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Abstract: The existence of nontrivial solutions of the double phase problem with nonlinear boundary
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1. Introduction

The interest in variational problems with double phase operator is founded on their popular in
various fields of mathematical physics, such as plasma physics, biophysics and chemical reactions,
strongly anisotropic materials, Lavrentiev’s phenomenon, etc.; we refer the reader to [1–6] and refer-
ences therein.

In this paper, we study of the following double phase problem−div(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) + |u|p−2u + µ(x)|∇u|q−2u = k(x, u), in Ω,
(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) · ν = h(x, u), on ∂Ω,

(P)

where Ω ⊂ RN , N ≥ 2, is a bounded smooth domain, ν is the outer normal unit vector on ∂Ω,
−div(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) is a double phase operator,

1 < p < N, p < q < p∗,

µ ∈ L1(Ω), µ(x) ≥ 0 for a.e. x ∈ Ω,
(1.1)

k and h are Carathéodory functions on Ω ×R and ∂Ω ×R, respectively. The double phase operator has
been widely studied by many scholars; see [7–10] and references therein. Special cases of the double
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phase operator, studied extensively in the literature, occur when µ(x) ≡ 1 (the (p, q)-Laplacian) or
when µ(x) ≡ 0 (the p-Laplace differential operator). For the existence results on quasilinear equations
with the (p, q)-Laplace differential operator we refer to the papers of Baldelli et al. [11], Baldelli and
Filippucci [12], and the references therein.

In the context of double phase problems with different boundary conditions we refer to the papers
of [13–21] for the Dirichlet boundary condition, Papageorgiou et al. [22, 23] for the Robin boundary
condition, Crespo-Blanco et al. [24] and Farkas et al. [25] for the Neumann type boundary condition.

Recently, problem (P) has begun to receive more and more attention, see, for example [26, 27].
In particular, Gasinski and Winkert [26] studied the existence of three nontrivial solutions for (P) by
assuming the following conditions:

(H) k : Ω × R 7→ R and h : ∂Ω × R 7→ R are Carathéodory functions and satisfies the following
conditions:

(i) for some q < r1 < p∗ := N p
N−p , q < r2 < p∗ := (N−1)p

N−p , there exist constants c1, c2 > 0 such that

|k(x, t)| ≤ c1(1 + |t|r1−1), ∀x ∈ Ω, t ∈ R,

|h(x, t)| ≤ c2(1 + |t|r2−1), ∀x ∈ ∂Ω, t ∈ R.

(ii) k(x,t)
|t|q−2t → +∞ as |t| → +∞ uniformly in x ∈ Ω, h(x,t)

|t|q−2t → +∞ as |t| → +∞ uniformly in x ∈ ∂Ω.
(iii) k(x,t)

|t|p−2t → 0 as t → 0 uniformly in x ∈ Ω, h(x,t)
|t|p−2t → 0 as t → 0 uniformly in x ∈ ∂Ω.

(iv) the functions t 7→ k(x, t)t − qK(x, t) and t 7→ h(x, t)t − qH(x, t) are nonincreasing on R− and
nondecreasing on R+ for all x ∈ Ω and for all x ∈ ∂Ω, respectively, where K(x, t) =

∫ t

0
k(x, s)ds and

H(x, t) =
∫ t

0
h(x, s)ds.

(v) the functions k(x,t)
|t|q−1 and h(x,t)

|t|q−1 are strictly increasing on (−∞, 0) and on (0,+∞) for all x ∈ Ω and
for all x ∈ ∂Ω, respectively.

Moreover, Cui and Sun [27] studied the existence of infinitely many solutions of problem (P) when
(H)-(i), (H)-(ii), the following assumptions:

(vi) K(x,t)
|t|q → +∞ as |t| → +∞ uniformly in x ∈ Ω; H(x,t)

|t|q → +∞ as |t| → +∞ uniformly in x ∈ ∂Ω.
(vii) there exist constants c3, c4 > 0 such that

K(x, t) ≤ K(x, s) + c3, x ∈ Ω, s < t < 0 or 0 < t < s,

and
H(x, t) ≤ H(x, s) + c4, x ∈ ∂Ω, s < t < 0 or s < t < 0,

where K(x, t) := k(x, t)t − qK(x, t) and H(x, t) := h(x, t)t − qH(x, t).
(viii) k(x,−t) = −k(x, t) for (x, t) ∈ Ω × R, h(x,−t) = −h(x, t) for (x, t) ∈ ∂Ω × R.
Assumption (vii) is originally due to Miyagaki and Souto [28] in the case p = 2 and µ ≡ 0 and it

is a weaker condition than (iv) or (v). Motivated by all results mentioned above, we will further study
the existence of infinitely many nontrivial solutions of problem (P) under weaker conditions, which
improves and develops the result of [26, 27]. The basic idea of proving our main results is motivated
by the arguments used in [29]. To state our main result, we assume that k and h satisfy the following
conditions:

(h1) K(x,t)
|t|q , H(y,t)

|t|q → +∞ as |t| → ∞ uniformly in x ∈ Ω, y ∈ ∂Ω, and there is a constant r0 > 0 such
that

K(x, t),H(y, t) ≥ 0, ∀x ∈ Ω, y ∈ ∂Ω, t ∈ R, |t| ≥ r0;
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(h2) K(x, t) ≥ 0, H(x, t) ≥ 0 and for some σ > N
p and σ̂ > N−1

p−1 , there exist constants c3, c4 > 0 such
that

|K(x, t)|σ ≤ c3|t|pσK(x, t), ∀x ∈ Ω, t ∈ R, |t| ≥ r0,

|H(x, t)|σ̂ ≤ c4|t|pσ̂H(x, t), ∀x ∈ ∂Ω, t ∈ R, |t| ≥ r0;

(h3) for some ϑ > q, there exist constants θ1, θ2 > 0 such that

ϑK(x, t) ≤ tk(x, t) + θ1|t|p, ∀x ∈ Ω, t ∈ R,

ϑH(x, t) ≤ th(x, t) + θ2|t|p, ∀x ∈ ∂Ω, t ∈ R.

Now we state our main result.

Theorem 1.1. If assumptions (H)-(i), (H)-(viii), and (h1)−(h2) are satisfied, then problem (P) possesses
infinitely many nontrivial solutions.

Theorem 1.2. If the condition (h3) is used in place of (h2), then the conclusion of Theorem 1.1 holds.

Remark 1.1. It is important to point out that K(x, t) is allowed to be sign-changing under assumptions
on k of Theorems 1.1 and 1.2, which generalizes Theorem 1.2 in [27]. We use (h1) and (h2) to replace
(H)-(vi), or (H)-(ii) and (H)-(vii), which are essential in the study [27]. Another point was that the usual
assumption (iii) is removed. The main difficulty in treating problem (P) is to verify the boundedness
of the Cerami sequences. To overcome this difficulty, we use a method of decomposing regions and
combining growth conditions.

The remainder of this paper is organized as follows. In Section 2, we recall some basic facts
regarding the Musielak-Orlicz Lebesgue space and Musielak-Orlicz Sobolev space which we will use
later. In Section 3, we prove Theorems 1.1 and 1.2 by applying the fountain theorem.

2. Preliminaries

In this section, we will recall some necessary facts about the Musielak-Orlicz space. For the details
we refer to [7, 29–32] and the references therein.

Let hypothesis (1.1) be satisfied and let us define the function by

ξ(x, t) = tp + µ(x)tq, ∀(x, t) ∈ Ω × [0,+∞).

Based on this we can define the modular function given by

ρ(u) =
∫
Ω

ξ(x, |u|)dx.

Then we define the Musielak-Orlicz function space by

Lξ(Ω) =
{
u|u : Ω→ R is measurable and ρ(u) < +∞

}
,

equipped with the Luxemburg norm |u|ξ = inf{λ > 0 : ρ( u
λ
) ≤ 1}. Moreover, the corresponding Sobolev

space W1,ξ(Ω) is defined by

W1,ξ(Ω) = {u ∈ Lξ(Ω) : |∇u| ∈ Lξ(Ω)}
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with the norm ∥u∥ = |u|ξ + |∇u|ξ. With these norm, the Sobolev space W1,ξ(Ω) is separable reflexive
Banach space; see Colasuonno and Squassina [7, Proposition 2.14] for the details.

We denote by Ls(Ω) and Ls(∂Ω) the usual Lebesgue spaces endowed with the norm | · |s and | · |s,∂Ω,
respectively, for 1 ≤ s < +∞. Then from Proposition 2.15 of Colasuonno and Squassina [7], we known
that the embedding

W1,ξ(Ω) ↪→ Lγ(Ω) and W1,ξ(Ω) ↪→ Lγ
′

(∂Ω) (2.1)

are compact whenever 1 ≤ γ < p∗ and 1 ≤ γ′ < p∗, where p∗ and p∗ are given in (H) − (i). From Liu
and Dai [10, Proposition 2.1], we directly obtain that

min{|u|pξ , |u|
q
ξ} ≤ ρ(u) ≤ max{|u|pξ , |u|

q
ξ}

for all u ∈ Lξ(Ω). Analogously, if we define the modular function

ρ̂(u) = ρ(∇u) + ρ(u), ∀u ∈ W1,ξ(Ω),

then we have the following relations

min{∥u∥p, ∥u∥q} ≤ ρ̂(u) ≤ max{∥u∥p, ∥u∥q} (2.2)

for all u ∈ W1,ξ(Ω), see Gasinski and Winkert [26, Proposition 2.3].
Throughout this paper, we write E := W1,ξ(Ω) and E∗ is the dual space of E. Furthermore, ⟨·, ·⟩

denotes the dual pairing of E and its dual E∗.
Next, we consider the operator L : E → E∗ defined by

⟨L(u), v⟩ =
∫
Ω

(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) · ∇vdx +
∫
Ω

(|u|p−2u + µ(x)|u|q−2u)vdx.

From Manouni et al. [33, Proposition 2.6], we know that the operator L is bounded, continuous,
monotone and of type (S +), that is,

un ⇀ u in E and lim sup
n→+∞

⟨L(un), un − u⟩ ≤ 0,

imply un → u in E.

3. The proof of Theorems 1.1 and 1.2

In this section, we will discuss the existence of infinitely many solutions for (P) under suitable
assumptions. For this purpose, we introduce the energy functional I : E → R of problem (P) given by

I(u) =
∫
Ω

(
1
p
|∇u|p +

µ(x)
q
|∇u|q)dx +

∫
Ω

(
1
p
|u|p +

µ(x)
q
|u|q)dx

−

∫
Ω

K(x, u)dx −
∫
∂Ω

H(x, u)dσ.
(3.1)

Firstly, we can introduce the following definition of weak solutions to problem (P).
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Definition 3.1. A function u ∈ E is called a weak solution of problem (P) if∫
Ω

(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) · ∇vdx +
∫
Ω

(|u|p−2u + µ(x)|u|q−2u)vdx

=

∫
Ω

k(x, u)vdx +
∫
∂Ω

h(x, u)vdσ,
(3.2)

is satisfied for all test functions v ∈ E.
The following assertion can be found in [7, Proposition 2.1].
Lemma 3.1. Under assumption (H) − (i), the functional I ∈ C1(E,R) and

⟨I′(u), v⟩ =
∫
Ω

(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) · ∇vdx +
∫
Ω

(|u|p−2u + µ(x)|u|q−2u)vdx

−

∫
Ω

k(x, u)vdx −
∫
∂Ω

h(x, u)vdσ.
(3.3)

for all u, v ∈ E. Moreover, ψ′ : E → E∗ is weakly-strongly continuous, namely, un ⇀ u implies
ψ′(un)→ ψ′(un), where ψ(u) =

∫
Ω

K(x, u)dx −
∫
∂Ω

H(x, u)dσ.
Let us recall the definition of Cerami condition.
Definition 3.2. We say that I ∈ C1(E,R) satisfies the Cerami condition ((C)c-condition for short) if

every sequence {un} ⊂ E such that

I(un)→ c and ∥I′(un)∥E∗(1 + ∥un∥)→ 0 (3.4)

admits a strongly convergent subsequence. Such a sequence is called a Cerami sequence on the level
c, or a (C)c-sequence for short.

To state the Fountain Theorem of Bartsch, we introduce some notations. Let X be a reflexive and
separable Banach space, then there are {en} ⊂ X and {e∗n} ⊂ X∗ such that

X = span{ei : i ∈ N} and X∗ = span{e∗i : i ∈ N},

and

⟨e∗i , e j⟩ =

1, if i = j,

0, if i , j.

Let us define Xi = Rei, Yn = ⊕
n
i=1Xi and Zn = ⊕i≥nXi.

Now, let’s remember the well known Fountain Theorem.
Lemma 3.2. ( [35, Theorem 2.5]) Let I ∈ C1(X,R) be a functional satisfying the (C)c-condition

for all c > 0 and let I(−u) = I(u). If for each n ∈ N, there exist ρ̃n > δ̃n > 0 such that the following
assumptions hold:

(A1) bn := inf{I(u) : u ∈ Zn, ∥u∥ = δ̃n} → +∞ as n→ +∞;
(A2) an := max{I(u) : u ∈ Yn, ∥u∥ = ρ̃n} ≤ 0,
then I has a sequence of critical values tending to +∞.
Remark 3.1. In [34, 35], the Fountain Theorem is established under the Palais-Smale (PS ) condi-

tion. It is known that the Cerami condition is weaker than the (PS ) condition. However, the Deforma-
tion Theorem is still valid under the Cerami condition, see [36] for the details, as a consequence, we
can also get the Fountain Theorem under the Cerami condition.

Lemma 3.3. Assume that (H) − (i), (h1) and (h2) hold. If {un} ⊂ E is a (C)c sequence of I, then {un}

is bounded in E.
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Proof. Let {un} ⊂ E be a (C)c sequence of the functional I, that is, a sequence satisfying (3.4). We will
argue by contradiction. If Thus, by (h1), for n large we have

c + 1 ≥I(un) −
1
q
⟨I′(un), un⟩

=(
1
p
−

1
q

)
∫
Ω

(
|∇un|

p + |un|
p)dx +

1
q

∫
Ω

K(x, un)dx +
1
q

∫
∂Ω

H(x, un)dσ

≥
1
q

∫
Ω

K(x, un)dx +
1
q

∫
∂Ω

H(x, un)dσ.

(3.5)

It follows from (2.2) and (3.4) that

c + o(1)
||un||

p =
I(un)
||un||

p ≥
1
q

∫
Ω

[|∇un|
p + |un|

p + µ(x)(|∇un|
q + |un|

q)]dx

||un||
p

−

∫
Ω

K(x, un)
||un||

p dx −
∫
∂Ω

H(x, un)
||un||

p dσ

≥
1
q
−

∫
Ω

K(x, un)
||un||

p dx −
∫
∂Ω

H(x, un)
||un||

p dσ

≥
1
q
−

∫
Ω

|K(x, un)|
||un||

p dx −
∫
∂Ω

|H(x, un)|
||un||

p dσ

and consequently,

1
q
≤ lim sup

n→∞

( ∫
Ω

|K(x, un)|
||un||

p dx +
∫
∂Ω

|H(x, un)|
||un||

p dσ
)
. (3.6)

For 0 ≤ α < β, let Λn(α, β) = {x ∈ Ω : α ≤ |un(x)| < β} and ∂Λn(α, β) = {x ∈ ∂Ω : α ≤ |un(x)| < β}.

Let vn =
un
∥un∥

, then ∥vn∥ = 1. Set σ′ = σ
σ−1 and σ̂′ = σ̂

σ̂−1 . Then it is clear that pσ′ ∈ (1, p∗) and
pσ̂′ ∈ (1, p∗), because σ > N

p and σ̂ > N−1
p−1 . Due to (2.1), we may ssume that, up to a subsequence,

vn ⇀ v in E and

vn → v in Lpσ′(Ω), vn → v in Lpσ̂′(∂Ω),
vn(x)→ v(x) a.e. on Ω.

(3.7)

We first consider the case v = 0. It follows from (3.7) that vn → 0 in Lpσ′(Ω) and Lpσ̂′(∂Ω) and
vn(x)→ 0 a.e. on Ω. On the one hand, it follows from (H) − (i) that

∫
Λn(0,r0)

|K(x, un)|
∥un∥

p dx ≤
c1(r0 + rr1

0 )meas(Ω)
∥un∥

p → 0 as n→ +∞,∫
∂Λn(0,r0)

|H(x, un)|
∥un∥

p dσ ≤
c2(r0 + rr2

0 )meas(∂Ω)
∥un∥

p → 0 as n→ +∞.
(3.8)
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On the other hand, from Hölder inequality, (h2) and (3.5) we obtain that∫
Λn(r0,+∞)

|K(x, un)|
|un|

p |vn|
pdx

≤
( ∫
Λn(r0,+∞)

|K(x, un)|σ

|un|
pσ dx

) 1
σ
( ∫
Λn(r0,+∞)

|vn|
pσ′dx

) 1
σ′

≤
( ∫
Λn(r0,+∞)

|K(x, un)|σ

|un|
pσ dx

) 1
σ
( ∫
Ω

|vn|
pσ′dx

) 1
σ′

≤c
1
σ

3

( ∫
Λn(r0,+∞)

K(x, un)dx
) 1
σ
( ∫
Ω

|vn|
pσ′dx

) 1
σ′

≤[qc3(c + 1)]
1
σ

( ∫
Ω

|vn|
pσ′dx

) 1
σ′

→ 0, as n→ ∞

(3.9)

and ∫
∂Λn(r0,+∞)

|H(x, un)|
|un|

p |vn|
pdσ

≤
( ∫

∂Λn(r0,+∞)

|H(x, un)|σ̂

|un|
pσ̂ dσ

) 1
σ̂
( ∫

∂Λn(r0,+∞)
|vn|

pσ̂′dx
) 1
σ̂′

≤
( ∫

∂Λn(r0,+∞)

|H(x, un)|σ̂

|un|
pσ̂ dσ

) 1
σ̂
( ∫

∂Ω

|vn|
pσ̂′dσ

) 1
σ̂′

≤c
1
σ̂

4

( ∫
∂Λn(r0,+∞)

H(x, un)dx
) 1
σ̂
( ∫

∂Ω

|vn|
pσ̂′dx

) 1
σ̂′

≤[qc4(c + 1)]
1
σ̂

( ∫
∂Ω

|vn|
pσ̂′dx

) 1
σ̂′

→ 0, as n→ ∞.

(3.10)

Therefore, using (3.8)–(3.10), one has∫
Ω

|K(x, un)|
∥un∥

p dx +
∫
∂Ω

|H(x, un)|
∥un∥

p dσ

=

∫
Λn(0,r0)

|H(x, un)|
∥un∥

p dx +
∫
Λn(r0,+∞)

|K(x, un)|
∥un∥

p dx

+

∫
∂Λn(0,r0)

|H(x, un)|
∥un∥

p dσ +
∫
∂Λn(r0,+∞)

|H(x, un)|
∥un∥

p dσ

=

∫
Λn(0,r0)

|K(x, un)|
∥un∥

p dx +
∫
Λn(r0,+∞)

|K(x, un)|
|un|

p |vn|
pdx

+

∫
∂Λn(0,r0)

|H(x, un)|
∥un∥

p dσ +
∫
∂Λn(r0,+∞)

|H(x, un)|
|un|

p |vn|
pdσ

→0, as n→ ∞.

(3.11)

This contradicts (3.6).
For the second case v , 0, the set Λ, := {x ∈ Ω : v(x) , 0} and ∂Λ, := {x ∈ ∂Ω : v(x) , 0} have

positive Lebesgue measure. It is obvious that lim
n→∞
|un(x)| = +∞ for a.e. x ∈ Λ, ∪ ∂Λ,. Therefore, we

get
Λ, ⊂ Λn(r0,∞) and ∂Λ, ⊂ ∂Λn(r0,∞)
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for n large enough.
Similar to the proof of (3.8), we can show that∫

Λn(0,r0)

|K(x, un)|
∥un∥

q dx ≤
c1(r0 + rr1

0 )meas(Ω)
∥un∥

q → 0 as n→ +∞,∫
∂Λn(0,r0)

|H(x, un)|
∥un∥

q dσ ≤
c2(r0 + rr2

0 )meas(∂Ω)
∥un∥

q → 0 as n→ +∞.
(3.12)

Hence, by (H) − (i), (h1), (3.12) and Fatou’s Lemma, one has

0 = lim
n→∞

c + o(1)
||un||

q = lim
n→∞

I(un)
||un||

q

≤ lim
n→∞

[1
p

∫
Ω

[|∇un|
p + |un|

p + µ(x)(|∇un|
q + µ(x)|un|

q)]dx

||un||
q

−

∫
Ω

K(x, un)
||un||

q dx −
∫
∂Ω

H(x, un)
||un||

q dσ
]

= lim
n→∞

[1
p

∫
Ω

(|∇un|
p + µ(x)|∇un|

q + |un|
p + µ(x)|un|

q)dx

||un||
q

−

∫
Λn(0,r0)

K(x, un)
||un||

q dx −
∫
Λn(r0,+∞)

K(x, un)
||un||

q dx
]

−

∫
∂Λn(0,r0)

H(x, un)
||un||

q dσ −
∫
∂Λn(r0,+∞)

H(x, un)
||un||

q dσ
]

= lim
n→∞

[1
p

∫
Ω

[|∇un|
p + |un|

p + µ(x)(|∇un|
q + |un|

q)]dx

||un||
q

−

∫
Λn(r0,+∞)

K(x, un)
||un||

q dx −
∫
∂Λn(r0,+∞)

H(x, un)
||un||

q dσ
]

≤ lim sup
n→∞

[1
p
−

∫
Λn(r0,+∞)

K(x, un)
||un||

q dx −
∫
∂Λn(r0,+∞)

H(x, un)
||un||

q dσ
]

=
1
p
− lim inf

n→∞

[ ∫
Λn(r0,+∞)

K(x, un)
|un|

q |vn|
qdx +

∫
∂Λn(r0,+∞)

H(x, un)
||un||

q dσ
]

≤
1
p
− lim inf

n→∞

∫
Ω

K(x, un)
|un|

q χΛn(r0,+∞)(x)|vn|
qdx

− lim inf
n→∞

∫
∂Ω

H(x, un)
|un|

q χ∂Λn(r0,+∞)(x)|vn|
qdσ

≤
1
p
−

∫
Ω

lim inf
n→∞

K(x, un)
|un|

q χΛn(r0,+∞)(x)|vn|
qdx

−

∫
∂Ω

lim inf
n→∞

H(x, un)
|un|

q χ∂Λn(r0,+∞)(x)|vn|
qdσ→ −∞.

(3.13)

This is impossible. Therefore we have proved that {un} ⊂ E is bounded, which concludes the proof
of Lemma 3.3.

Lemma 3.4. Under assumption (H)− (i), (h1) and (h2) hold. Then the functional I satisfies the (C)c

condition.

Electronic Research Archive Volume 31, Issue 1, 386–400.



394

Proof. Suppose that {un} ⊂ E is a (C)c sequence of I. According to Lemma 3.3, we deduce that {un} is
bounded in E. Up to a subsequence we may assume that un ⇀ u in E. Consequently, we know from
(2.1) that un → u in Ls(Ω) and un → u in Lŝ(∂Ω), where 1 ≤ s < p∗ and 1 ≤ ŝ < p∗. By a simple
calculation, in view of (H)-(i), we have∫

Ω

|k(x, u) − k(x, un)||un − u|dx

≤

∫
Ω

(|k(x, u)| + |k(x, un)|)|un − u|dx

≤

∫
Ω

[c1(1 + |u|r1−1) + c1(1 + |un|
r1−1)]|un − u|dx

≤2c1

∫
Ω

|un − u|dx + c1

∫
Ω

|u|r1−1|un − u|dx + c1

∫
Ω

|un|
r1−1|un − u|dx

≤2c1

∫
Ω

|un − u|dx + c1

( ∫
Ω

|u|(r1−1)r′1dx
) 1

r′1
( ∫
Ω

|un − u|r1dx
) 1

r1

+ c1

( ∫
Ω

|un|
(r1−1)r′1dx

) 1
r′1
( ∫
Ω

|un − u|r1dx
) 1

r1

=2c1

∫
Ω

|un − u|dx + c1

( ∫
Ω

|un|
r1dx
) r1−1

r1
( ∫
Ω

|un − u|r1dx
) 1

r1

+ c1

( ∫
Ω

|u|r1dx
) r1−1

r1
( ∫
Ω

|un − u|r1dx
) 1

r1

=2c1|un − u|1 + c1|un|
r1−1
r1
|un − u|r1 + c1|u|r1−1

r1
|un − u|r1

→0, as n→ ∞

(3.14)

and ∫
∂Ω

|h(x, u) − h(x, un)||un − u|dσ

≤

∫
∂Ω

(|h(x, u)| + |h(x, un)|)|un − u|dσ

≤

∫
∂Ω

[c2(1 + |u|r2−1) + c2(1 + |un|
r2−1)]|un − u|dσ

≤2c2

∫
∂Ω

|un − u|dσ + c2

∫
∂Ω

|u|r2−1|un − u|dσ + c2

∫
∂Ω

|un|
r2−1|un − u|dσ

≤2c2

∫
∂Ω

|un − u|dσ + c2

( ∫
∂Ω

|u|(r2−1)r′2dσ
) 1

r′2
( ∫

∂Ω

|un − u|r2dσ
) 1

r2

+ c2

( ∫
∂Ω

|un|
(r2−1)r′2dσ

) 1
r′2
( ∫

∂Ω

|un − u|r2dσ
) 1

r2

=2c2

∫
∂Ω

|un − u|dσ + c2

( ∫
∂Ω

|u|r2dσ
) r2−1

r2
( ∫

∂Ω

|un − u|r2dσ
) 1

r2

+ c2

( ∫
∂Ω

|un|
r2dσ
) r2−1

r2
( ∫

∂Ω

|un − u|r2dσ
) 1

r2

=2c2|un − u|1,∂Ω + c2|un|
r2−1

r2 ,∂Ω
|un − u|r2 ,∂Ω

+ c2|u|
r2−1

r2 ,∂Ω
|un − u|r2 ,∂Ω

→0, as n→ ∞,

(3.15)
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where 1
ri
+ 1

r′i
= 1, i = 1, 2. Observe that

⟨L(un) − L(u), un − u⟩ = ⟨I′(un) − I′(u), un − u⟩

+

∫
Ω

(k(x, un) − k(x, u))(un − u)dx +
∫
∂Ω

(h(x, un) − h(x, u))(un − u)dσ.
(3.16)

First, it follows from (3.4) that

lim
n→∞
⟨I′(un) − I′(u), un − u⟩ = 0. (3.17)

In view of (3.14)–(3.17), we have

lim
n→∞
⟨L(un) − L(u), un − u⟩ = 0.

Consequently, using the fact that L is of type (S )+, we can conclude un → u in E. This completes
the proof.

Lemma 3.5. Under assumption (H)− (i), (h1) and (h3) hold. Then the functional I satisfies the (C)c

condition.

Proof. Like in the proof of Lemma 3.4, it need only be proved that {un} ⊂ E is bounded. To this end,
arguing by contradiction, it is assumed that ∥un∥ > 1 and ∥un∥ → ∞ as n → ∞. Denote vn =

un
∥un∥

, then
∥vn∥ = 1. Up to a subsequence, still denoted by {vn}, we may assume that there is a v ∈ E such that

vn → v in Lp(Ω) and Lp(∂Ω). (3.18)

From (2.2) and (h3), we deduce that

c + 1 ≥I(un) −
1
ϑ
⟨I′(un), un⟩

≥
ϑ − q

qϑ

∫
Ω

[|∇un|
p + |un|

p + µ(x)(|∇un|
q + |un|

q)]dx

−
θ1

ϑ

∫
Ω

|un|
pdx −

θ2

ϑ

∫
∂Ω

|un|
pdσ

≥
ϑ − q

qϑ
∥un∥

p −
θ1

ϑ
|un|

p
p −

θ2

ϑ
|un|

p
p,∂Ω.

(3.19)

It follows that
1 ≤

q
ϑ − q

lim inf
n→∞

(
θ1|vn|

p
p + θ2|vn|

p
p,∂Ω

)
. (3.20)

Hence, we obtain from (3.18) that v , 0. Similar to the process of verifying the (3.13) in the proof
of Lemma 3.3, we can yield a contradiction. Thus, {un} is bounded in E. The rest of the proof is the
same as that in Lemma 3.4.

Proof of Theorem 1.1. Let X = E. Then according to Lemma 3.4 and the oddness of k and h, we
have that I satisfies the (C)c condition and I(u) = I(−u). Next, we verify that I(u) satisfies the other
conditions of Lemma 3.2.
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First, we verify that I(u) satisfies (A1). For each s ∈ [1, p∗) and ŝ ∈ [1, p∗), taking

βs,n := sup
u∈Zn, ∥u∥=1

|u|s and β̂ŝ,n := sup
u∈Zn, ∥u∥=1

|u|ŝ,∂Ω,

one has βs,n → 0 and β̂ŝ,n → 0 as n→ +∞ (see [27, Lemma 3.4]).
Taking u ∈ Zn with ∥u∥ > 1, recalling the definitions of βs,n and β̂ŝ,n, we obtain

|u|s ≤ βs,n∥u∥, |u|ŝ,∂Ω ≤ βŝ,n∥u∥. (3.21)

Now, let us define functions π, π̂ : [0,+∞)→ R by

π(t) =
1
4q

tp − c1β
r1
r1,ntr1 , π̂(t) =

1
4q

tp − c2β̂
r2
r2,ntr2 .

A simple calculation shows that
π(δn) = π̂(δ̂n) = 0,

where δn = (4qc1β
r1
r1,n)

1
p−r1 and δ̂n = (4qc2r2β̂

r2
r2,n)

1
p−r2 . Since 1 < p < q < r1, r2, together with lim

n→+∞
βr1,n =

lim
n→+∞

β̂r2,n = 0, we obtain that

lim
n→+∞

δn = lim
n→+∞

δ̂n = +∞. (3.22)

Choosing δ̃n := min{δn, δ̂n}, we have

π(δ̃n) ≥ 0, π̂(δ̃n) ≥ 0. (3.23)

Thus, for each u ∈ Zn with ∥u∥ = δ̃n := min{δn, δ̂n}, using (H)–(i), (3.22) and (3.23), we deduce

I(u) =
∫
Ω

[
1
p

(|∇u|p + |u|p) +
µ(x)

q
(|∇u|q + |u|q)]dx

−

∫
Ω

K(x, u)dx −
∫
∂Ω

H(x, u)dσ

≥
1
q
∥u∥p − c1(

∫
Ω

|u|dx +
∫
Ω

|u|r1dx) − c2(
∫
∂Ω

|u|dx +
∫
∂Ω

|u|r2dx)

≥
1
q
∥u∥p − c1|u|1 − c1β

r1
r1,n∥u∥

r1 − c2|u|1,∂Ω − c2β̂
r2
r2,n∥u∥

r2

≥
1
q
∥u∥p − c1β

r1
r1,n∥u∥

r1 −Cc1∥u∥ − c2β̂
r2
r2,n∥u∥

r2 −Cc2∥u∥

=
1

2q
∥u∥p + (

1
4q
∥u∥p − c1β

r1
r1,n∥u∥

r1) + (
1
4q
∥u∥p − c2β̂

r2
r2,n∥u∥

r2) −Cc1∥u∥ −Cc2∥u∥

≥
1

2q
δ̃p

n −Cc1δ̃n −Cc2δ̃n

→ +∞, as n→ +∞.

(3.24)

This shows relation (A1).
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Secondly, we prove that I(u) satisfies (A2). We will argue by contradiction. Assume that (A2) is not
satisfied for some n0 ∈ N, then there exists a sequence {uk} ⊂ Yn0 such that

∥uk∥ → +∞ as k → +∞ and I(uk) ≥ 0. (3.25)

Set wk =
uk
∥uk∥

. Then ∥wk∥ = 1. Since dimYn0 < +∞, going if necessary to a subsequence, we can
assume that there exists w ∈ Yn0 \ {0} such

∥wk − w∥ → 0 and wk(x)→ w(x) a.e. x ∈ Ω as k → +∞,

and ∥w∥ = 1. Consequently, lim
k→∞
|uk(x)| = +∞ for a.e. x ∈ Θ, ∪ ∂Θ,, where Θ, := {x ∈ Ω : w(x) , 0}

and ∂Θ, := {x ∈ ∂Ω : w(x) , 0}. Therefore, we have

I(uk) =
∫
Ω

(
1
p
|∇uk|

p +
µ(x)

q
|∇uk|

q +
1
p
|uk|

p +
µ(x)

q
|uk|

q)dx −
∫
Ω

K(x, uk)dx −
∫
∂Ω

H(x, uk)dx

=

∫
Ω

(
1
p
|∇uk|

p +
µ(x)

q
|∇uk|

q +
1
p
|uk|

p +
µ(x)

q
|uk|

q)dx −
∫
Λk(0,r0)

K(x, uk)dx −
∫
Λk(r0,+∞)

K(x, uk)dx

−

∫
∂Λk(0,r0)

H(x, uk)dx −
∫
∂Λk(r0,+∞)

H(x, uk)dx

≤
1
p
∥uk∥

q +C1

∫
Λk(0,r0)

(r0 + rr1
0 )dx −

∫
Λk(r0,+∞)

K(x, uk)dx

+C2

∫
∂Λk(0,r0)

(r0 + rr2
0 )dx −

∫
∂Λk(r0,+∞)

H(x, uk)dx

≤
1
p
∥uk∥

q +C1(r0 + rr1
0 )meas(Ω) −

∫
Λk(r0,+∞)∩Θ,

K(x, uk)dx

+C2(r0 + rr2
0 )meas(∂Ω) −

∫
∂Λk(r0,+∞)∩∂Θ,

H(x, uk)dx

≤∥uk∥
q
(1

p
+

C1(r0 + rr1
0 )meas(Ω) +C2(r0 + rr2

0 )meas(∂Ω)
∥uk∥

q

−

∫
Λk(r0,+∞)∩Θ,

K(x, uk)
∥uk∥

q dx −
∫
Λk(r0,+∞)∩∂Θ,

H(x, uk)
∥uk∥

q dx
)

→−∞, as k → +∞,

we can obtain a contradiction with (3.25). Hence, all conditions of Lemma 3.2 are satisfied. Conclusion
of Theorem 1.2 is reached by Lemma 3.2.

Proof of Theorem 1.2. Obviously, I(u) = I(−u). According to Lemma 3.5, we have that I satisfies
the (C)c condition. The rest of the proof is the same as in the proof of Theorem 1.1.
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