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Abstract: This paper is concerned with a mixed p-Laplacian boundary value problem involving right-
sided and left-sided fractional derivatives and left-sided integral operators with respect to a power
function. We prove the uniqueness of positive solutions for the given problem for the cases 1 < p <2
and p > 2 by applying an efficient novel approach together with the Banach contraction mapping
principle. Estimates for Green’s functions appearing in the solution of the problem at hand are also
presented. Examples are given to illustrate the obtained results.
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1. Introduction

Fractional differential equations have received overwhelming interest in the recent years as such
equations describe the natural phenomena in a more realistic manner. The p-Laplacian operator is
found to be of great help in describing certain problems occurring in mechanics, nonlinear dynamics
and many other fields. In consequence, the study of fractional differential equations together with the
p-Laplace operator attracted the attention of many researchers. Let us now dwell on some recent works
on p-Laplacian fractional boundary value problems.

Liu et al. [1] applied the method of lower and upper solutions to study the existence of solutions for
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the following problem:

D2.(¢,(“ Dl y(x))) = f(x, y(x), “Dfy(x)),
DE.y(0) = y'(0) = 0,
y(1) = riy(p,  <Dhy(1) = nDi.y(€),

where 1 < @, < 2,r,rn 2 0, ¢, is the p-Laplacian operator, p > 1, Dj, is the Riemann-
Liouville fractional derivative, and "Dg+ is the Caputo fractional derivative, f € C([0, 1] X [0, +0c0) X
(=00, 0], [0, +00)).

In [2], Bai investigated the existence of positive solutions with the aid of the properties of Green’s

functions for the following p-Laplacian problem:

{ (¢p(DLy(x))) + f(x,y(x)) = 0,
¥(0) = Df.y(0) = 0, °Df. y(0) = “Df. y(1) = 0,

where 0 << 1,2 <a <p+2, Dy, and "Dg . are the Riemann-Liouville fractional derivative and the
Caputo fractional derivative of order a and S respectively, ¢, is the p-Laplacian operator, p > 1, and
feC(0, 1] xR, R).

Recently, Wang and Bai [3] discussed the existence and uniqueness of positive solutions to a mixed

p-Laplacian fractional boundary value problem given by

“D)_(¢,(D5.y(0))) = g(t, y(1), D y(1)),
y©0) =0, y(1)=ryu),
DS.y(1) =0, ¢,(D5.¥(0)) = ra¢,(D5. y(m)),

where ¢,(t) = |tlp‘2-t,%+é =1,pg>1,0<t<1,1<596<20<un<l10<nr<
;#’ 0<nr< ﬁ, °DY_ is the right Caputo fractional derivative and D, is the left Riemann-Liouville
fractional derivative and g € C([0, 1] x R%,R). The authors in [3] proved the existence and uniqueness
of the solutions to the above problem for 1 < p < 2. However, they did not consider the case when
p>2.

For some recent results on p-Laplacian boundary value problems, for instance, see the articles [4—
11]. The construction of the Green’s function together with its properties is a useful tool to investigate
the existence of positive solutions to the boundary value problems; for instance, see the text [12].

Let us now review some recent works dealing with a modified form of Caputo and Riemann-
Liouville fractional derivatives. In [13], the authors studied the asymptotic stability of solutions of
generalized Caputo fractional differential equations. Caputo modification of the generalized fractional
derivatives was discussed in [14]. Some existence results for a nonlocal boundary value problem in-
volving generalized Liouville-Caputo derivatives and generalized fractional integral were presented
in [15]. The authors in [16] discussed the existence of solutions for generalized fractional differential
equations and inclusions equipped with nonlocal generalized fractional integral boundary conditions.
In [17], extremal solutions for an integro-initial value problem for generalized Caputo fractional dif-
ferential equations were obtained. In [18], the authors introduced and studied a new class of coupled
systems containing both Caputo and Riemann-Liouville generalized fractional derivatives. For some
recent works on the problems involving generalized fractional derivatives, for example, see [19-24].
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Motivated by the aforementioned studies on boundary value problems involving a p-Laplacian op-
erator and modified versions of fractional derivatives, in this paper, we introduce a new class of mixed
p-Laplacian fractional boundary value problems involving right-sided and left-sided fractional deriva-
tives and left-sided integral operators with respect to a power function. In precise terms, we investigate
the following problem:

2D (¢,(° DL y(1)) = vi f(t, (1), Dy y(D) + v I, g(t, y(1),” DL y(D)),
y0) =0, y(1) =4y, (1.1)
PDLy(1) =0,  ¢,(°DLy(0)) = g, (° DL y()),

where ¢,(1) = |t11P2 - 1, %
1
1,0S11<W,0S/12<

+-=1,pg>1,0<t<1,1<a,B<2,p>0,0>0,0<pun<

1
q
W, PD{_ and ng+ respectively denote the right and left fractional
derivatives of orders a and 8 with respect to a power function (see Definitions 2.2), plg . 1s the fractional
integral operator of order { with respect to a power function (see Definitions 2.1), v;,v, € R and
f,g :10,1] x R? — R are continuous functions.
The remainder of the paper is arranged as follows. In Section 2, we present the background material
related to our problem and prove some important lemmas that play a key role in the forthcoming
analysis. Section 3 contains the main results for the given problem. In Section 4, we illustrate our

results with the aid of examples. The paper concludes with certain interesting observations.
2. Preliminaries

Let us first recall that the concept of fractional calculus of a function with respect to another function
can be found in the books by Samko et al. ( [25]; Section 18.2) and Kilbas et al. ( [26]; Section 2.5),
while an article by Erdelyi [27] contains the first study of fractional integrals with respect to a power
function (now mistakenly named after Katugampola).

Definition 2.1. The fractional integral with respect to a power function (1 [p) of order « > 0O for a
function h € X’ (a, b) for —co0 < a <t < b < oo, is defined by

pl—af ! Sp—l
I h)(t) = @) j; = Sp)l_ah(s)ds, p >0, 2.1)

where X' (a,b) denotes the space of all complex-valued Lebesgue measurable functions ¢ on (a,b)
equipped with the norm:

b
dx\1/p
ot = ([ wowrZ)” <o, ceri<pse

Note that the integral in (2.1) is called the left-sided fractional integral. Similarly, we can define right-
sided fractional integral *I;_ f as

pl —a b o1

NCOIN AN

Here we mention that the above definitions of fractional integrals follow from the integrals (2.5.1) and
(2.5.2) on pages 99-100 in the text [26] by taking the power function g(x) = x*/p.

L -h)(1t) = h(s)ds. (2.2)
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Definition 2.2. For a > 0, n = [a] + 1 and p > 0, the fractional derivatives with respect to a power
function (¥ |p), associated with the fractional integrals (2.1) and (2.2) are defined, for0 <a < x < b <
oo, by

Dy, 9)(1) = (tl"’d%)"(f)l,;’;“g)(t)
= rf:f;)(tl_pd%)n f t %g(@d& 2.3)
and
¢Dj g)t) = (—tl_p%)n("ﬂ}:"g)(t)
- %(‘“”%)n f[ b ﬁg(s)ds. (2.4)

Note that the above definitions of fractional derivatives follow from the integrals (2.5.17) and
(2.5.18) on page 101 in the text [26] by taking the power function g(x) = x”/p.

Lemma 2.1. /28] Let1 <a <2,p >0, u € X’(0,T) and *I*“u € ACg, where ACfg([a, b)) denotes

. . . 1-0 d . .
the space of absolutely continuous functions possessing the t =< -derivative defined by

d
ACla,b] = {f : [a.b] > R: ('"*—f) € AC[a, b]}.
dt
Then the general solution of the fractional differential equation” D§, u(t) = 0 is
u(t) = e 7@ + @2,
where ¢c; € R,i = 1,2. Moreover,
Iy, P Dy, u)(t) = u(t) + 1”@ 4 oy,
Lemma 2.2. For any ¢ € C([0, 1], R), the integral representation of the solution for the following non-

local p-Laplacian boundary value problem involving right-sided and left-sided fractional derivatives
with respect to a power function:

2D (¢,(° DLy (1)) = w(D),
PDLy(1) =0,  ¢,(°Dhy(0)) = Aag,(°DL.y(p),

is given by
1 1
y0) = f Gy, T f 7' Ga(r, sW(s)ds)d, (2.6)
0 0

where
AM[A =P = - - -, 0 <1< min{t,p),

olp | M- Yl — (10 — P, U<TLL,
G(t,7) = =— 2.7)
FBY | A =21 = Ay — oy, r<t<p
Ar(1 =121, max{t,u} <7< 1,
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and
AysP@ D, 0 < s < min{t, n},
ol Aa[s7@7D — 1o(sP — )1, n<s<T,
Ga(t,9) = (2.8)
T@) | pyg0@b _ (90 — 7oyt T<s<n,
A7) = Ay (s =) ] = (& = #)° !, max{r,p} <s <1,
with
B (1- Tp)afl
A= ——, = .
R BV AT

Proof. Letting —qbp(ng+ y(t)) = H(t), we decompose the mixed boundary value problem (2.5) as

{ PDYH() = —y(1),
(2.9)
H(1) =0, H(0) = 2, H(m),
and .
P - _
{ V(D) = = (H(®)), 2.10)
y0) =0, y(I) = 4yQ.
Solving the equation *D{_H (1) = —y(z), we get
HE) = r( ) f s = ) N(s)ds + co(1 — )72 + ey (1 — )7, (2.11)

where ¢y and ¢ are arbitrary constants. Using the condition H(1) = 0 in (2.11) yields ¢y = 0. Then,
inserting (2.11) with ¢y = 0 in the condition: H(0) = A,H(n), the value of ¢; is found to be

1-a

P
D(a)(1 = (1 = 7))

So (2.11) becomes

Cc =

1 1
( f P (s)ds — Ay f 7 = ) W(s)ds). (2.12)
0 n

- 1
H(r) = —I’?(a) f 71(s? = 9)*Ny(s)ds

pl—a(l _ tp)a'—l
L(a)(1 = (1 — 7))

1
f s*TLGo(t, (s)ds, (2.13)
0

+

1 1
([ wuwas=a [ ¢ -pr-uas)
0 n

where G;(t, s) is given in (2.8). Applying the integral operator ”Ig . on both sides of the differential
equation in (2.10), we have

i) = F(ﬁ) f s = Y g (H(s))ds + dot* PP + dy P, (2.14)
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where dj and d; are arbitrary constants.
Using (2.14) in the boundary conditions of (2.10), we obtain dy = 0 and

_ p'r o -
a= F(ﬁ)(l—/llﬂp(ﬁ—l))(fo ST =) g (H(s))dss

-4 f " SN = ) py(H(s))ds)- (2.15)
0

Thus, (2.14) takes the form:

1
) = fsp_lG1(t,S)¢q(7{(S))ds,
0

where G (¢, s) and H(.) are respectively given in (2.7) and (2.13). O

Lemma 2.3. The functions G(t, s) and G(t, s) given in (2.7) and (2.8) respectively, are continuous
and possess the following properties:

() Gy, s)>0,Gat,s)>0,Vt,s€(0,1);
1B p(B-1) ¢p (] — gp)B-1 1B pB-1) (1 — gr)B-1
(i) Qp il = Y <Gi(rs) < b ( Sf)ﬂ Vi, s€(0,1);
r@A = A urE-b) L(B)(1 — A urB-D)
szl—a Sp((r—l) (1 _ tp)a/—l (1 _ Sp) pl—(l/ Sp(a—l) (1 _ tp)a/—l

M- -y =)< o na—pey

(iii) Vi, 5 €(0,1),

where
0 <@ := min{l — L,#® D B0 - wf), P V) < 1,

and

0 <@ :=min{l = L1 —7)*", L =) 2, L0 —)* '} < 1.
Proof. Let us first prove part (i) with different cases.

Case 1. If 0 < 7 < min{t, u} < 1, then we have % > t* since ¥ < 1, which implies 1 — ;% <1-17°.
Hence, we find that

o [ S S (VA o
1_,11#p<ﬁ—1>[( - — A - ]
B | °
- _ -1 _ B-D¢1 _ -1
- l—/llﬂp(ﬁ—l)[(l #P - artha ﬂp)ﬁ |
s P et (1 = o
= 1_,11ﬂp(ﬁ—l)[( N — (- |
= A -y

> 0 - :_:)/H = — PP,
which means that

A[A =P - =P - - >0

Case 2. For u < 7 <t, we have

ﬂ(l _pl s B gl s pB( Dl o _ oyl
1 — AuPB-H B - v |
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Thus, A;(1 — 771 — (@ — )1 > 0.

Case 3. For t < 7 < u, we have
(=P 2 A = 2 (- E)ﬁ“ =L —F

So, Ai[(1 =YL = A (wf — 1] > 0.
Case 4. For max{t, u} < 7 < 1, it is obvious that A;(1 — 77)*~! > 0.
Consequently, we get G(t,7) > 0. By a similar argument, one can show that G,(z, s) > 0.

In order to establish (ii), let T(B)p?~1(1 — ,u*®D)G (1, s) = gi(¢, s). Then, for 0 < s < min{¢, u}, we
have

FEDA = Y = PO - T - = T - )
0 0
AR R e e (e A A (BT

gi(t,s)

\%

e
FED(L = P = 1IN (1 = St D (L - At Y)
u

0
= R S (- P
luP

\%

sP
AP = PR (1= =) + (1= 59)
ﬂp
_ P
> At VpEh( - sﬂ)ﬁ-lsp(—l )
/JP
> QP Vs -y

Forpu < s < t,let T(B)pP1(1 — L,uPP~"NG\(t, 5) = g»(¢, s). Then, we get

FEDA =Y - @ = YA - )

= A= -0 - f—ﬁ)ﬁ‘l(l - )
> PP — P B — PN - A
e A (D

QP Vs (1 - Y

82(t, )

\

Fort < s < u, let T(B)P# ' (1 — ,uPBD)G, (¢, 5) = g5(t, s). Then, we obtain

PED - 2P B — P!
v
= B = PP = 4 BB (] - l%)ﬂ—l

g3(t,s)

> B — Pl 1 P BD PN (] - gyl
= 0= O - Y
QPP - Y

\%

Lastly, when max{z, u} < s < 1, it is clear that

LB (1 - PP NG (1, 5) = PP V(1 - 2P > QP Vs (1 — sPYP L.
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Thus,
le]_ﬁtp(ﬂ_l)sp(l — sp)ﬂ_l

LB)(1 = Ap#=D)

Gi(t,s) >

On the other hand, it easy to show that

pl—ﬁtp(ﬁ—D(l — SP)B—I
L) - up)
Now, for (iii), consider I'(@)p® (1 — (1 — 7°)* )G, (¢, s). If 0 < s < min{t, 7}, then we find that

Gi(t,s) < , Y(t,5)€(0,1)x(0,1).

(1 =)D > @1 = )17 701 = ).
When t < s < n, let T(@)p® (1 — 1:(1 = 7°))Ga(t, 5) = hy(s, t); then we have
/’ll(l, S) — (1 _ tp)(t—lsp((t—l) _ (Sﬂ _ tp)a—l(l _ /12(1 _ np)a—l)
= (1= - e Dy = gy
sPODA -2 A = 1+ (1 -9
S DA = a1 - )
Qs V(1 =) (1 - ).

vV v

\%

When 1 < s < t, let T(@)p® (1 — (1 = 17°))Ga(t, s) = hy(t, 5); then we have

ho(t,s) = (1=)7100 = (1= )" (" =)™

(1 _ tp)(l—lsp(a—l) _ /12(1 _ tp)d—lsp(a—l)(l _ f)a—l

sP
sPOVA =) - (0 =)
Q" V(1 - )1 = 5°).

=
=

When max{n, 1} < s < 1, let [(@)p® (1 — (1 = 1°))Ga(t, 5) = hs(t, s). Then, we obtain
Bt ) = (L= = (L= )N =)™ = (0 =) (= (L= 1))

= (1- tp)a—lsp(a/—l) — (1 - lp)a/—lsp(a—l)(l _ ’:)_p)a—l
—N = Sy = o=y

> D=1 - (1 - g)“-l — 1+ 0 =1)"")

> s =y (=) - (- )

> LA -2 A - ) s (1 - 50)

= (=)0 =) - )

> Qs V(1 - )1 - 5.

Hence,
Qp' 7 sP @ D(1 — )11 - 5°)

N N )
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On the other hand, it is easy to show that

pl—(zsp(a—l)(l _ tp)a—l
L)1 = (1 =)ty

Thus, the proof is completed. m|

Gy(t,5) < Y(t,5) € (0,1) x (0, 1).

Remark 2.1. When p — 1, (ii) is similar to the result presented in Theorem 1 in [29].

Lemma 2.4. Let y € C([0, 1],R) and
1 1
w(r) = —¢q(f 271Gy (r, s)w(s)ds), y(t) = —f 771G (1, Dw()dr.
0 0

Then, for t,7,s € [0, 1] and 1—17 + cl] =1, p,q > 1, the following results hold:
(i) llwll < QI ", Iyl < Q0 lylle!, where

1 1
, Oy
pT(a+ 1D = (1 —npp)e 1)

= T LB+ (1 — 4rBD)’

(ii) w(t) < —ma1QI (1 — )@ DD y(r) > ma ' QI Qe Y, for w(t) > m > 0 and Vt € [0, 1],
where

Q
pT(@ +2)(1 = (1 —p)*ty’

Q
Q, = .
YT PTB)YB + (@ — 1)(g— D)B + (@—1)(g—1) + D)(1 = ,uBD)

Proof. By Lemma 2.3, we have

Q3 =

#B-D
PPTB + (1 = AyprB-D)’

@ B
PPT(B + 2)(1 = A=)

1
sf *71G (1, 7)dT <
0

nd Qy(1 —79)! ! (1 -7yt
H(1 — )%~ 1 — )
PT(a+ (1~ L D) fo G s < A = B =)’
Consequently,
1
‘w(T)‘ = ‘ - ¢q(f 771Gy (1, s)tﬁ(s)ds)‘
0

1
2 fo ' Gar, W (s)lds)

IA

1
8( fo s71Gy(x, 9)dsllv)

1 A
(r(a + Dpr(1 = (1 - np)a_l))) 1l

QT |lyle".
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Thus, ||w|| < Q?_lugbll‘f‘l. Similarly, we have that ||y|| < QQQf_lllwllq‘l. This establishes (7).
For (ii), we have

w(7)

1
o fo 71 Ga(x, S)p(s)ds)

IA

1
_¢q(f *1Gy(t, s)m ds)
0
_( Q (1 —79)*! )‘1’1 -1
PT(@+2)(1 = (1 —pr)e )
— _Qg—lmq—l(l _ Tp)(a—l)(q—l)'

Likewise, we have that y(f) > m9~'Q¢"'Q,##~D. This completes the proof. i

The following lemma describes some properties of the p-Laplace operator which can easily be proved
by using the mean value theorem when the function ¢, (k) = |k|P~2k is differentiable at all k except k = 0
and I%I is bounded by (p — 1) max |[k|’~2 for p > 2 and bounded by (p — 1) min |k’ for 1 < p < 2.

Lemma 2.5. (see (2.1) and (2.2) on page 3268 in [30]) The following relations hold for the p-Laplace
operator:

(i) For 1 < p <2, kil lkol > Ay > 0 and kiky > 0, ¢ (ka) = ¢, (k)| < (p = DAYy — kil
(ii) For p > 2, kil, kol < Ay and kiky > 0, |6,(k2) — ¢ (k)| < (p — DAL lkey = Ky .

3. Existence and uniqueness results

In this section, we discuss the existence and uniqueness of the solutions to the problem (1.1). For a
given number M > 0, let us consider the following set

and denote by I'TO, M] a closed ball in the space of the continuous function C[O0, 1].

Theorem 3.1. Assume that 1 < p < 2 and there exist positive constants M, M,, C,, C,, kyandk, such
that

(A) |f(t,y, w)| < My, |g(t,y,w)| £ M, for (t,y,w) € T py;
(A2) 1f(t,y1, w1) = f(t,y2, )| £ Cilys = yil + Colwy — wyl, for (t,y;,w;) € Ty, i=1,2;
(A3) |g(t,y1,(,()1) - g(t9y27 wZ)l < Kl|y2 _)’1| + K2|(1)2 - wlla for (t’yi9 wi) € T/\/b l = 1a29

(Ag) L; = (q— 1)/\44—29‘{‘1{|v1|(c1sz2 +Ca) + s (ki Q) + Kz)} <1

PT(L+1)

Then the mixed boundary value problem (1.1) has a unique solution satisfying the following inequali-
ties:

(Ol < QI M, PDE vl < Q7 M, forall t € [0, 1), 3.1

M

where M > |vi|M; + |V2|pgr(§+1)'
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Proof. Define an operator G : C[0, 1] — CIO0, 1] by

1 1 1
Gno = wnflt f G (1, ) fo 7' Ga(x, s)(s)ds)dr, =g fo 7 Go(, )y(s)ds))

rpl(tp_rp)ZI 1 . 1 .
f T o\ fo 71 Gi(n 1) fo 7 Ga(r, s)(s)ds)dr

— f 7 Ga(r, SY(s)ds) )dr. (3.2)
0

Observe that the continuity of G(t, 1), G»(7, 5), f(¢,y,w) and g(¢, y, w) leads to that of the operator G.
Moreover, if y(f) is a solution to the problem (1.1), then y(¢) = *D{_(¢ p(pD§+y(x))) is the fixed point of
the operator G. Conversely, if ¥() is a fixed point of the operator G, then

1 1
y(t) = f G (1, 1)y f "G, s)(s)ds)dr
0 0

is a solution to the problem (1.1).
Next, we need to show that the operator G maps I'TO, M] into itself. Let y € IO, M]; then, by Lemma
2.3, we have

()] < QM (0] < Q0 MO

Consequently, for any ¢ € [0, 1], there is (¢, y(¢), w(t)) € Y p. So, from (A;), we have

M,
T+ 1) <M.

Therefore, (Gy)(t) € I'[O, M]. Thus, the operator G maps 'O, M] into itself. Now, we show that
the operator G : I'[O, M] — I'[O, M] is a contraction. From (A;), (A3), Lemma 2.3, Lemma 2.4 and
(ii) of Lemma 2.5, there is A, := QM > | fol 571Gy (1, s)Y(s)ds| for each v (1), Yo (f) € T[O, M], and
1 < p <2 (thatis, g > 2). Thus, we obtain

(G| = i [t (1), (D)) + v I, (1, Y(0), w(D)] < 1| M) + v,

|(Gu2)®) - Gu))|
1|ty (0, @n(0) = (6,310, 01 0)] + Wl I, 26 320, 2(0) = PTG, g0, 310, w1 1)

{C1ya) = @] + Cofent@) = 10|} + balfia? I, a0 = 31 0] + 17 Jwn(t) = 10

IA

IN

1 1 1
- |v1|{cl' fo Gy, 1) 8 fo 7Gx, sa(s)ds) — by j; S 1Ga(r, sy (s)ds) ]

1 1
+Cofo( fo 71 Go(r, sW(5)ds) - ¢ fo sp‘le(T,S)l!n(S)dS)’}

! rp—l(tp _ rp)g’—l 1 - 1 -
+|V2|{K1 fo W' fo 7161 (r, )| 8 fo ¢ Ga(x, W (s)ds)

1
~4( fo 97 Ga(x, W (s)ds) |drdr

! Tp_l(l'p _ Tp)_{—l 1 - 1 -
+K2j; Wkﬁq(ﬁ *1Gy(x, s)z,bz(s)ds)—gbq(j; 1 Go(x, s)t/;l(s)ds)‘d‘r}

1 1
mifera - oven] [ e iG] [ 96 s - monasar]

IA
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1
+Calg = M| f Ga(r, $)(Wa(s) = ¢ ()|

1@ — )]
+|vZ|{K1<q—1><MQ>q2[f e frf”ca(w)x

X j; 91Ga(r, )Ws) - Y (s))ds|drdr]

1 p—l(tp — Tp).(—l

1
+o(g = DM fo — e | fo Gz(r,s)wz(s)—wl(s)>ds|dr}

1 1
< |vl|{cl<q— v [ o761 [ 9 Gatr sidsfarion - vl
1
#Calg = DM [ Gt sl —wln]}
P 1 o _ pP -1
+|v2|{/<1<q—1><Msz [ e f #1G7) X
X fo 91 Ga(x, s)ds|drdrilys - |
. lTp—l(tp_Tp)(—] 1 _
seoman?| [ Tm [, s)ds||w2—w1||dr]}
< billg - DMIQI(C1Q + Ca)llya — wil

, o
Hhallg - DM Lo 1)(K192 + 1)l = il
= (q — I)qug({_l{h/] |(C1§22 + C2) +

Lillyr2 = ¢l

[val

re+1

(k192 +K2)}|wfz ~ il

which, on taking the norm for [0, 1], yields

G¥2) = (GY DIl < Lill = .

Since L; < 1 by (A,), the operator G is a contraction. So, we deduce by Banach’s contraction mapping
principle that /(¢) is the unique fixed point of the operator G. Hence, there exists a unique solution to
the mixed boundary value problem (1.1) satisfying (3.1). The proof is completed. O

In the following result, we consider a special case of Y . With the aid of Lemma 2.4, for m > 0 with
M > m, we define the sets

0<r<1, QO m P < y() < QI M,
TL={m%w% }

— QM < () < -0 mt (1 - )b,

and

[, ={w@) e Cl0,1]: m < y(t) < M}.

The following theorem is concerned with the existence of a unique solution to the problem (1.1) when
p>2.

Theorem 3.2. Assume that p > 2 and there exist positive numbers my, my, My, M,, C, and C, such
that
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(Bl) m < f(t’y,w) < Mlandm2 < g(t’y’a)) < MZ, fOl" (l’y’w) € T+ 5
(B2) 1f(t,y1, w1) = f(t, y2, w2)l < Cilyr = yil + Colwy — wyl, for (1, yi, ) € T}, i =1,2;
(B3) |g(tayl7w1) - g(tayZ’wZ)l < Kl|y2 _yll + K2|(1)2 - wlla for (t,)’i,wi) € T+ 5 l: 1,2,

(By) Ly :=(q - l)mq—2Q‘31—2Q1{|v1|(C1Q2 +Co) + (ki + Kz)} <1

Then the mixed boundary value problem (1.1) has a unique solution satisfying the following inequali-
ties

Q05 'm P < y(1) < QM for all 1 €10, 1],
QI M <D () < ~ Q4 mt (1= )N, for all 1 € 10, 1], (53

where M > [vi|M, + va|==2=and 0 < m < vim; + v,

!r(z+1) /#ZH) :

Proof. As argued in the proof of the last theorem, the operator G defined by (3.2) is continuous and
G maps any ¥ € I, into itself.
Now, from (B;), (B3), Lemma 2.3, Lemma 2.4, and (i) of Lemma 2.5, there exists A; := m Q3(1 —

)l < Ifo1 s*"LGy(1, s)Y(s)ds|. Then, for all Y, ¢, € T,,, and p > 2 (that is, 1 < g < 2), we find that

|(Gu2)0) - Gu))|

< 320,020 = S 710 000 + A 800,720, 020) = I 00710, 00 0)
< Dl{C () = 3@+ Coln® = 1@} + Wal{ki? I o 0) = 310 + K17 I Jeon () = en 1))
1 1 |
= |V1|{C1‘j(; Tp‘lG1(t,T)[¢q(\fO‘ sp—le(T, s)wz(s)ds)_¢q(j; Sp_le(T, s)¢1(s)dS)]dT|
! 1
ol [ 971G waons) il [ 9710uce s)wl(s)ds)'}
Pl — )l 1 |
+|V2|{K1f p(; 11“({)) ‘fo TP*IG](F,T)[q)q(jO‘ SpilGZ(T,S)wz(S)dS)
_¢q(£ sp_]Gz(T, S)lﬂl(s)ds)]dT’dr
1 o=l _ p)i-1 1 -
o fo %Lﬁq( fo G (T, pa(s)ds) — oy fo 1t W () ds)'dT}
! 1
) 'Vll{cl(q_ D [ 1Gia om0 = )| [ Gatr st - wr (sl
0 0

1
+Ca(g = Dmi2Q (1 — 7)) fo S Go(T ) (Wa(s) - w1<s)>ds]}

-1 -1 pl
(# =Py -1 -2092 (a-1)(g-2)
+|vz|{/<1(q— l)f o 1F(§’) f ™'G(r, )mi 93 1-7) N

><| f G, s)(zﬁz(s)—zm(s))ds|d‘rdr
0

gz [T =)

ta=tmat [

1
><| fo Gy, s)(zﬁz(s)—lm(s))ds|d7'}

(1- TP)(a—l)(q—2) %
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1 1
< wi{eiq- om0t [ oG -] [T Gat asfasivn - i
0 0
1
+Ca(q — Dm?2Q4 (1 - 1)@ V2| fo 7 Go(t, s)dsllya - m]}
T O A i S e a1
+|m|{m(q—1)mq 207 fo TG fo 716 (r, 1)1 - 1)V
1
X f 71 Ga(x, yds|ddriiy -yl
0
~ > t Tp—l(l.p _ Tp)g'—l - ~ 1 -
siatq = | [ T T -y [y, s)dsdrnwz—wln]}
1
< |v1|{cl(q - Dm?2Q17 f ?71Gi(t, (1 = ) VOIQ (1 - ) drlly - ]
0
+Ca(g = DHmT2 QI (1 = ) D[ Q (1 - 7)™ gy — Y ||]}
- ~ 3 rp—l(tp _ rp)g’—l 1 - o ~
+|vZ|{m<q—1>mq G fo TG fo 716G (1)1 - ) x
xQ(1 = )" drdrlly> - yll]
O A Gl 0 A a-1)g-2 a-1
+3(q — 1)m? QY [fo — g - - i, —ll]
2 pal

< (g-hm"Q] 291{|vl|(c192 +C)+ m(mz + K2)}||!//2 — il

Lyl — g1l

which, after taking the norm for ¢ € [0, 1], takes the form:

(G¥2) = (G DIl < Lallyz = yll,

with L, < 1 by the condition (B4). Consequently, the operator G is a contraction. Hence, by Banach’s
contraction mapping principle, ¥(¢) is the unique fixed point of the operator G. Therefore, there exists
a unique solution to the problem (1.1) satisfying (3.3). This finishes the proof.

4. Examples

Consider the following problem

4.1)

12D33 (8, (DY () = 2 £ y(0), 2D () — 2 V21 P e(e, y(o), DYy (),
¥(0) =0, y(1)=1y3/4), 2Dy(1) = 0, ¢,(">D*¥(0)) = ¢,("2D;*y(1/2)),

where « = 5/3,8=3/2,p=1/2,4, =1/2, L, =1, u=3/4,n=1/2,vi =3/4andv, = -2/3, and
p, f(t,y,w) and g(¢, y, w) will be fixed later.
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From the given data, we have

(187022)t1/4[(1 _ SI/Z)I/Z _ 1/2((3/4)1/2 _ S1/2)1/2] _ (tl/z _ sl/2)1/2’
0 < s < min{z,3/4};
Gi(t,s) =~ i (1.87022)¢1/4(1 — sV/2)1/2 — (112 — gl/2y1/2 3/4<s<t;
’ I'(3/2) ’ ’ -
(1.87022)4[(1 = 52112 — 172((3/4)!2 - 51/2)112], 1< 5<3/4;
(1.87022)¢1/4(1 — s1/2)1/2, max{r,3/4} <s <1,
and
1.78902(1 — 11/2)3 5113, 0 < s < minfz, 1/2};
1.78902(1 — t1/2)2/3[s1/3 —(s172 - (1/2)1/2)2/3], 1/2<s<t;
2/3
G(t, 5) ~ ) /2323 173 _ 1/2 _ 1724273 << .
(1, 8) TG/3) 1.78902(1 — ¢t'/=)*°s (s ey, t<s<1/2
178902(1 _ [1/2)2/3[5‘1/3 _ (S1/2 _ (1/2)1/2)2/3] _ (S1/2 _ l1/2)2/3,
max{t,1/2} <s <1,

which satisfy the properties expressed in Lemma 2.3. Moreover, for ¢, s € (0, 1), we have G(t, s) >
0,G,(t,s) > 0 and

V2 2
——(0.8702161) t'/* s'2 (1 = s'"™H)12 < G (1, 5) < 1.87022) /4 (1 — s'/%)172,
r(3/2)( YT s (1 =579 <Gy ( S)_r(3/2)( Y7 (1 —-s79)
213 1/3 1/2N2/3 1/2 213 1/3 1/2\2/3
0.7890202 1—¢ 1- < Gy(t, s) < ———(1.78902 1—¢ :
r(5/3)( ) s ( )7 (1 =577) < Gat, s) r(5/3)( ) s ( )

with @Q; ~ 0.465302 and Q, ~ 0.4410348.
For illustrating Theorem 3.1, let us take

- |l
f(t, U, w) = m(yz + 7 + COoS t), 4.2)
tan™!y + w?
_ A yr e 4.
g = ST @3

and p = 3/2 (that is, ¢ = 3). Using the given values, it is found that Q; = 3.7750084, Q, =
3.9792441, Q3 = 0.6243413and Q, = 0.2557131. Also, M satisfies the following relations:

2.977481684 M* + 0.1319508185 M? + 0.9259259259 < M,,

M
0.2513274123 + 0.3249313918 M* < M, 3/4M; +2/3 2

2AT/A+ D) = M

with [|y|| < 56.706968 M? and ||wl|| < 14.250688 M?. Choosing M; = 0.3, M, = 0.08 and M = 0.4,
it can easily be verified that the functions f(z,y, w) and g(t, y, w) given by (4.2) and (4.3) respectively,
satisfy the condition (A;). Furthermore, on the domain:

Toa :={(t,y,w),0 <t <1,y £9.073114878, |w| < 2.280110144},
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we find that
fl = ‘Ze—ty‘ < 0.01680206459, |f,| = 'e—t‘ < 0.001055606548
Y 1364000+ ¢ T R b & RV T, T L ’
1 2w
= <0.0016, |g.| = |—=—| < 0.00729635.
] ’(1+y2)(t+25)2‘ B 8] '(z+25)2'

Obviously the conditions (A;) and (A3) are satisfied with C; = 0.01680206459, C, =
0.001055606548, «; = 0.0016and k, = 0.00729635246. Also, L; = 0.7169476783 < 1. Thus all
of the conditions of Theorem 3.1 are satisfied and hence the problem (4.1) has a unique solution on
To.4.

We illustrate Theorem 3.2 by choosing

[y, w) = —1; 5 (v + @ +5(+3)), (4.4)
e—t

Y, @) = —————(y + 30 /4 4.5

8(t.3.0) = 3 t+900(y+ W’ /4) (4.5)

and p = 4 (that is, g = 4/3). Here the values of Q,, Q, and Q5 are the same as those found in the
first example and Q; = 0.592399. Letting m = 0.05and M = 0.4, as argued in the first example,
we find that the functions f(¢,y,w) and g(t,y,w) given by (4.4) and (4.5) respectively, satisfy the
condition (B) in the following domain: T, := {(t,y,w),0 < r < 1,0.1865284535 < () <
4.565200828, —1.147253270 < w < —0.3148695697 (1 — V1)*°}.

Moreover, the conditions (B,) and (B3) hold true with C; = 1/120, C, = 0.01912088784, «; =
1/90, k, = 0.005247826157 and L, = 0.3153939012 < 1. Thus all of the conditions of Theorem 3.2
are satisfied and hence the problem (4.1) has a unique solution on 1 ,.

5. Conclusions

In this paper, we have investigated the criteria for ensuring the uniqueness of positive solutions
for a class of fractional integro-differential equations with a p-Laplacian operator, complemented
with nonlocal boundary conditions involving fractional derivatives and the p-Laplacian operator.
Using a method employed in [31] together with the properties of the associated Green’s functions
established for the given problem, we proved two uniqueness results for the cases 1 < p < 2 and
p > 2, respectively. Illustrative examples demonstrating application of the obtained results are
presented. It is worthwhile to note that our results are new in the given configuration and enrich
the literature on p-Laplacian fractional boundary value problems involving right-sided and left-sided
fractional derivative operators, as well as left-sided fractional integral operators with respect to the
power function.
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