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Abstract: Predicting the future velocity of vehicles is essential for the safety of autonomous driving 
and the Intelligent Transport System. This study investigates how the surrounding vehicles influence 
a driving vehicle. Based on the HighD dataset, a scenario that considers the current lane and the 
neighboring lanes is selected while the drivers’ visual angles and visual gap angles along with other 
parameters in the dataset are characterized as features. To predict the velocity of a driving vehicle and 
calibrate the influence of surrounding vehicles, a Transformer-based model integrating the features of 
multiple vehicles is proposed, and different features are added to the layers while constructing the 
model. Moreover, the information from previous timestamps of the vehicle state is integrated to 
estimate the duration of the influences, since the influence of an incident is not instantaneous. In our 
experiments, we find that the duration of the influence on the driving state perfectly fits the driver’s 
reaction time when maneuvers occur in the surrounding vehicles. In addition, we further quantify the 
importance of the influence on the vehicle velocity prediction based on the Random Forest and obtain 
some practical conclusions, for instance, the velocity of a vehicle is more influenced by the front 
vehicle in the left lane than that in the right lane, but is still mainly influenced by the front vehicle in 
the current lane. 
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1. Introduction  

With the significant advances in machine learning over the past few decades, autonomous driving 
has attracted tremendous attention and achieved great progress [1–3]. Autonomous vehicles (AVs) will 
free the driver’s hands, which may probably take the place of human-driven vehicles (HDVs), or at 
least capture a large market share in the future [4–6]. Moreover, AVs have the potential to alleviate 
traffic congestion, eliminate traffic accidents and reduce fuel consumption, which opens the door to 
highly efficient and sustainable transportation systems [7–9].  

Nevertheless, every newly sprouted technology has its merits and defects. Most of the existing 
AVs make decisions by sensing the current environment information, whereas the predictive capability 
is often less mature especially when the surrounding environments are complex [10,11]. Since there is 
a slight time lag between the sensing and decision-making processes, AVs can barely avoid unexpected 
situations during the time gap subject to the lack of predictive capacity [12,13]. In some other cases, 
AVs usually behave very conservatively in the presence of other traffic participants, such as 
decelerating, which also increases the likelihood of traffic accidents [14]. Additionally, vehicles in the 
current lane, neighboring lanes, as well as pedestrians and other surroundings, have a combined 
influence on the driving state, making it more challenging for AVs to make decisions [15].  

To solve these problems, we need to refer to how human drivers behave on certain occasions. It 
is known that experienced human drivers can predict the future maneuvers of the surrounding vehicles, 
and effectively handle complex road conditions. Since AVs and HDVs share the same road traffic 
system, AVs ought to understand the surrounding information and make predictions to behave the same 
as HDVs [16]. Meanwhile, velocity is the most fundamental property of a moving object, so if vehicle 
velocity prediction can be made precisely, road accidents will be greatly eliminated with the measures 
in advance. Therefore, predicting the velocity of vehicles and analyzing the importance of influence 
factors are essential for improving the safety of AVs and road traffic. 

1.1. Literature review 

The most traditional approaches to vehicle velocity prediction usually consider vehicle kinematic 
and dynamic constraints as well as environmental factors, such as yaw rate, acceleration rate, and 
friction coefficient of the road surface. Nonetheless, this approach can only achieve short-term motion 
prediction, because it cannot infer drivers’ sudden behaviors or the influence of neighboring vehicles. 

Since it is difficult for such conventional methods to predict the velocity accurately, there was a 
motivation to develop car-following models which describe the state of the vehicles over a longer 
period and reflect the relationship between neighboring vehicles in the traffic flow. There are many 
kinds of car-following models, which reproduce some traffic flow phenomena and explain some traffic 
flow characteristics [17–19]. For instance, the traffic flow can be simulated by the Safe Distance model 
represented by the research results of Gipps [20]. Azita Dabiri et al. modify the nominal Aw-Rascle 
(AR) traffic model with appropriate incident-related parameters and propose the Incident Traffic Flow 
(ITF) model [21]. However, there are still delays in current car-following models, which provides 
inaccuracy on some occasions [22,23]. Hence, more advanced methods are urgently needed to improve 
the accuracy of velocity prediction.  

Over the past few decades, deep learning has been developing rapidly in the fields of computer 
vision, natural language processing, drug design, bioinformatics, and so on [24–27]. A large number 
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of researchers have proposed deep-learning-based approaches like Linear Regression (LR), 
Feedforward Neural Network (FNN), etc. to the transportation domain [28–33]. Specifically, Liu et al. 
provide a thorough review of machine-learning-based methodologies for on-demand ride-hailing 
services [34]. Wang et al. use four typical regression models in machine learning and a dataset from 
transport infrastructure workers to explore the appropriate sample size [35]. 

Predicting the velocity of vehicles is essentially a task of time series prediction as it varies with 
time, so many scholars adopt the Recurrent Neural Network (RNN) and its variant, the Long Short-
Term Memory (LSTM) for the prediction. For instance, to characterize the driving environment, Kim 
et al. adopt the occupancy grid map and define a trajectory prediction method based on the LSTM [36]. 
Altché and de LaFortelle consider several surrounding vehicles and use LSTMs to predict the 
longitudinal velocity of the target vehicle [37]. What’s more, some studies add attention mechanisms 
to this, such as Lin et al. proposing the STA-LSTM to explain the influence of the historical trajectories 
and neighboring vehicles on the target vehicle [14].  

In addition, due to the complex nature of transport systems, vehicles and the surrounding 
environments interact with each other in a complicated way. To be specific, the staggered following 
behavior is common in the actual traffic flow, especially when the road condition is poor, driving 
discipline is not standardized, road signs are unclear, and lane widths are inconsistent [38]. There are 
some researchers building models to capture the basic rules of surrounding environments and 
demonstrate that the interdependencies of vehicles can have a slight influence on the driving state of a 
vehicle. For instance, Gindele et al. use factored states in prediction to model the mutual influence 
between vehicles [39]. Li et al. consider the influences of surrounding vehicles and use active fine lane 
management methods to solve the problem of congestion in intertwined areas [40]. The influences of 
neighboring lanes are also considered in the autonomous driving system, for instance, Yue et al. 
evaluate the influence of connected and autonomous vehicle merging algorithms on the driver behavior 
of human-driven vehicles [41]. 

To the best of our knowledge, some gaps in the existing studies on vehicle velocity prediction are 
observed and summarized as follows: (i) The majority of car-following models assume that the vehicle 
runs in the middle of a single lane, which is inconsistent with the actual situation. Some studies 
oversimplify or even ignore the influence of the vehicles in neighboring lanes, even though they have 
considered the staggered following phenomenon. (ii) Only the data from recent time intervals are used 
to predict whereas the duration of the influence is often neglected. (iii) The influence factors and the 
fundamental reasons for the accuracy in forecasting results should be further analyzed and quantified 
rather than just following the experience from other domains. These gaps are thus addressed in this 
paper. Moreover, with the challenges associated with the accelerating development of AVs and the 
Intelligent Transportation System (ITS), it is a timely topic to bridge these gaps. 

1.2. Objectives and contributions 

This paper aims to solve the vehicle velocity prediction problem by integrating the modeling 
skills of deep learning and domain knowledge in transportation. Apart from using the basic flow data 
of vehicles, we further characterize drivers’ visual angles and visual gap angles to measure the 
influences of the front vehicles. Since the performance of the LSTM that most current tasks of time 
series forecasting apply degrades when characterizing long-term influences, we introduce the 
Transformer into the velocity prediction to take advantage of its powerful parallel computing 
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capabilities. Moreover, the duration of the influence and the importance of the influence factors are 
quantified in this paper to promote a better understanding the driving behaviors. 

The contributions of this paper are three-fold. Firstly, a deep learning approach based on the 
Transformer is proposed. Herein, multiple features of the current vehicle, the front vehicle in the 
current lane, and the front vehicles in the neighboring lanes are characterized, some of which are based 
on the drivers’ visual angles and the visual gap angles. Secondly, the influence of an incident on the 
driving state often lasts for a period, which affects driving safety to a large extent. To this end, we 
evaluate the duration of the influence on the driving state by integrating the features of the vehicle 
state at the previous timestamps. Thirdly, the ability to quantify the influence of each influence factor 
on vehicle velocity prediction is of great value for subsequent studies, therefore, we analyze the 
influence factors of the velocity prediction based on the Random Forest (RF) model. 

The remainder of this paper is arranged as follows: Section 2 defines the context of the addressed 
problems. Modeling techniques are described in Section 3, including the Transformer, the LSTM, and 
the RF. In Section 4, the preprocessing of the adopted dataset is presented, and the characterized 
features are described. In Section 5, the experiments are carried out to verify the proposed deep 
learning approach along with the analysis of the results. The importance of each influence factor is 
also quantified in this section. Eventually, we make a conclusion in Section 6. 

2. Problem statement 

A common traffic dataset, the HighD dataset, is chosen for our study. The HighD dataset, 
published by the Institute of Automotive Engineering at the RWTH Aachen University in Germany, is 
a large collection of natural vehicle trajectory data on German highways. The dataset was collected 
from six different locations around Cologne, Germany, depending on the number of lanes and velocity 
limits, including vehicles and trucks. The dataset includes 11.5 hours of measurements from six 
locations and 110,000 vehicles, covering a total of 45,000 km of measured vehicle mileage. It also 
includes 5600 complete lane change records. By using advanced computer vision algorithms, the 
location error is typically less than 10 cm. It is suitable for driver model parameterization, automatic 
driving, traffic mode analysis, and other tasks. 

The interval between each timestamp of the HighD dataset is 0.04 seconds. We use 𝑥௧ to denote 
the integrated information of the current vehicle, the front vehicle in the current lane, and the front 
vehicles in the neighboring lanes at the 𝑡th timestamp, and use 𝑣௧ to describe the velocity of the 
objective vehicle at the 𝑡 th timestamp. Vehicle velocity prediction is evidently a time series 
forecasting problem as values of consecutive timestamps show temporal dependence. Thus, the 
problem addressed in this paper is to use the historical vehicle {𝑥௧ିଵ, 𝑥௧ିଶ, 𝑥௧ିଷ, ...} to predict 𝑣௧.  
Since we need to use the data in previous 𝑘 timestamps, we use a sliding window of size 𝑘 ൅ 1 (i.e., 
previous 𝑘 timestamps + label) while a step length of a 1-time slice is used to generate samples, as 
shown in Figure 1.  

With these data, one major limitation in vehicle velocity prediction is that it is difficult to assess 
the influence of surrounding vehicles on the driving state. Moreover, it’s challenging to accurately 
estimate the duration of influence and quantify the importance of the influence factors because the 
interdependency of the components in the transportation system is complicated. Thus, this paper aims 
to overcome the above-mentioned challenges through deep-learning-based approaches. 
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Figure 1. The generation process of samples. 

3. Principles of deep learning models 

In this section, the principle of the Transformer is first introduced. In contrast with the 
Transformer, the Long Short-Term Memory (LSTM) is also adopted in vehicle velocity prediction. 
Besides, to quantify the importance of the influence factors, the Random Forest (RF) is described in 
this section. 

3.1. Transformer 

The Transformer was brought to us in 2017 whose significant success in Natural Language 
Processing demonstrates its powerful modeling ability for temporal data [42]. In the Transformer, the 
entire network is composed of self-attention and Feedforward Neural Network (FNN) while traditional 
CNNs and RNNs are abandoned, and a trainable neural network can be built by stacking the 
Transformers [43]. The biggest merit of the Transformer is its powerful parallel computing capability, 
which avoids the degradation of performance when characterizing long-term effects [44]. The structure 
of the Transformer is essentially an Encoder-Decoder structure, as shown in Figure 2. 

 

Figure 2. The structure of the Encoder-Decoder. 
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In the Encoder, the data will first pass through a module called “self-attention” to get a weighted 
feature vector 𝑍, which can be described as  

𝑍 ൌ Attentionሺ𝑄, 𝐾, 𝑉ሻ ൌ softmaxሺொ௄೅

ඥௗೖ
ሻ𝑉                       (1) 

where three of the vectors 𝑄 , 𝐾 , and 𝑉  are the Query, Key, and Value, respectively. They are 
obtained by multiplying the embedding vector 𝑋 by three different weight matrices 𝑊ொ, 𝑊௄, and 
𝑊௏, all of which are 512 × 64 in size. 

After 𝑍 is obtained, it is sent to the next module of the Encoder, which is the FNN. This full 
connection has two layers whose activation functions can be expressed as  

𝐹𝐹𝑁ሺ𝑍ሻ ൌ 𝑚𝑎𝑥ሺ0, 𝑍𝑊ଵ ൅ 𝑏ଵሻ𝑊ଶ ൅ 𝑏ଶ                        (2) 

The difference between the Decoder and the Encoder is that the Decoder has an additional 
Encoder-Decoder Attention layer, which is used to calculate the weight of input and output, 
respectively. In this way, the structure of the Encoder and the Decoder in the Transformer can be 
expressed in Figure 3. 

 

Figure 3. The structure of the Encoder-Decoder in the Transformer. 

However, the calculation of 𝑄, 𝐾, and 𝑉 in the self-attention layer does not take into account 
its change trend, which may lead to abnormal data focus, as shown in Figure 4(a). Adopting the 
convolutional self-attention for improvement to calculate 𝑄  and 𝐾 , the convolution kernel larger 
than 1 is used for convolutional operation, as shown in Figure 4(b). In this way, it enables the Attention 
to focus on its local change trend and allows more relevant features to be matched. 

Building time series prediction based on the Transformer can break through many of the 
limitations of previous RNNs and LSTMs. The most obvious preponderance is that the Transformer 
can model both long-term and short-term characteristics based on a multi-head attention structure 
without much degradation when characterizing long-term effects. That is, the algorithm has a highly 
parallel computing capability, which is in line with the current hardware environment.  

Therefore, considering the advantages above, we introduce the Transformer into our study for 
vehicle velocity prediction. We put the characters of different vehicles in different layers which can be 
called independently. To this end, it is easy to train our model with different features and compare the 
performance under different circumstances. 
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(a) Using self-attention            (b) Using the convolutional self-attention 

Figure 4. The calculation of 𝑄, 𝐾, and 𝑉. 

3.2. Long Short-Term Memory 

Compared with the RNN model, the “GATE” structure incorporated in each neuron of the LSTM 
neural network is mainly used to control the information in and out of neurons to avoid the failure of 
the model. Figure 5 shows the structure expansion of the LSTM neural network. 

 

Figure 5. The structure of the LSTM. 

The “GATE” structure contains three control gates that can selectively memorize and store 
internal data information to repeatedly modify the prediction parameters. In Figure 5, 𝐶௧, 𝑥௧, and ℎ௧ 
are the status, the input value, and the output value of the neuron at time 𝑡. 𝑓௧, 𝑖௧, and 𝑜௧ are the 
forget gate, the input gate, and the output gate, respectively.  

Their respective principles are as follows: 
Firstly, the forget gate determines the amount of information remaining at the previous moment 

𝐶௧ିଵ in the current moment 𝐶௧. Its main function is to preserve the output information ℎ௧ିଵ and the 
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input information 𝑥௧, and to generate a value between 0 and 1 by using the function. The retention 
weight of the information is calculated as 

𝑓௧ ൌ 𝜎൫𝑊௙ ∙ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௙൯ (3)

where 𝑊௙  is the weight matrix of the forget gate; ሾℎ௧ିଵ, 𝑥௧ሿ  represents the recombination of 
ℎ௧ିଵand 𝑥௧ as well as the connection into a large vector; and 𝑏௙ is the bias term, a Sigmoid function 
with values between 0 and 1. 

Secondly, the input gate determines the amount of input information 𝑥௧ retained in 𝐶௧ at the 
current moment 𝑡. Its main function is to save the output information ℎ௧ିଵ and the input information 
𝑥௧. At the same time, it uses the function to generate a value between 0 and 1, and calculates the 
retention weight of information as 

𝑖௧ ൌ 𝜎ሺ𝑊௜ ∙ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௜ሻ (4)

where 𝑊௜  is the weight matrix of the input gate; ሾℎ௧ିଵ, 𝑥௧ሿ  represents the recombination of two 
vectors, ℎ௧ିଵ and 𝑥௧ ; 𝑏௜  is the bias term, a Sigmoid function with values between 0 and 1. 
Simultaneously, the unit state at the current moment can be updated as  

𝐶௧′ ൌ 𝑡𝑎𝑛ℎሺ𝑊௖ ∙ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௖ሻ (5)

𝐶௧ ൌ 𝑓௧ ∙ 𝐶௧ିଵ ൅ 𝑖௧ ∙ 𝐶௧′ (6)

where 𝑊௖  is the parameter weight matrix representing the neuron state; ሾℎ௧ିଵ, 𝑥௧ሿ  represents the 
connection between the two vectors ℎ௧ିଵ  and 𝑥௧ ; 𝑏௖  is the bias term, tanh  is the processing 
function, and the value of the generated result ranges from -1 to 1. 

The neuron state calculated according to the current moment 𝐶௧ is multiplied by the information 
of the input gate 𝑖௧. The neuron state at the previous moment 𝐶௧ିଵ is multiplied by the forget gate 
information 𝑓௧, and the new unit state 𝐶௧ at the current moment is obtained by adding them together. 
In this way, the useless information of the current moment is forgotten and some useful information 
from the previous moment is remembered. 

Thirdly, the output gate determines the amount of neuron state 𝐶௧ retained in the output value 
ℎ௧  at the current time 𝑡 . Its main function is to save the output information ℎ௧ିଵ  and input 
information 𝑥௧ . At the same time, it uses the function to generate a value between 0 and 1, and 
calculates the retention weight of information as 

𝑜௧ ൌ 𝜎ሺ𝑊௢ ∙ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௢ሻ (7)

ℎ௧ ൌ 𝑜௧ ∙ 𝑡𝑎𝑛ℎሺ𝐶௧ሻ (8)

where 𝑊௢ is the weight matrix of the forget gate; ሾℎ௧ିଵ, 𝑥௧ሿ represents the recombination of ℎ௧ିଵ 
and 𝑥௧ as well as the connection into a large vector; 𝑏௢ is the bias term; tanh is the processing 
function, and the value of the generated result ranges from -1 to 1. 

3.3. Random Forest 

The Random Forest (RF) model is a machine learning model evolved and derived from the 
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Decision Tree algorithm. Its essential principle is the combinatorial idea in mathematics, that is, it 
integrates multiple independent decision trees and learns at the same time, and uses the voting 
mechanism of majority voting to vote on samples. Although the RF model is relatively new in the field 
of machine learning in recent years, it has been developing rapidly and widely used since its introduction. 

The RF model mainly combines “Bootstrap Aggregating” and “Random Subspace Method” in 
the process of building decision tree sets. Figure 6 shows its modeling process. 

 

Figure 6. The modeling process of the RF model. 

The specific principle of the training process of the RF model is as follows:  
Firstly, set the size of the training set as 𝑁, and the RF model continuously samples the data set 

and extracts 𝑁 samples.  
Secondly, suppose that the sample has 𝑀  feature dimensions, and the RF model selects 𝑚 

features (much smaller than 𝑀) completely randomly and without repetition, and selects the optimal 
𝑚 features according to the error rate during segmentation. 

Thirdly, repeat the first two steps 𝑘 times to get 𝑘 decision trees. 
Eventually, integrate the RF classifier formed by 𝑘 decision trees, use the voting mechanism of 

the “Majority Voting” to vote on the prediction of each classification tree, and finally determine the 
prediction result of the Random Forest according to the principle of “Minority is Subordinate to Majority”. 

4. Data preprocessing and feature extraction 

To complete this study, three periods of a two-way six-lane road segment numbered “track_12”, 
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“track_13”, and “track_14” are selected. The conditions of the selected road segment are shown in 
Figure 7, where the lanes are numbered 1–6 from top to bottom, and the three lanes on each side are 
the left lane (Lane 1 and Lane 6), the middle lane (Lane 2 and Lane 5), and the right lane (Lane 3 and 
Lane 4).  

 

Figure 7. The conditions of the selected road segment. 

Four constraints, as follows, are added to the data fragments in our experiments: 
1) The vehicles selected for the study are all small cars with a velocity between 10–40 m/s. 
2) The headway of the neighboring lanes (AHW), including the Left Headway (LHW) and the 

Right Headway (RHW), should be smaller than the headway of the current lane (HW), otherwise, the 
influence of the neighboring lanes will be excluded. 

3) In 3 consecutive seconds, both HW and AHW should be less than 100 m, otherwise, it is 
deemed that there is no car-following phenomenon. 

4) The influence of other factors other than vehicles is not considered. 
To investigate the influences of the front vehicles, the selected scenarios of each lane are shown 

in Figure 8. 

      

(a) Lane 1 and Lane 6          (b) Lane 2 and Lane 5           (c) Lane 3 and Lane 4 

Figure 8. Scenarios selected in our study. 

We then process our data according to the lane limit, the preceding vehicle limit, the distance 
limit, the following duration, and the velocity limit in turn, and the amounts of the samples obtained 
for each lane of each track are shown in Table 1. 

While the car-following model is of great significance in traffic systems, we wish to design and 
introduce some features of traffic flow into our training process. We first group the rear vehicle in the 
current lane, the rear vehicle in the left neighboring lane, and the rear vehicle in the right neighboring 
lane into car-following pairs. To characterize the features of the surrounding vehicles, we refer to the 
Staggered Car-Following (SCF) model based on the visual angle proposed by Jin et al. [38]. The model 
considers the transverse separation effect and the dependency theory of the fitting field, which can 
perfectly describe some features of the front vehicle in the current lane and the front vehicles in the 
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neighboring lanes. The scenario considered in the SCF model is: the vehicle is not driving in the middle 
of the lane, and there is a lateral separation distance between the front and rear vehicles. Figure 9 shows 
the parameters of its scenario. 

Table 1. The amounts of the samples. 

Lane The amounts of the samples 
 track_12 track_13 track_14 
1 487 529 516 
2 895 907 901 
3 833 856 831 
4 551 576 579 
5 722 713 739 
6 301 282 269 

 

Figure 9. Parameters of researching scenarios. 

In Figure 9, 𝜃௡ሺ𝑡ሻ is the visual angle which is observed by the driver of the 𝑛th vehicle at time 
𝑡, 𝜑௡ሺ𝑡ሻ is the visual gap angle separating the ሺ𝑛 െ 1ሻth vehicle from the moving direction of the 𝑛th 
vehicle at time 𝑡. The expression of the SCF model is 

𝑎௡ሺ𝑡ሻ ൌ 𝛼ሼ𝑉ሾ𝜃௡ሺ𝑡ሻሿെ 𝑣௡ሺ𝑡ሻሽ െ 𝜆
1

𝑇𝑇𝐶௡ሺ𝑡ሻ
 (9)

where 𝑎௡ሺ𝑡ሻ is the acceleration of the 𝑛th vehicle at time 𝑡, ሼ𝑉ሾ𝜃௡ሺ𝑡ሻሿെ 𝑣௡ሺ𝑡ሻሽ is a combination 
of the optimal velocity function and the velocity of the 𝑛th vehicle at time 𝑡, 𝛼 is the sensitivity 
coefficient of the driver to different velocities, and 𝜆 is the sensitivity coefficient of 1/𝑇𝑇𝐶௡ሺ𝑡ሻ. 

According to the SCF model, the influence factor of 𝑎௡ሺ𝑡ሻ  consists of two components: 
𝛼ሼ𝑉ሾ𝜃௡ሺ𝑡ሻሿെ 𝑣௡ሺ𝑡ሻሽ  and 𝜆/𝑇𝑇𝐶௡ሺ𝑡ሻ , and the former is much smaller than the latter when the 
acceleration change is small. Since the road segment selected for this study is a highway with almost 
no urgent stops and starts, in our experiments, only the leading vehicle in the current lane is considered. 
Therefore, the first part of the SCF model can be omitted, and the acceleration expression can be 
simplified as 

𝑎௡ሺ𝑡ሻ ൌ െ𝜆
1

𝑇𝑇𝐶௡ሺ𝑡ሻ
 (10)

where 𝜆 is the sensitivity coefficient of 1/𝑇𝑇𝐶௡ሺ𝑡ሻ of the front vehicle. 
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For vehicles in neighboring lanes, this expression is still true. Since 1/𝑇𝑇𝐶௡ሺ𝑡ሻ is a parameter of 
the front vehicle in the current lane, 1/𝑇𝑇𝐶௟௡ሺ𝑡ሻ  and 1/𝑇𝑇𝐶௥௡ሺ𝑡ሻ  are the parameters of the front 
vehicles in the left neighboring lane and right neighboring lane, respectively. Based on this, we 
introduce 1/𝑇𝑇𝐶௡ሺ𝑡ሻ , 1/𝑇𝑇𝐶௟௡ሺ𝑡ሻ , and 1/𝑇𝑇𝐶௥௡ሺ𝑡ሻ  as features characterized by the drivers’ visual 
angles and the visual gap angles to our model. Then, we classify the features according to the relative 
position of vehicles. The four categories are the current vehicle, the front vehicle in the current lane, 
the front vehicle in the left neighboring lane, and the front vehicle in the right neighboring lane. All 
features utilized are listed in Table 2. 

Table 2. Names of parameters corresponding to the characteristics of different lanes. 

Vehicle Feature Lane 1 and Lane 6 Lane 2 and Lane 5 Lane 3 and Lane 4

The current 
vehicle 

X-position √ √ √ 
Y-position √ √ √ 
acceleration √ √ √ 

The front vehicle 
in the current lane 

headway √ √ √ 
lateral distance √ √ √ 
velocity  √ √ √ 
acceleration √ √ √ 

െ1/𝑇𝑇𝐶௡ሺ𝑡ሻ √ √ √ 

The front vehicle 
in the left 
neighboring lane 

LHW √ √  
velocity  √ √  
acceleration √ √  

െ1/𝑇𝑇𝐶௟௡ሺ𝑡ሻ √ √  

The front vehicle 
in the right 
neighboring lane 

RHW  √ √ 
velocity   √ √ 
acceleration  √ √ 

െ1/𝑇𝑇𝐶௥௡ሺ𝑡ሻ  √ √ 

5. Experiments and results 

As aforementioned, the data collected from the German highway are utilized in our experiments, 
where abnormal data were removed before constructing the final dataset, containing 11,487 samples 
in total. We choose 20% of them (2297 samples) as the testing set while the remaining samples as the 
training set. We integrate the previous 10 timestamps (i.e., {𝑥௧ିଵ , 𝑥௧ିଶ , ..., 𝑥௧ିଵ଴ }) to predict the 
velocity of the next timestamp. It should be noted that if the number of integrated timestamps is too 
small, the prediction lacks accuracy as well as significance. Moreover, the performance metric used in 
the study is the Mean Square Error (MSE) which can be expressed as  

𝑀𝑆𝐸 ൌ
1
𝑀

෍ሺŷ௜ െ 𝑦௜ሻଶ

௡

௜ୀଵ

 (11)

where 𝑦௜ represents the real traffic information; ŷ௜ is the predicted value of 𝑦௜; 𝑀 is the number of 
vehicles [45]. 
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Firstly, to investigate whether surrounding vehicles have influences on the driving state, vehicles 
in Lane 2 and Lane 5 are selected and different features are added to the layers while constructing a 
set of Transformer-based models, including the Transformer-C, Transformer-CF, and Transformer-
CFN. As a comparative experiment, we utilize the same dataset to experiment with the model of 
LSTM-CFN.  

Transformer-C indicates the model is Transformer-based and only the parameters of the Current 
vehicle are added. Transformer-CF denotes the extension of Transformer-C that further captures the 
Front vehicle in the current lane. Transformer-CFN denotes the extension of Transformer-CF that 
further considers the front vehicles in the Neighboring lanes. LSTM-CFN means the model is LSTM 
based while features among the current vehicle, the front vehicles in the current lane, and the 
neighboring lanes are all added to the model. 

Table 3 describes the hyperparameter settings, and Table 4 describes the adduced structure 
settings of our Transformer-based models. 

Table 3. Hyperparameter settings of the models. 

Hyperparameter Loss Optimizer Batch Size Epochs 
Value MSE Adam 32 100 

Table 4. The structure settings of the models. 

Layer (type) Output Shape Param #  
Input Layer (None, 16) 0 
Token_and_position_embedding (None, 16, 32) 646,400 
Transformer (None, 16, 32) 10,656 
Global_average_pooling_Id (None, 32) 0 
Dropout_2 (None, 32) 0 
Dense_2 (None, 20) 660 
Dropout_2 (None, 20) 0 
Dense_2 (None, 2) 42 

The performance of MSE in the validation set of each experiment is calculated in Table 5, while 
the obtained MSE curves are shown in Figure 10. 

Table 5. The performance of MSE in the validation set. 

Model Transformer-C Transformer-CF Transformer-CFN LSTM-CFN 
MSE 0.0612 0.0539 0.0500 0.0611 

The results indicate that the MSE of the four experiments tends to be relatively stable after 40 
epochs, and there is no over-fitting or under-fitting. It can be observed that considering only the current 
vehicle leads to lower prediction as the MSE of the Transformer-C stables at 0.0612. Moreover, the 
MSE of the Transformer-CF and Transformer-CFN is 0.0539 and 0.0500, showing a decrease of 11.93% 
and 18.30% respectively, which demonstrates that the introduction of the features from the front 
vehicles in the current lane and the neighboring lanes will improve the performance. Thus, it is proved 
that the vehicle’s driving state will be influenced by the front vehicles in the current lane as well as the 
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neighboring lanes.  

 

Figure 10. The MSE curves of the experiments. 

The Transformer-CFN and LSTM-CFN constitute a set of comparative experiments. The MSE 
is 0.0500 for the Transformer-CFN and 0.0611 for the LSTM-CFN, showing a further improvement 
by the Transformer-based model. Therefore, it can be concluded that the Transformer is not only 
feasible to predict the velocity of vehicles but also better performed in our experiments compared 
with the LSTM. 

Moreover, in the above experiments, the previous ten timestamps are used to predict the velocity 
of the next timestamp, which proves that the current vehicle, the front vehicle in the current lane, and 
the front vehicles in the neighboring lanes have a combined influence on the driving state. As is 
acknowledged, the influence on the vehicle state is not instantaneous but lasts a period, however, the 
duration of the influence is seldom calibrated in the previous study. To this end, we try to figure out 
the duration of the prominent influences on vehicle velocity using the aforementioned data and models. 

Table 6. The MSE values by integrating multiple timestamps. 

Timestamps MSE Timestamps MSE Timestamps MSE Timestamps MSE 
5 0.0517 30 0.0491 55 0.0503 80 0.0498
10 0.0500 35 0.0489 60 0.0499 85 0.0509
15 0.0503 40 0.0492 65 0.0505 90 0.0513
20 0.0499 45 0.0500 70 0.0503 95 0.0502
25 0.0496 50 0.0494 75 0.0508 100 0.0499

In the selected dataset, the interval for each timestamp is 0.04 seconds. We integrate the 
information of multiple previous timestamps in increments of five timestamps (0.2 s). Consistent with 
the previous experiments, we consider the current vehicle, the front vehicle in the current lane, the 
front vehicles in the neighboring lanes, and the mean value of MSE in each of the 100 epochs as the 
evaluation index. The values of MSE generated by integrating multiple timestamps are shown in 
Table 6 and Figure 11. 
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Figure 11. The MSE generated by integrating multiple timestamps.  

As we can see in Figure 11, the MSE first decreases as the integration timestamps increase, and 
then reaches the lowest point at about 35 timestamps (1.4 s). Then, the MSE rises to about 0.051 and 
reaches a lower peak. Finally, it remains at a relatively stable level at 0.050 or so. Based on this, it is 
reasonable to conclude that the duration of the influence on a driving vehicle is about 1.4 seconds. 
According to Brunson et al., the reaction time of drivers in normal conditions approximates a normal 
distribution, and the fitting mean of the distribution is 1.387 seconds [46]. Thus, the result can be 
perfectly explained by the fact that the influence on a driving vehicle lasts about 1.4 seconds, which is 
the driver’s reaction time when there are some maneuvers of the surrounding vehicles. 

Furthermore, the ability to quantify the influence of each influence factor on the velocity 
prediction is of great value for the safety of the transportation systems, which is another critical focus 
of our study. When using machine-learning-based models to predict the velocity, models such as the 
LightGBM, Random Forest (RF), etc. can be used to quantify the influence of each parameter on the 
predicted value [47]. Among them, the RF model adopted here quantifies the importance of each 
parameter by calculating the number of times that each feature is used in the splitting process of all 
internal decision trees. Thus, we utilize the RF model to investigate the difference in the significance 
of features of different lanes when predicting the velocity. 

We divide the dataset into three groups according to the lanes, that is, Lane 1 and Lane 6, Lane 2 
and Lane 5, and Lane 3 and Lane 4, respectively. In each group, all the corresponding features in 
Table 2 are adopted in the training process, and the importance of each feature on the vehicle velocity 
prediction is obtained in Figure 12. Then, we calculate the proportions of each sort of feature in Table 7. 

Table 7 indicates that no matter which lane the vehicle is driven in, the influence proportion of 
the front vehicle in the current lane is always bigger than that of the other lanes, which means the 
velocity of the vehicle is mainly influenced by the front vehicle in the current lane. Moreover, 
compared with the result of Lane 3 and Lane 4 (29.13%), the influence proportion of the neighboring 
lane in Lane 1 and Lane 6 is larger, which is 35.83%. Similarly, from the result of Lane 2 and Lane 5, 
the influence proportion of the left lane (29.58%) is larger than that of the right lane (20.55%), which 
indicates the velocity of vehicles is affected more by the left lane than the right lane.  
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      (a) Lane 1 and Lane 6         (b) Lane 2 and Lane 5        (c) Lane 3 and Lane 4 

Figure 12. the importance of each feature (blue-the current vehicle; pink-the front vehicle 
in the current lane; green-the front vehicle in the left neighboring lane; yellow-the front 
vehicle in the right neighboring lane). 

Table 7. The proportions of each sort of feature.  

Vehicle Lane 1 and Lane 6 Lane 2 and Lane 5 Lane 3 and Lane 4 

The current vehicle 27.31% 20.02% 28.02% 

The front vehicle in the 
current lane 

36.86% 29.85% 42.85% 

The front vehicle in the left 
neighboring lane 

35.83% 29.58% -- 

The front vehicle in the 
right neighboring lane 

-- 20.55% 29.13% 

To explain the results, on one hand, it is clear that the front vehicle in the current lane directly 
influences the speed of the rear vehicle, so it accounts for the largest proportion, for instance, when 
the front vehicle brakes, the rear vehicle must slow down to avoid the collision. On the other hand, the 
left lane is generally the fast lane, while the right lane is the slow lane. According to their habits, drivers 
usually overtake on the left, and the conditions in the right lane have little influence on relative 
behaviors. Plus, the traffic rules in some countries and regions advise drivers the overtake from the 
left, and some areas even prohibit drivers from passing on the right. Taking the above reasons into 
account, drivers will pay more attention to the left lane during driving intuitively. Therefore, we can 
safely conclude that the velocity of vehicles is influenced to a greater extent by the front vehicle in the 
left lane than that in the right lane, but is still primarily influenced by the front vehicle in the current lane.  

6. Conclusions 

This paper proposed a Transformer-based model integrating the features of previous timestamps 
to predict the velocity of vehicles. Herein, multiple features of the current vehicle, the front vehicle in 
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the current lane, and the front vehicles in the neighboring lanes are characterized, some of which are 
based on the drivers’ visual angles and the visual gap angles. Firstly, this paper confirms that the 
introduction of the features from the front vehicles in the current lane and the neighboring lanes will 
improve the performance by 11.93 and 18.30% respectively, which means the surrounding vehicles do 
have influences on the vehicle’s driving state. Secondly, a comparative experiment shows that the 
Transformer is feasible and better performed for the vehicle velocity prediction compared with the 
LSTM. Thirdly, this study indicates that the duration of the influence on the driving state calculated 
by integrating the features at the previous timestamps is about 1.4 seconds, which is exactly in line 
with the driver’s reaction time when some movements occur in the surrounding vehicles. In addition, 
with the RF model, we analyze the importance of the influence factors and conclude that the velocity 
of vehicles is more influenced by the left lane than the right lane, but is still mainly influenced by the 
current lane.  

The ability to quantify the influence of each feature on vehicle velocity prediction is of great value 
for subsequent studies. As future work, it is worthwhile to further investigate the essential causes for 
the effectiveness of a particular feature and to enable machine learning better comprehend the 
characteristics, instead of taking the algorithm entirely as a black box. Therein, we can better 
understand the human-attention-based driving behaviors to enhance the predictive ability of the AVs, 
which will greatly improve the safety of the Intelligent Transportation System. 

Acknowledgments 

This study was supported by the Key Project of National Natural Science Foundation of China 
under 52220105001 and sponsored by Tsinghua-Toyota Joint Research Fund. This study is part of a 
project that has received funding from the European Union’s Horizon 2020 research and innovation 
programme under the Marie Skłodowska-Curie grant agreement No. 101025896. 

Conflict of interest 

The authors declare there are no conflict of interest. 

References 

1. J. V. Brummelen, M. O’Brien, D. Gruyer, H. Najjaran, Autonomous vehicle perception: The 
technology of today and tomorrow, Transp. Res. Part C Emerging Technol., 89 (2018), 384–406. 
https://doi.org/10.1016/j.trc.2018.02.012 

2. K. F. Yuen, L. Cai, G. Qi, X. Wang, Factors influencing autonomous vehicle adoption: An 
application of the technology acceptance model and innovation diffusion theory, Technol. Anal. 
Strategic Manage., 33 (2021), 505–519. https://doi.org/10.1080/09537325.2020.1826423 

3. A. Talebian, S. Mishra, Predicting the adoption of connected autonomous vehicles: A new 
approach based on the theory of diffusion of innovations, Transp. Res. Part C Emerging Technol., 
95 (2018), 363–380. https://doi.org/10.1016/j.trc.2018.06.005 

4. T. Morita, S. Managi, Autonomous vehicles: Willingness to pay and the social dilemma, Transp. 
Res. Part C Emerging Technol., 119 (2020), 102748. https://doi.org/10.1016/j.trc.2020.102748 



418 

Electronic Research Archive  Volume 31, Issue 1, 401-420. 

5. X. Xu, C. K. Fan, Autonomous vehicles, risk perceptions and insurance demand: An individual 
survey in China, Transp. Res. Part A Policy Pract., 124 (2019), 549–556. 
https://doi.org/10.1016/j.tra.2018.04.009 

6. T. Stoiber, I. Schubert, R. Hoerler, P. Burger, Will consumers prefer shared and pooled-use 
autonomous vehicles? A stated choice experiment with Swiss households, Transp. Res. Part D 
Transp. Environ., 71 (2019), 265–282. https://doi.org/10.1016/j.trd.2018.12.019 

7. J. D. Ortúzar, Future transportation: Sustainability, complexity and individualization of choices, 
Commun. Transp. Res., 1 (2021), 100010. https://doi.org/10.1016/j.commtr.2021.100010 

8. A. Vahidi, A. Sciarretta, Energy saving potentials of connected and automated vehicles, Transp. 
Res. Part C Emerging Technol., 95 (2018), 822–843. https://doi.org/10.1016/j.trc.2018.09.001 

9. K. M. Gurumurthy, K. M. Kockelman, Analyzing the dynamic ride-sharing potential for shared 
autonomous vehicle fleets using cellphone data from Orlando, Florida, Comput. Environ. Urban 
Syst., 71 (2018), 177–185. https://doi.org/10.1016/j.compenvurbsys.2018.05.008 

10. M. A. Moore, P. S. Lavieri, F. F. Dias, C. R. Bhat, On investigating the potential effects of private 
autonomous vehicle use on home/work relocations and commute times, Transp. Res. Part C 
Emerging Technol., 110 (2020), 166–185. https://doi.org/10.1016/j.trc.2019.11.013 

11. Y. Xu, Z. Ye, C. Wang, Modeling commercial vehicle drivers’ acceptance of advanced driving 
assistance system (ADAS), J. Intell. Connected Veh., 2021. https://doi.org/10.1108/JICV-07-
2021-0011 

12. C. Lu, C. Liu, Ecological control strategy for cooperative autonomous vehicle in mixed traffic 
considering linear stability, J. Intell. Connected Veh., 2021. https://doi.org/10.1108/JICV-08-
2021-0012 

13. W. Xue, R. Zheng, B. Yang, et al., An adaptive model predictive approach for automated vehicle 
control in fallback procedure based on virtual vehicle scheme, J. Intell. Connected Veh., 2 (2019), 
67–77. https://doi.org/10.1108/JICV-06-2019-0007 

14. L. Lin, W. Li, H. Bi, L. Qin, Vehicle trajectory prediction using lstms with spatial-temporal 
attention mechanisms, IEEE Intell. Transp. Syst. Mag., 14 (2021), 197–208. 
https://doi.org/10.1109/MITS.2021.3049404 

15. S. Rezaei, R. Sengupta, H. Krishnan, X. Guan, R. Bhatia, Tracking the position of neighboring 
vehicles using wireless communications, Transp. Res. Part C Emerging Technol., 18 (2010), 335–
350. https://doi.org/10.1016/j.trc.2009.05.010 

16. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, Social gan: Socially acceptable trajectories 
with generative adversarial networks, in Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, (2018), 2255–2264. https://doi.org/10.48550/arXiv.1803.10892 

17. Q. Cheng, Z. Liu, Y. Lin, X. S. Zhou, An s-shaped three-parameter (S3) traffic stream model with 
consistent car following relationship, Transp. Res. Part B Methodol., 153 (2021), 246–271. 
https://doi.org/10.1016/j.trb.2021.09.004 

18. Q. Cheng, Z. Liu, J. Guo, X. Wu, R. Pendyala, B. Belezamo, et al., Estimating key traffic state 
parameters through parsimonious spatial queue models, Transp. Res. Part C Emerging Technol., 
137 (2022), 103596. https://doi.org/10.1016/j.trc.2022.103596 

19. X. S. Zhou, Q. Cheng, X. Wu, P. Li, B. Belezamo, J. Lu, et al., A meso-to-macro cross-resolution 
performance approach for connecting polynomial arrival queue model to volume-delay function 
with inflow demand-to-capacity ratio, Multimodal Transp., 1 (2022), 100017. 
https://doi.org/10.1016/j.multra.2022.100017 



419 

Electronic Research Archive  Volume 31, Issue 1, 401-420. 

20. P. G. Gipps, A behavioural car-following model for computer simulation, Transp. Res. Part B 
Methodol., 15 (1981), 105–111. https://doi.org/10.1016/0191-2615(81)90037-0 

21. A. Dabiri, B. Kulcsár, Incident indicators for freeway traffic flow models, Commun. Transp. Res., 
2 (2022), 100060. https://doi.org/10.1016/j.commtr.2022.100060 

22. V. Punzo, B. Ciuffo, M. Montanino, Can results of car-following model calibration based on 
trajectory data be trusted?, Transp. Res. Rec., 2315 (2012), 11–24. https://doi.org/10.3141/2315-02 

23. V. Papathanasopoulou, C. Antoniou, Towards data-driven car-following models, Transp. Res. 
Part C Emerging Technol., 55 (2015), 496–509. https://doi.org/10.1016/j.trc.2015.02.016 

24. T. B. Shahi, C. Xu, A. Neupane, W. Guo, Machine learning methods for precision agriculture 
with UAV imagery: a review, Electron. Res. Arch., 30 (2022), 4277–4317. 
https://doi.org/10.3934/era.2022218 

25. I. Ahmed, S. Din, G. Jeon, F. Piccialli, G. Fortino, Towards collaborative robotics in top view 
surveillance: A framework for multiple object tracking by detection using deep learning, 
IEEE/CAA J. Autom. Sin., 8 (2021), 1253–1270. https://doi.org/10.1109/JAS.2020.1003453 

26. D. G. Hong, W. H. Han, C. H. Yim, Tapping stream tracking model using computer vision and 
deep learning to minimize slag carry-over in basic oxygen furnace, Electron. Res. Arch., 30 (2022), 
4015–4037. https://doi.org/10.3934/era.2022204 

27. T. Lintonen, T. Räty, Self-learning of multivariate time series using perceptually important points, 
IEEE/CAA J. Autom. Sin., 6 (2019), 1318–1331. https://doi.org/10.1109/JAS.2019.1911777 

28. Y. Liu, C. Lyu, Y. Zhang, Z. Liu, W. Yu, X. Qu, DeepTSP: Deep traffic state prediction model 
based on large-scale empirical data, Commun. Transp. Res., 1 (2021), 100012. 
https://doi.org/10.1016/j.commtr.2021.100012 

29. P. M. Kebria, A. Khosravi, S. M. Salaken, S. Nahavandi, Deep imitation learning for autonomous 
vehicles based on convolutional neural networks, IEEE/CAA J. Autom. Sin., 7 (2019), 82–95. 
https://doi.org/10.1109/JAS.2019.1911825 

30. Y. Liu, F. Wu, C. Lyu, S. Li, J. Ye, X. Qu, Deep dispatching: A deep reinforcement learning 
approach for vehicle dispatching on online ride-hailing platform, Transp. Res. Part E Logist. 
Transp. Rev., 161 (2022), 102694. https://doi.org/10.1016/j.tre.2022.102694 

31. S. Li, Y. Liu, X. Qu, Model controlled prediction: A reciprocal alternative of model predictive 
control, IEEE/CAA J. Autom. Sin., 9 (2022), 1107–1110. 
https://doi.org/10.1109/JAS.2022.105611 

32. H. Wang, W. Yi, Y. Liu, An innovative approach of determining the sample data size for machine 
learning models: a case study on health and safety management for infrastructure workers, 
Electron. Res. Arch., 30 (2022), 3452–3462. https://doi.org/10.3934/era.2022176 

33. F. C. Pereira, F. Rodrigues, M. Ben-Akiva, Using data from the web to predict public transport 
arrivals under special events scenarios, J. Intell. Transp. Syst., 19 (2015), 273–288. 
https://doi.org/10.1080/15472450.2013.868284 

34. Y. Liu, R. Jia, J. Ye, X. Qu, How machine learning informs ride-hailing services: A survey, 
Commun. Transp. Res., 2 (2022), 100075. https://doi.org/10.1016/j.commtr.2022.100075 

35. H. Wang, W. Yi, Y. Liu, An innovative approach of determining the sample data size for machine 
learning models: a case study on health and safety management for infrastructure workers, 
Electron. Res. Arch., 30 (2022), 3452–3462. https://doi.org/10.3934/era.2022176 



420 

Electronic Research Archive  Volume 31, Issue 1, 401-420. 

36. B. D. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, J. W. Choi, Probabilistic vehicle trajectory 
prediction over occupancy grid map via recurrent neural network, in 2017 IEEE 20th 
International Conference on Intelligent Transportation Systems (ITSC), IEEE, (2017), 399–404. 
https://doi.org/10.1109/ITSC.2017.8317943 

37. F. Altché, A. L. Fortelle, An LSTM network for highway trajectory prediction, in 2017 IEEE 20th 
international conference on intelligent transportation systems (ITSC), IEEE, (2017), 353–359. 
https://doi.org/10.1109/ITSC.2017.8317913 

38. S. Jin, D. Wang, C. Xu, Z. Huang, Staggered car-following induced by lateral separation effects 
in traffic flow, Phys. Lett. A, 376 (2012), 153–157. https://doi.org/10.1016/j.physleta.2011.11.005 

39. T. Gindele, S. Brechtel, R. Dillmann, A probabilistic model for estimating driver behaviors and 
vehicle trajectories in traffic environments, in 13th International IEEE Conference on Intelligent 
Transportation Systems, IEEE, (2010), 1625–1631. https://doi.org/10.1109/ITSC.2010.5625262 

40. H. Li, J. Zhang, Z. Zhang, Z Huang, Active lane management for intelligent connected vehicles 
in weaving areas of urban expressway, J. Intell. Connected Veh., 2021. 
https://doi.org/10.1108/JICV-08-2020-0009 

41. L. Yue, M. Abdel-Aty, Z. Wang, Effects of connected and autonomous vehicle merging behavior 
on mainline human-driven vehicle, J. Intell. Connected Veh., 2021. https://doi.org/10.1108/JICV-
08-2021-0013 

42. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all 
you need, Adv. Neural Inf. Process. Syst., 30 (2017). 

43. A. Zeyer, P. Bahar, K. Irie, R. Schlüter; H. Ney, A comparison of transformer and lstm encoder 
decoder models for asr, in 2019 IEEE Automatic Speech Recognition and Understanding 
Workshop (ASRU), IEEE, (2019), 8–15. https://doi.org/10.1109/ASRU46091.2019.9004025 

44. J. Devlin, M. W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional 
transformers for language understanding, preprint, arXiv:1810.04805. 
https://doi.org/10.48550/arXiv.1810.04805 

45. L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, et al., T-gcn: A temporal graph convolutional 
network for traffic prediction, IEEE Trans. Intell. Transp. Syst., 21 (2019), 3848–3858. 
https://doi.org/10.1109/TITS.2019.2935152 

46. S. J. Brunson, E. M. Kyle, N. C. Phamdo, G. R. Preziotti, Alert algorithm development program: 
NHTSA rear-end collision alert algorithm, (2002), No. HS-809526. 

47. Y. Liu, F. Wu, C. Lyu, X. Liu, Z. Liu, Behavior2vector: Embedding users’ personalized travel 
behavior to vector, IEEE Trans. Intell. Transp. Syst., 23 (2021), 8346–8355. 
https://doi.org/10.1109/TITS.2021.3078229 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


