contains positive face samples. If the IOU is less than 0.3, it 
is considered that the box contains negative background samples without faces. If the IOU is 
between 0.3–0.5, it is ignored in the training process. 

The labeled ODFF dataset is divided into training set, verification set and test set according to the 
ratio of 8:1:1. After introducing the training set data into the modified Anchor, yolov5 is trained. The 
trained model is fitted and verified with the validation set data, and then tested with the test dataset. 
The test identification results are shown in the table. 

It can be seen from Table 2 that the recognition rate of face area reaches 99.5%, which is 1.2% 
higher than the original yolov5. This experimental result shows that our improved anchor setting for 
UAV remote pilot face detection is effective. 
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Table 2. Compare the performance of face detection module with modified anchor frame 
and object detection module with yolov5s. 

Face detection 
network 

Number of face photos 
(piece) 

Number of recognized faces 
(piece)

Recognition rate 
(%) 

Yolov5s 21,860 21,488 98.3% 
Ours 21,860 21,751 99.5% 

4.2.2. Backbone effect comparison 

In this subsection, we compare the performance of different backbone in our UAV remote pilot 
fatigue detection model, including ResNest50 [49], MobileNetV2 [50], HRNetV2 [51] and 
EfficientNet [52]. Table 3 demonstrates the performance of different backbone. 

Table 3. Performance of our method with different backbone structures. 

Name Params Mean error Failure rate 
ResNest-50 122.27 M 0.046 0.038 
MobileNetV2_0.25 1.09 M 0.075 0.174 
MobileNetV2_1.00 7.28 M 0.065 0.127 
HRNetV2 545.07 M 0.066 0.125 
EfficientNet-B0 16.67 M 0.064 0.119 
EfficientNet-B1 26.37 M 0.075 0.149 
EfficientNet-B2 30.85 M 0.071 0.145 
EfficientNet-B3 42.29 M 0.099 0.136 
EfficientNet-B4 68.34 M 0.077 0.164 
EfficientNet-B5 109.34 M 0.094 0.173 
EfficientNet-B6 156.34 M 0.081 0.175 
EfficientNet-B7 244.03 M 0.081 0.196 

The performance analysis of the backbone structure in the network structure is shown above. In 
the experiment, we tested 13 different versions of the backbone structure. Here, we mainly use the 
backbone parameter size, average error rate and failure rate to evaluate the performance of the adopted 
backbone structure. It can be seen from the results in Table 3 that the average error rate and failure rate 
of resneset50 are 0.046 and 0.038 respectively, reaching the lowest point in the experiment, but the 
parameters of the backbone structure are too large, about 122.27 M; the average error rate and failure 
rate of Blaze landmark are 0.069 and 0.131 respectively. The backbone parameter size is 7.52 M, and 
the first iteration time (seconds) is 0.171. The backbone parameter size is in the third place. The average 
error rate and failure rate of HRNetV2 are 0.066 and 0.125 respectively, but the parameter is 545.07 
M. The big backbone structure is not suitable for actual deployment of UAV fatigue detection, so we 
choose efficient as the backbone of our model. 

We also tested eight EfficientNet backbone structures from efficientnet-b0 to efficient-net-b7. The 
experimental results show that with the increase of backbone size, their average error rate and failure 
rate do not decrease significantly, while the backbone structure parameters increase gradually. The 
network backbone structure with the best performance in the experiment are MobileNetV2_0.25 and 
MobileNetV2_1.00, not only are the size relatively small, but also the average error rate and failure 
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rate relatively low. For MobileNetV2_0.25 and MobileNetV2_1.00, although both are lightweight 
network backbone, but the average error rate and failure rate of MobileNetV2_1.00 are only 0.065 
and 0.124, both better than MobileNetV2_0.25. These experimental results show that the error rate of 
MobileNetV2_1.00 selected in the paper is low, the detection accuracy is higher, and the 
comprehensive detection effect is better. The model used in this paper is used to detect the fatigue of 
UAV remote pilots, which is easy to be applied in low computing power devices such as mobile devices, 
and is suitable for the fatigue state detection of UAV remote pilots in outdoor scenes. 

4.2.3. Ablation experiment of characteristic parameters 

According to the statistical analysis of OFDD UAV remote pilot fatigue detection dataset, the 
fatigue state of UAV remote pilot is highly correlated to multi-facial fatigue characteristics, including 
eye fatigue feature, mouth fatigue feature and head posture fatigue feature, and also the temporal 
information is essential for fatigue detection of UAV remote pilots. In order to further verify the 
accuracy of our proposed method, we used eye feature parameter E, mouth feature parameter M, head 
feature parameter H, pitch angle pitch, yaw angle yaw and roll angle to perform ablation experiments. 
The results are shown in Table 4. 

Table 4. Influence of different fatigue characteristic parameters on the accuracy of fatigue testing. 

Fatigue characteristic parameters Accuracy rate (%)
E + pitch + yaw + roll 93.26
M + pitch + yaw + roll 90.13
H + pitch + yaw + roll 86.76
E + M + H + pitch + yaw + roll 97.32

It can be seen from Table 4 that when the eye feature parameter E is used to train the network 
with the angle of yaw, pitch and roll, the detection accuracy is 93.26%; when the mouth feature 
parameter M and yaw, pitch and roll angles are used to train the network, the detection accuracy 
is 90.13%; when the head feature parameters H and yaw, pitch and roll angles are used to train the 
network, the detection accuracy is 86.76%. It can be seen that when a single feature parameter is used 
for training, the eye feature parameter E has the highest accuracy rate, followed by the mouth feature 
parameter M, and finally the head feature parameter H. Ablation experiments show that eye feature 
parameters, mouth feature parameters and head feature parameters are all important for UAV remote 
pilot fatigue detection. 

4.2.4. Ablation experiment of face key point detection models 

We conducted ablation experiments on face key point detection modules and compared five face 
key point detection modules: DSFD [44], RetinaFace [45], PFLD [39] (no auxiliary) and PFLD [39], 
where the first three model do not include head posture features (pitch + yaw + roll). 

It can be seen from Table 5 that although the parameters and FLOP of DSFD and RetinaFace are 
very low, the accuracy of the face detection module is about 1 and 2% lower than that of PFLD (no 
auxiliary) respectively. For a PFLD module with the auxiliary, it can not only output 68 key points of 
face coordinates through the main network but also the yaw, pitch and roll attitude Euler angles of the 
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head through its auxiliary network, which is helpful to improve the detection accuracy. As a result, 
PFLD module not only achieves the highest accuracy, but also has the smallest computational burden. 

Table 5. Accuracy and computational complexity of different face key point detection 
mode architectures. 

Module Head Posture 
Feature 

Backbone Accuracy Params 
(M) 

Flops 
(G)

DSFD × MobileNetV2_0.25 86.25 10.26 22.55
RetinaFace × MobileNetV2_0.25 87.78 8.43 18.34
PFLD (no auxiliary) × MobileNetV2_0.25 88.64 7.68 16.92
PFLD √ MobileNetV2_0.25 97.32 8.21 17.53

4.3. Evaluation on our OFDD database 

In this section, in order to verify the application particularity of UAV remote pilot fatigue 
detection and the superiority of the method proposed in this paper, we will compare the accuracy of 
our proposed method for UAV remote pilot fatigue detection with that of other traditional driver’s 
fatigue detection methods. Including the LSTMs of literature [20], the Haar + ELM of literature [21], 
the RF-DCM of literature [22], the MSP-Net of literature [23], the HOG-SVM of literature [24], the 
FDRNet of literature [25] and the GFDN of literature [26]. The results are shown in Table 5. 

Table 6. Comparison of our fatigue detection method with other fatigue detection 
methods on OFDD dataset. 

Literature Algorithm Accuracy rate (%) 
[20] LSTMs 89.23
[21] Haar + ELM 92.71
[22] RF-DCM 90.12
[23] MSP-Net 93.69
[24] HOG-SVM 94.04
[25] FDRNet 94.61
[26] GFDN 94.88
Ours Our method 97.32

In our experiments, we measure the performance of the algorithm with accuracy. As can be seen 
from Table 6, when did the experiment on our OFDD dataset, among all the comparison methods, the 
accuracy of LSTMs [20] is the lowest with 89.23% accuracy. The accuracy rates of Haar + ELM [21], 
RF-DCM [22], MSP-Net [23], HOG-SVM [24], FDRNet [25] and GFDN [26] are 92.71, 90.12, 93.69, 
94.04, 94.61 and 94.88% respectively. Among all the experimental methods, the accuracy of the fatigue 
detection method for UAV remote pilots proposed by us is the highest, reaching 97.32%, 8.09% higher 
than LSTMs, and 2.44% higher than GFDN. The experimental results show that our method can detect 
the fatigue of UAV remote pilots with state-of-the-art performance. We hold the view that the main 
reasons for the superior performance of our method in OFDD UAV remote pilot fatigue detection 
dataset are as follows: 1) Our method adjusts the size of network input and anchor box in the face 
detection part, which improves the accuracy of face detection. 2) The PFLD module is fused to extract 
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the features of eye, mouth and head features, which improves the extraction accuracy of face key 
points. 3) The temporal information is introduced to reduce the misjudgment of mouth movements 
such as speaking and improve the accuracy of fatigue detection. 

We selected some samples in OFDD dataset to analyze the detection results of different algorithms, 
shown in Figure 9 The first picture shows the normal working scene of a male remote pilot without 
glasses under daytime conditions. The second picture shows the normal working scene of a female 
remote pilot wearing sunglasses during the daytime. The third picture shows a male remote pilot 
without glasses yawning in fog. The fourth picture shows the working scene of a female remote pilot 
without glasses talking in fog. The fifth picture shows the normal working scene of a male remote pilot 
without glasses at night. The sixth picture shows the normal working scene of a female remote pilot 
wearing glasses at night. 

 

Figure 9. Screenshots of videos of 6 categories randomly selected from the test set of 
OFDD dataset (Through the six videos describing different visibility, gender, occlusion 
and status, the proposed method is compared with other fatigue detection methods.). 

It can be seen from Figure 9 that the LSTMs algorithm fails to detect in medium visibility (fog). 
We think the reason for the failure may be that LSTMs is a fatigue detection method based on human 
posture. However, in the fog scene, the remote pilots are far away from the camera and their body 
postures are not clear. Haar + ELM and RF-DCM do not perform well in the graph of yawning in foggy 
days. This can be caused by the above two algorithms are the fatigue detection methods for traditional 
drivers based on mouth features, which may mislead the decision in frequent speak scene.MSP-Net 
method successfully distinguishes yawning and speaking, but the detection effect is poor in the night 
scene. Although GFDN has successfully extracted the eye feature parameters in the scene of wearing 
glasses at night, this method fails in the scene of wearing sunglasses with serious masking. The fatigue 
detection method proposed in this paper is suitable for UAV remote pilots. In view of the frequent 
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speech of UAV remote pilots and the working scene under high visibility, it combines the eye fatigue 
feature, mouth fatigue feature and head posture fatigue feature, and achieves the best detection 
accuracy in OFDD dataset. 

4.4. Evaluation on YawDD databases 

In order to evaluate the generalization ability of our proposed method and further verify the 
effectiveness of our method. We conducted experiments on the public dataset YawDD dataset. The 
algorithm in this paper is compared with other latest fatigue detection algorithms in YawDD dataset, 
and the results are shown in Table 7. 

Table 7. Comparison of our fatigue detection method with other fatigue detection methods 
on YawDD dataset. 

Literature Algorithm Accuracy rate (%) 
[20] LSTMs 92.71
[21] Haar + ELM 93.90
[22] RF-DCM 89.42
[23] MSP-Net 95.36
[24] HOG-SVM 96.40
[25] FDRNet 98.96
[26] GFDN 97.06
Ours Our method 97.05

It can be seen from Table 7 that the detection accuracy of the method proposed in this paper is 97.15% 
in the public dataset of YawDD. The method proposed in this paper is higher than LSTMs [20], Haar 
+ ELM [21], RF-DCM [22], MSP-Net [23] and HOG-SVM [24], but lower than FDRNet [25] and 
GFDN [26]. Considering that the traditional driver’s working scene is relatively fixed and the working 
environment is relatively single, while the UAV remote pilot’s working scene is complex and the 
environment is diverse, the main research and experimental object of the method proposed in this paper 
is the UAV remote pilot. The experimental results show that the algorithm can basically meet the 
fatigue detection of traditional drivers as well as the fatigue detection of UAV remote pilots. 

The above experimental results show that, compared with the traditional fatigue driving detection 
algorithm, the fatigue detection algorithm based on deep learning can automatically extract the features 
of the input image, mine the deep information of the target image and do not rely on manual participation. 

Summing up, compared with other in depth learning models, this paper effectively improves the 
recognition ability of fatigue characteristics of the model, improves the accuracy of fatigue detection, 
has strong robustness to the complex environment of the UAV remote pilot’s working scene, and can 
basically realize the real time detection of the UAV remote pilot’s fatigue state. 

4.5. Analysis 

In addition, we additionally tested and analyzed the accuracy of different methods in different 
working scenarios. Specifically, in order to verify the application particularity of UAV remote pilot 
fatigue detection and the superiority of the method proposed in this paper, we will compare the 
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accuracy of our UAV remote pilot fatigue detection method with other traditional pilot fatigue detection 
methods in the daytime, foggy day and nighttime. 

 

Figure 10. Accuracy comparison n of LSTMs [20], Haar + ELM [21], RD-DCM [22], 
MSP-Net [23], HOG-SVM [24], FDRNet [25], GFDN [26] and our methods in daytime, 
foggy day and nighttime. 

It can be seen from Figure 10 that all algorithms have the best performance in daytime scenes, 
poor performance in nighttime scenes, and the worst performance in foggy scenes. This can be 
explained as: firstly, the lighting conditions in foggy days and at night are poor, which is not conducive 
to obtaining high precision face key points. Secondly, comparing with the nighttime, the sunglasses 
may block the eye features of remote pilots in foggy days. 

As above analysis, we can draw a conclusion that the detection accuracy can keep rising by image 
enhancement module in foggy and nighttime scenes. 

5. Conclusions 

Based on the Yolov5 network, this paper integrates the PFLD module to detect the fatigue of UAV 
operators, which is convenient for application in low computing power devices such as mobile devices. 
The whole network input and the size of the anchor frame, and temporal feature is introduced to 
propose a fatigue detection method for UAV operators. This method not only performs well in the 
traditional motor vehicle driver data and achieves a detection success rate of 97.05%. And it achieves 
the highest detection success rate of 97.32% on the UAV operator’s fatigue detection dataset OFDD. 
This method has good efficiency and accuracy, and can meet the requirements of UAV operator fatigue 
control detection based on visual features. 
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