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Abstract: The driver’s stochastic nature is one of the important causes of traffic oscillation. To better 
describe the impact of the driver’s stochastic characteristics on car-following behavior, we propose a 
stochastic full velocity difference model (SFVDM) considering the stochastic variation of the desired 
velocity. In order to mitigate traffic oscillation caused by driving stochasticity, we further propose a 
stable speed guidance model (S-SFVDM) by leveraging vehicle-to-infrastructure communication. 
Stochastic linear stability conditions are derived to demonstrate the prominent influence of the driver’s 
stochasticity on the stability of traffic flow and the improvement of traffic flow stability by the 
proposed guidance strategy, respectively. We present numerical tests to demonstrate the effectiveness 
of the proposed models. The results show that the SFVDM can capture the traffic oscillation caused 
by the driver’s stochastic desired velocity and reproduce the same disturbance growth pattern as in the 
field experiment. The results also indicate that the S-SFVDM can significantly expand the stable area 
of traffic flow to decrease the negative impact on traffic flow stability caused by the driver’s 
stochastic nature. 
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1. Introduction  

With the rapid increase of car occupancies, traffic congestion is becoming more and more serious, 
leading to tremendous environmental pollution and economic losses. Researchers have proposed many 
traffic flow models to study the mechanism behind complex traffic phenomena and provide a myriad 
of solutions to solve practical traffic problems. Among them, the car-following model offers an 
effective way to understand the mechanism of various complex traffic phenomena (such as traffic 
oscillation) from the perspective of individual interactions at the microscopic level. In 1961, Newell [1] 
proposed a car-following model that takes the optimal velocity into account and aligned with the 
experimental data of the steady flow. In 1995, Bando et al. [2] put forward an optimal velocity model 
(OVM), which successfully reproduced the evolution process for traffic congestion and received 
significant attention from many researchers later. However, the OVM may generate unrealistic values 
of acceleration and deceleration. To overcome this problem, Helbing and Tilch [3] proposed a 
generalized force model (GFM), which has a better fit with field data. GFM only considered the 
influence of a negative velocity difference on acceleration. In 2001, Jiang et al. [4] proposed the full 
velocity difference model (FVDM), considering negative and positive velocity differences. 

Based on those classical car-following models, many extended models were proposed by 
considering different factors from various perspectives. Yu and Shi [5] introduced the changes of 
multiple preceding cars’ velocity with memory and formulated a new connected cruise control strategy, 
improving traffic safety and reducing fuel consumption. Chen et al. [6] proposed an extended OVM 
by considering multi-anticipative optimal velocity. The vehicle’s acceleration was described as a 
function of the optimal velocity and desired distance to improve traffic flow stability. Based on the 
FVDM, the driver’s backward-looking effect and traffic interruption probability were both integrated 
into the car-following model at the same time to enhance traffic flow stability effectively [7]. 
Considering the influence of the driver’s memory, Tang et al. [8] and Liu et al. [9] proposed extended 
car-following models and illustrated that the driver’s memory positively affected traffic flow stability. 
Apart from the above studies, many scholars [10–20] have also enriched the research in this field. 
Furthermore, the distribution of the driver’s memory was considered, making the simulation results of 
car-following models closer to the empirical results [21,22]. Hossain et al. [23] redefined the 
backward-looking effect by proposing a positive backward equilibrium speed function based on the 
perspective of mathematical and physical theories, which strengthened the stability of traffic flow.  

With the emergence of advanced technologies, vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication have great potential to mitigate traffic congestion and improve 
traffic safety. Jia and Ngoduy [24] incorporated V2V and V2I information into the following model 
and investigated the effects on driver behavior and traffic stability. Xiao et al. [25] proposed an 
expanded non-lane-based FVDM based on V2V communication technology. Ngoduy [26] studied the 
stability of heterogeneous traffic flow in a connected environment and derived the string stability 
conditions of the traffic flow. Larsson et al. [27] proposed a pro-social control strategy for connected 
autonomous vehicles in a mixed traffic flow environment to mitigate traffic fluctuations caused by 
human-driven vehicles. Numerous studies [28–34] applied intelligent traffic systems to reduce the 
instability of traffic flow by incorporating more dynamic traffic information into car-following models. 
Furthermore, Wu and Qu [35] discussed the positive role of connected technology in improving traffic 
flow efficiency and reducing energy consumption. Olovsson et al. [36] investigated the communication 
demands, privacy and network security issues of connected vehicles. In the meantime, the construction 
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of the commercial data platform and infrastructure of connected vehicles has also been advancing [37]. 
Up to now, studies on deterministic car-following models have made tremendous achievements. 

Yet, the deterministic car-following models cannot delineate the uncertainty of the driver’s perception 
and behavior [38]. In fact, the driver’s stochastic nature is one of the important causes of traffic oscillation. 
Previous experiments [38–44] indicated that standard deviations of the velocity increase in a concave 
way along with the platoon, which is obviously inconsistent with conventional car-following models. 
Therefore, a few scholars are devoted to developing stochastic car-following models to capture the 
stochasticity of drivers. Laval et al. [45] proposed a parsimonious stochastic car-following model by 
adding white noise to the driver's expected acceleration in free flow. The results show that the model 
can produce traffic oscillations that are consistent with the observation results. Yuan et al. [46] 
developed a geometric Brownian-motion car-following model to explain the capacity drop. Based on 
the experimental data, Tian et al. [43] found that the growth of velocity difference oscillation follows 
the mean reversion process, and then they proposed a mode-switching stochastic car-following model. 
In addition, they also investigated the car-following behavior from the perspective of wave travel 
time and proposed a simple stochastic car-following model based on the Newell model [47]. Ngoduy 
et al. [38] modeled the driver’s acceleration process as an extended Cox–Ingersoll–Ross stochastic 
process and derived the stability conditions of the stochastic car-following model for the first time. 
Furthermore, by introducing the stochasticity of drivers into the macroscopic traffic flow model, 
Ngoduy [48] proposed a class of stochastic high-order continuous traffic flow models and analyzed 
the stability of traffic flow under the influence of noise. 

Although many researchers are devoted to capturing the driver’s stochastic behavior by adding 
white noise to the acceleration function [38,45,46]; it does not reflect the relationship between 
stochasticity and some internal attributes of drivers (for example, some expectations or wishes of the 
driver during driving, which have a great impact on the driver's behavior and activities [49]); that is, 
the added white noise does not depend on some internal characteristics of the driver. However, 
Wagner [50,51] asserted that the random fluctuation of traffic flow is determined by the internal 
stochasticity of the driver itself. In addition, Makridis et al. [52] pointed out that the variation of the 
driver’s desired velocity significantly impacts traffic flow stability. Therefore, it will be an interesting 
question of how the stochasticity of the driver’s desired velocity influences the traffic flow stability.  

To better describe the impact of the driver’s internal stochasticity on car-following behavior, we 
use stochastic progress to describe the stochastic property of the driver’s desired velocity and propose 
a stochastic FVDM (SFVDM). Furthermore, we propose a stable speed guidance model (S-SFVDM) 
based on the V2I environment. The driver’s memory effect is considered to alleviate the traffic 
oscillation caused by driving stochasticity. We derive the stochastic stability conditions for the 
proposed models based on the stochastic differential equation. We prove that the S-SFVDM can rapidly 
enhance traffic stability by finding the close equilibrium position based on the stochastic stability 
diagram regarding the current state of instability. 

The organization of the rest of this paper is as follows. Section 2 describes the formulation of the 
SFVMD and S-SFVDM. Section 3 derives the stochastic linear stability condition of two proposed 
models based on the Lyapunov stability analysis theory. In Section 4, numerical simulations are 
presented to verify the effectiveness of the developed models. Finally, the conclusions are summarized 
in Section 5. 
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2. Model formulation 

The desired velocity of the driver, which has proved to have a significant impact on the stability 
of traffic flow, is affected by the inherent attributes of the driver, and it is closely related to the driver’s 
age, personality, environment and other complex factors. Therefore, the driver’s desired velocity is not 
a fixed value, but fluctuates randomly in a bounded range over time. It is one of the internal 
stochasticity of drivers. Hence, in this paper, the driver’s desired velocity is considered as a stochastic 
process rather than assuming a constant value. Similarly, our model is based on the classical FVDM, 
which is given by 

  𝛼 𝑉 △ 𝑥 𝑡 𝑣 𝑡 𝜆 △ 𝑣 𝑡   (1) 

where  nv t  is the nth vehicle’s velocity at time t.      1n n nv t v t v t   and      1n n nx t x t x t   
are the velocity difference and distance between the nth vehicle and the (n-1)th vehicle at time t, 
respectively. ,    are the headway sensitivity coefficient and the velocity difference sensitivity 
coefficient of the driver, respectively.   nV x t  is the optimal velocity (OV) function, given by [38]: 

 𝑉 △ 𝑥 𝑡 𝑡𝑎𝑛ℎ △

ℎ
𝑎 𝑡𝑎𝑛ℎ 𝑎  (2) 

where 0v  is the desired velocity of the driver, 0h  is the critical headway and a is a positive constant. 
Yet, in reality, the desired velocity of a driver is not a constant, but fluctuates randomly in a 

bounded range over time with the dynamic variety of the driver’s physiological and psychological 
properties. And, those properties are influenced by the external environment and many complex factors. 
To study the impact of the random variation of the desired velocity during stable traffic flow, we give 
the deterministic speed 0v  a stochastic term. Without losing generality, we propose the extended OV 
function as follows: 

 𝑉 △ 𝑥 𝑡 𝑡𝑎𝑛ℎ △

ℎ
𝑎 𝑡𝑎𝑛ℎ 𝑎  (3) 

where S
dv  is the stochastic desired velocity, which is calculated as       0 , ,n nv x t t v t   .     is 

the stochastic source, which depends not only on the state of the vehicle, but also on the stochastic 

progress  t  at time t. When   0  ,      S
op n op nV x t V x t  , which degenerates into Bando’s 

OV function [3]. By taking the stochastic part      into account in the FVDM, we develop the 

SFVDM, in which the Gaussian white noise is applied. By replacing   op nV x t  with   S
op nV x t  in 

Eq (1), we can reformat the SFVDM as 

𝑑𝑣 𝑡 𝛼 𝑉 △ 𝑥 𝑡 𝑣 𝑡 𝑑𝑡 𝜆 △ 𝑣 𝑡 𝑑𝑡 𝛼𝑓 △ 𝑥 𝑡 𝑉 △ 𝑥 𝑡 𝑑𝑊 𝑡  (4) 

where  W t  is a Wiener process.   nf x t  is the diffusion coefficient function of the stochastic term, 
which indicates that the strength of the stochasticity depends on the value of the headway. According 
to the actual situation, we could know that when the headway is large, the driver will show a high 
degree of stochasticity, because the random fluctuation of headway does not affect driving safety. On 



346 

Electronic Research Archive  Volume 31, Issue 1, 342–366. 

the contrary, when the headway is very small, drivers will drive carefully, so their stochasticity will 
remain at a low level. Hence, in this study, we consider the diffusion coefficient function   nf x t  
of the stochastic term as follows: 

 𝑓 △ 𝑥 𝑡 𝜎 𝑡𝑎𝑛ℎ △
 (5) 

Equation (5) endows the model with a good characteristic. Previous studies [39–44] suggested 
that there is no unique relationship between the space headway and the vehicle’s velocity. In other 
words, drivers do not maintain a fixed space headway at a certain velocity, as they randomly change 
their preferred space headway [40–42]. In reality, we know that the smaller the space headway, the 
more cautious the driver will become. With the space headway increasing, drivers may have the 
opportunity to elevate the desired velocity. In Eq (5), if the spacing is far less than the safe distance 

(i.e.,   0nx t h   ), 
 

0

tanh nx t

h

 
 
 


  will become very small. Hence,   nf x t   will be minimally 

affected by the high value of the constant  . In other words, the impact of the stochastic part on the 
desired velocity will be reduced largely in this situation. 

Note that there is no consistent form of the diffusion coefficient function (i.e., Eq (5)) in previous 
studies [38–44,46,50], and it rarely affects the operation of vehicles [53]. On the one hand, the diffusion 
coefficient function developed in this paper guarantees a more reasonable acceleration with stronger 
non-negativity by integrating the driving state and traffic situation. On the other hand, it provides an 
opportunity to explore how the stochastic part in S

dv  influences traffic flow stability by deriving the 
string stability conditions. 

Equation (5) can also describe the driver’s stochastic desired velocity characteristics when the 

headway is relatively large. Even if the headway is far greater than the safe distance (i.e., 
 

0

1nx t

h


 ), 

the oscillation of the stochastic part is bounded. The function term 
 

0

tanh nx t

h


 
 
 


 can enhance the 

non-negativity of the velocity and ensure that negative values of velocity are not easily generated as 
in other stochastic car-following models [45,46]. 

3. Linear stability analysis 

Stability analysis is an important part of traffic flow research [6–12]. The stochastic nature of 
each driver will influence the stability of traffic flow. In order to understand the impact of random 
changes in the driver’s desired speed on the stability of traffic flow, this section focuses on the 
investigation of the linear stability condition of the SFVDM. 

3.1. Location stability analysis of SFVDM 

Theoretically, each vehicle has the same velocity and space headway in the equilibrium state

 ,equ equv x  , given by 1 2 3 equv v v v       and 1 2 3 equx x x x      , where  equ equv V x  . To 
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derive the stability condition of the SFVDM, we put small disturbances (    n n equv t v t v     and 

   n n equx t x t x   ) on the velocity and space headway around the equilibrium state, respectively. The 

first-order Taylor expansion is used to linearize the stochastically perturbed evolution equation as follows: 

 𝛿𝑣 𝑡 𝛼 𝑉 𝛿𝑥 𝑡 𝛿𝑣 𝑡 𝑑𝑡 𝜆 𝛿𝑣 𝑡 𝛿𝑣 𝑡 𝑑𝑡 𝛼𝜎𝛽𝛿𝑥 𝑡 𝑑𝑊 𝑡  (6) 

where 

 𝛽 𝑡𝑎𝑛ℎ 𝑉 1 𝑡𝑎𝑛ℎ  (7) 

In addition, the following equation could be obtained according to the definition and dynamics. 

 𝑑𝛿𝑥 𝑡 𝛿𝑣 𝑡 𝛿𝑣 𝑡 𝑑𝑡 (8) 

A small disturbance may break the stable state of traffic flow under certain conditions and lead to 
local instability. The local stochastic stability analysis can help us understand the evolution of a small 
disturbance and how it leads to the local instability of the traffic flow. Based on the stochastic theory, 
the local stochastic stability condition is derived. 

To simplify the analysis of the proposed model, Equations (6) and (8) can be formulated as a 
matrix equation, as follows: 

 𝑑X 𝑡 PX 𝑡 𝑑𝑡 QX 𝑡 𝑑𝑊 𝑡  (9) 

where 

 X 𝑡
𝛿𝑥 𝑡
𝛿𝑣 𝑡  

(10) 

 P
0 1

𝛼𝑉 𝛼 𝜆  (11) 

 Q
0 0

𝛼𝛽𝜎 0  (12) 

Based on the Lyapunov stability theory [54,55], we have the definition below for studying the 
local stability of the SFVDM. 

Definition 1. The trivial solution of Eq (9) is pth-moment exponentially stable if there exist two constants 
 1 2 ,  0,c c  

 and a Lyapunov function   V tX
 that satisfy the following two conditions: 

 𝑐 |X 𝑡 | 𝑉 X 𝑡 𝑐 |X 𝑡 |  (13) 
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 𝐿𝑉 X 𝑡 𝜅𝑉 X 𝑡  , 𝜅 0 (14) 

Equations (13) and (14) are equivalent to the generally strict formulation, as follows: 

 𝑙𝑖𝑚
→

𝑡 𝐸|X 𝑡 | 0 (15) 

where 

 𝐿𝑉 X 𝑡 𝑉 X 𝑡 PX 𝑡 𝑡𝑟𝑎𝑐𝑒 QX 𝑡 𝑉 X 𝑡 QX 𝑡  (16) 

𝑉 X 𝑡 ,          (17) 

 𝑉 X 𝑡  (18) 

Based on Definition 1, we have the following theorem: 
Theorem 1. The SFVD model is 2nd-moment exponentially stable if 

 𝜎
′

 (19) 

Proof. Based on the Lyapunov stability theory, the Lyapunov function is set as 

 𝑉 X 𝑡 X 𝑡 FX 𝑡  (20) 

According to the definition of   LV tX , if the matrix F is positive-definite,   LV tX  can be 

reformatted as 

𝐿𝑉 𝑋 𝑡 𝑝 𝑋 𝑡 𝐹𝑋 𝑡 𝑋 𝑡 𝐹𝑃𝑋 𝑡
𝑝 𝑝 2

2
𝑋 𝑡 𝐹𝑋 𝑡 𝑄𝑋 𝑡 𝐺𝑄𝑋 𝑡  

𝑡𝑟𝑎𝑐𝑒 𝑄𝑋 𝑡 𝐹𝑄𝑋 𝑡   (21) 

Then, we set 2p   , 0  and F as follows: 

 F
𝛼𝑉 𝛼 𝜆

1
 (22) 
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The Lyapunov function is 

 𝑉 X 𝑡 𝛼𝑉 𝛼 𝜆 𝛿𝑥 𝑡 𝛼 𝜆 𝛿𝑥 𝑡 𝛿𝑣 𝑡 𝛿𝑣 𝑡  (23) 

Furthermore, 

 𝐿𝑉 X 𝑡 𝛼 𝛽 𝜎 𝛼 𝜆 𝛼𝑉 𝛿 𝑥 𝑡 𝛿 𝑣 𝑡  (24) 

If    0LV t X , Equation (14) holds. Equation (13) is also satisfied by setting the values of 1c  and 

2c  as follows: 

 𝑐 𝛼𝑉 𝛼 𝜆 1 4 𝛼𝑉 𝛼 𝜆 𝛼𝑉 𝛼 𝜆 1  (25) 

 𝑐 𝛼𝑉 𝛼 𝜆 1 4 𝛼𝑉 𝛼 𝜆 𝛼𝑉 𝛼 𝜆 1  (26) 

3.2. String stability analysis of SFVDM 

The string stability analysis of the SFVDM explains how a small disturbance propagates from the 
first leading vehicle to the last vehicle in a platoon. If the string stability condition is satisfied, any 
small disturbance will be weakened from the leading vehicle to the next following vehicle and the 
strength of random fluctuations will be decreased continuously in traffic flow. 

We expand   1  in zt
nv t e      and   2

in zt
nx t e      in Eq (6), where 1   and 2   are two 

constants. Then, the SFVDM can also be treated as the linear stochastic ordinary difference equation: 

 𝑑X 𝑡 PX 𝑡 𝑑𝑡 QX 𝑡 𝑑𝑊 𝑡  (27) 

where 

 P 0 𝑒 1
𝛼𝑉 𝛼 𝜆 𝜆𝑒

  (28) 

To study the string stability of the proposed stochastic car-following model, Theorem 2 is given 
to study the moment exponential stability of the traffic flow.  
Theorem 2. The stochastic car-following model is 2nd-moment exponentially stable if 

 𝜎  (29) 

Proof. According to Definition 1, by incorporating Eq (27) into Eq (21) and setting 2p  , we can 
obtain the characteristic equation of the system as follows: 

 𝑧 𝑧 𝛼 𝜆 𝑒 1 0.5𝛼 𝛽 𝜎 𝛼𝑉 𝑒 1 0 (30) 
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Expanding 2
1 2z i z z      into Eq (30) and ignoring the high-order terms, the expressions 

of 1z  and 2z  can be obtained as follows by setting the first-order and second-order terms to be zero: 

 𝑧
′

 (31) 

 𝑧
′

 (32) 

The condition of stochastic stability will be held if 1 0z    and 2 0z   . Hence, we can obtain the 
stability conditions by treating   as the variable: 

 𝜎  (33) 

It is worth mentioning that, if 0  , the SFVDM will degenerate to the FVDM. In the meantime, the 

stochastic stability condition will become '

2opV
   , which is the stability condition of the FVDM. 

 
(a)                                                             (b) 

 
(c)                                                             (d) 

Figure 1. Stability region of SFVDM with different values of , where (a) , (b)
, (c)  and (d) . 

 0.24 
0.28  0.32  0.36 
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Figure 1 shows the stability diagrams for the SFVDM with different values of the velocity difference 
sensitivity coefficient   , where the values of    in Figure 1(a)–(d) are 0.24, 0.28, 0.32 and 0.36, 
respectively. Other parameters of the SFVDM were set as 10.3s  , 2  h m  and exp 2 /V m s . In 
Figure 1, it is shown that the coverage of the unstable region decreases as the value of   increases. 

Figure 2 shows the stability diagrams for the FVDM. Note that Figure 1d and Figure 2 have the 
same value of  (i.e., ). In Figure 2, the traffic flow is always in a stable state when . 
In Figure 1(d), the traffic flow is in the stable regime when , but it is always in the unstable 
region when  . It clearly indicates that the stochasticity has a significant potential negative 
impact on the stability of traffic flow. When the random noise strength exceeds a threshold value, the 
traffic flow will become unstable. In addition, when  is a relatively small value (e.g., ), a 
small value of  will result in instability of the traffic flow with headways between 3.5 and 4 m. It 
indicates that the driver’s stochasticity will decrease the stability of the traffic flow. 

According to the above analysis, we can observe that the stochastic desired velocity of the driver 
is a critical factor that induces the instability of the traffic flow. This result is consistent with the 
findings in the previous study [52]. Therefore, it is necessary to design a control strategy to reduce the 
negative impacts of stochastic driving properties on the traffic flow. V2I communication technology 
can realize the information interaction between vehicles and roadside facilities within an effective 
range, which provides a prerequisite for speed guidance. In the next section, a stable speed guidance 
strategy is proposed considering the driver’s memory effect, as based on the V2I environment, to 
address the above issue. 

 

Figure 2. Stability region of FVDM. 

4. Stable speed guidance model (S-SFVDM) based on V2I environment 

The development of V2I communication technology allows us to alleviate the traffic oscillation 
caused by the driver’s stochastic nature. In this section, we propose an S-SFVDM to reduce the effect 
of the driver’s randomly desired velocity based on the V2I environment. We consider the potential 
influence of the driver’s short-term memory on the speed guidance. We assume that all vehicles can 
communicate with the intelligent roadside system that can capture all vehicles’ speeds, locations and 
other useful information at each time step (communication delay will not be considered in this study). 

Based on the stability diagram, it is easy to find the point  ,te x   by fixing   at any time step, 
where tx  denotes the mean value of the space headway of all vehicles at time t . The essential idea is 

 0.36  0.28 
1.2 

1.2 

 0.32 
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that it is easy to find the equilibrium point e  nearest to the current point e  in the unstable region 
as the expected state for when the platoon will arrive after the speed guidance. And, this process 
is real-time and dynamic. 

The stable speed guidance strategy is described using the following equations: 

𝑑𝑣 𝑡 𝛼 𝑉 △ 𝑥 𝑡 𝑣 𝑡 𝑑𝑡 𝜆 △ 𝑣 𝑡 𝑑𝑡

𝛼𝜎 𝑡𝑎𝑛ℎ
△ 𝑥 𝑡

ℎ
1
𝑣

𝑉 △ 𝑥 𝑡 𝑑𝑊 𝑡  

+𝜙 𝜂 𝑔 �̄� 𝜏 ∑ 𝑓 𝑘𝜏 𝑣 𝑡 𝑘𝜏 1 𝜂 𝑔 �̄� 𝜏 ∑ 𝑓 𝑘𝜏 𝑣 𝑡 𝑘𝜏  (34) 

 𝑔 �̄� 𝑉 �̄�  (35) 

where    denotes the mean value of the compliance of drivers to the speed guidance.  0.5,1   

indicates that the weight of the target vehicle in the speed guidance strategy is greater than the 

preceding vehicle.    is the length of each memory interval.   ,    and    are all constants.  tg x  

denotes the of guidance speed computed by the intelligent roadside system. 
The driver’s memory effect is assumed to be homogeneous in many studies. It can potentially 

incur unrealistic phenomena. For example, when the length of the time period of the driver’s historical 
memory is a relatively large value, the car-following system will be stable regardless of the value of 
the sensitivity. One reason leading to this problem is that the memory effect of drivers should decay to 
zero when the time increases to a large value. In order to better describe the actual situation, the 
memory effect of drivers is considered as a gamma distribution [21,22] in this paper. 

 𝑓 𝜔  (36) 

 Γ 𝑢 𝑥 𝑒 𝑑𝑥 (37) 

When a vehicle is in the steady state, under critical conditions, Equation (33) can be formulated as 

 𝜎 Δ𝑥 𝛼 𝜆 𝜆 2𝛼𝑉  (38) 

The stability diagrams show that the function  x   is monotonic both in the left part and the 

right part. It is decreasing in the left parts and increasing in the right parts. Figure 3 gives the sketch 
map of the stable speed guidance strategy based on the stable diagram. The intention for this study was 
to identify a reasonable and effective guidance velocity which can facilitate the process of stabilizing 
traffic flow. More specifically, we first calculate the average headway x  of traffic flow and find the 
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point  ˆ,t te x   , which is the closest position of the stable regime to  ,t te x   with a fixed t . The 

expression of neutral stable curves 1C  and 2C  are already obtained so that we can derive the point 

 ˆ,t te x    by calculating 1
td  and 2

td  ( 1 2
t td d ). To calculate i

td  accurately, we use the simple least 

squares method to compute the intersection  ˆ,t te x   . The relationship between iteration error and 

iteration times is as follows: 

 𝜀 (39) 

where iterj  is the number of iterations and   is the iterative error. 

 

Figure 3. Sketch map of stable speed guidance strategy based on the stable diagram in 
equilibrium space headway-diffusion coefficient space under the conditions of the V2I 
environment. 

If there is a small deviation from the equilibrium state, the function  tg x  could be treated as a 

constant. The stability analysis can be explored in this situation, as the results display how the speed 
guidance under the conditions of the V2I environment influence the stability of traffic considering 
driver memory. Therefore, in the next step, the stability analysis of the expanded stochastic model will 
be deduced. For simplicity, we give the stability condition directly by omitting the details here, and the 
detailed derivation process is given in Appendix A. 
The S-SFVDM is considered to be 2nd-moment exponentially stable if 

 𝜎
∑ ∑ ∑

 (40) 

Later, we will find that, compared with the SFVDM, the S-SFVDM has a larger stability region due to 
considering the speed guidance strategy. 
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Figure 4. Stable diagram in equilibrium space headway-diffusion coefficient space for 
different values of  . 

Figure 4 shows the neutral stability curves for different values of  . The region enclosed by the 
curve and coordinate axis is the stable region of the traffic flow, and all other regions are the unstable 
region of the traffic flow. Figure 4 indicates that, with the increase of  , the stability of the stochastic 
car-following model becomes stronger. It further indicates that providing effective speed guidance 
information to the driver, given that the driver’s memory is considered, is beneficial to the 
improvement of the stability of traffic flow based on V2I technology. This result is consistent with 
many findings of relevant studies [21–26]. 

 

Figure 5. Stable diagram in equilibrium space headway-diffusion coefficient space for 
different values of  0.6,  0.8,  1.0 . 

Figure 5 describes the neutral stability curves for different values of  . The region enclosed by 

the curve and coordinate axis is the stable region of the traffic flow, and all other regions are the 

unstable region of the traffic flow. It can be seen in Figure 5 that the stability of the traffic flow 

increases with the decrease of   , which indicates that considering the dynamics of the preceding 

vehicle for the target vehicle in the speed guidance strategy is conducive to improving the stability of 

the traffic flow. In addition, we can also find that a change in   has a limited impact on the stability 

of traffic flow. 
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(a)                                                                 (b) 

Figure 6. Stable diagram in equilibrium space headway-diffusion coefficient space for 
different values of Ts and different parameter settings, where (a)  and (b) 

. 

Figure 6 displays the stable diagram in equilibrium space headway-diffusion coefficient space for 

different values of Ts , where (a) 0.28, 0.03    and (b) 0.3, 0.02   . The region enclosed by 

the curve and coordinate axis is the stable region of the traffic flow, and all other regions are the 
unstable region of the traffic flow. It indicates that the area of the stability region increases with 
increasing driver memory time. In addition, Figure 6 shows that the increase in the stability regime  
gradually converges with the elongation of the driver’s memory time. Meanwhile, taking the driver’s 
memory into account is more reasonable [21,22]. 

5. Numerical simulations 

In order to validate the accuracy of the theoretical analysis and the superiority of the proposed 
models, numerical simulations were carried out under a periodic boundary condition. We assumed that 
all vehicles run on a ring road and have the same initial headway, as well as the same velocity. For 
simplicity, we applied the explicit Euler–Maruyama scheme to discretize the stochastic differential 
equation. The numerical approximation of the SFVDM is 

𝑣 𝑘 1 𝑣 𝑘 𝛼 𝑉 𝛥𝑥 𝑘 𝑣 𝑘 𝛥𝑡 𝛼𝜎𝑡𝑎𝑛ℎ 𝑉 𝛥𝑥 𝑘 √𝛥𝑡𝛥𝑊 𝑘 1 𝜆 △ 𝑣 𝑘 𝛥𝑡 (41) 

Based on the proposed SFVDM, we first carried out a series of simulations of platoon with 
different numbers of vehicles under the open boundary condition (i.e., on a straight road of infinite 
length). The model parameters were as follows: 

 𝛼 0.3 , 𝜆 0.3 , ℎ 15𝑚 , 𝑣 20𝑚/𝑠, 𝜎 1  (42) 

The standard deviations of the speed profiles and fitting curves of different simulations are shown 
in Figure 7. The number of vehicles in each sub-figure are (a) 50 vehicles, (b) 100 vehicles, (c) 150 
vehicles and (d) 200 vehicles. In Figure 7, the black points represent the standard deviation of each 
vehicle’s velocity in the platoon, and the blue lines are quadratic polynomial fitting curves in different 

0.28, 0.03  
0.3, 0.02  
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simulations. Figure 7 shows an interesting property of the SFVDM, where the profiles of the standard 
deviations of speed are concave curves, which are consistent with empirical data [38–43,52]. 

 
(a)                                                                (b) 

 
(c)                                                               (d) 

Figure 7. Standard deviations of speed profiles and fitting curves for different 
simulated numbers of vehicles, where (a) 50 vehicles, (b) 100 vehicles, (c) 150 vehicles 
and (d) 200 vehicles. 

To further verify the SFVDM and S-SFVDM, we conducted a series of simulations under the 
periodic boundary condition (i.e., on a ring road). The initial parameters are given as follows: the 
vehicle number 100N  , the road length 400L m  and the time step of the simulation was 0.1 s. 
Other parameters were set as follows: 

 𝛼 0.3 , 𝜆 0.3 , 𝜂 0.7 , ℎ 2𝑚 , 𝑣 2𝑚/𝑠 , 𝑎 2 , 𝑡 3000𝑠 (43) 

 𝑥 0 𝐿  (44) 

 𝑥 0 𝑁 𝑛 𝑛 2,3,4,⋅⋅⋅⋅, 𝑁  (45) 

 𝑣 𝑡 𝑣 𝑡 ⋅⋅⋅ 𝑣 𝑡 𝑣 𝑉  (46) 
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 𝑣 20/𝜏 0.9𝑣  (47) 

 
(a)                                                               (b) 

 
(c)                                                              (d) 

Figure 8. Time-space evolutions of all vehicles for different values of  , where (a) 0  , 
(b) 0.5  , (c) 1   and (d) 1.5  . 

Figure 8 shows the time-space evolutions of the platoon for different values of the diffusion 

coefficient 0,  0.5,  1,  1.5  , with the color representing vehicle velocity. From Figure 8, it can be 

found that, with the increase of   , the oscillation of velocity becomes larger. In addition, higher 
stochasticity leads to more vehicles staying at a low-velocity state for a longer period. It indicates that 
the increasing stochasticity of drivers leads to stronger instability of traffic flow and more frequent 
stop-and-go phenomena. Furthermore, with the increase in the intensity of the randomness of the 
driver’s desired velocity, the density wave of traffic flow becomes more uneven. 

Figure 9 shows the time-space evolutions of the headway profile for different values of  . In 
Figure 9,   is equal to 3.0, and the headway is equal to 3.2 m. According to Theorem 2, the boundary 
of stability is 2 2.276 2.5   . In Figure 9(a), large uneven oscillations occur in the headway and 
the traffic flow is extremely unstable. On the contrary, the headway is steady without fluctuation in 
Figure 9(b), and the traffic flow is stochastically stable. The simulation results are consistent with the 
stability boundary conditions. 
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(a)                                                       (b) 

Figure 9. Time-space evolutions of the headway profile after a sufficient time 1400t s , 
where (a) 2.5   and (b) 2.0  . 

 

(a)                                                             (b) 

Figure 10. Snapshots of headway configuration of all vehicles at time 1650t s , where 
(a) 2.5   and (b) 2.0  . 

 

(a)                                                               (b) 

Figure 11. Time-space evolutions of the headway profile after a sufficient time 2300t s , 
where (a) 2.0   and (b) 1.0  . 
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(a)                                                            (b) 

Figure 12. Snapshots of headway configuration of all vehicles at time 2650t s , where 
(a) 2.0   and (b) 1.0  . 

 
(a)                                                                  (b) 

 
(c)                                                                  (d) 

Figure 13. Time-space evolutions of the headway profiles for different values of  , where 
(a) 0.00  , (b) 0.01  , (c) 0.02   and (d) 0.03  . 

Figure 10 shows the snapshots of the headway configuration of all vehicles at time 1650t s  for 
different values of  . It shows that the headway oscillations in Figure 10(a) are severe. However, the 
headway profile in Figure 10(b) approximates a straight line. Similarly, we also verify the correctness 
of the stability condition under another condition. 
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As shown in Figures 11 and 12, the time-space evolutions of the headway profile and snapshots 
of the headway configuration of all vehicles at time 2650t s   were both used to further test the 
correctness of the stability conditions. According to Eq (33), when 0.36   and the headway is 
equal to 3.8 m, the stable boundary condition is 1 1.528 2   . It indicates that the traffic flow is 
unstable when 2  , and that the traffic flow is in the string stability regime when 1  , which are 
in line with the numerical simulation results revealed in Figures 11 and 12. Moreover, these results 
suggest that the driver’s stochastically desired velocity will decrease the stability of traffic flow. 
However, with the increase of the stochasticity strength, the stable regime will further reduce and the 
oscillation of traffic flow tends to become more serious. Therefore, the random variation of the driver’s 
desired velocity is one of the important reasons for traffic oscillation. 

 

(a)                                                           (b) 

 

(c)                                                            (d) 

Figure 14. Snapshots of headway configuration of all vehicles at time 2350t s   for 
different values of  , where (a) 0.00  , (b) 0.01  , (c) 0.02   and (d) 0.03  . 

Figure 13 presents the time-space evolutions of the headway profiles for 0.00,0.01,0.02,0.03  . 
Drivers do not receive the speed guidance information when 0  . The amplitude of the headway 
profile is considerable and traffic flow is volatile. With the increase of  , the amplitude of the headway 
profile decays obviously. It indicates that the fluctuation of traffic flow decreases with the increase of 
 . When 0.03  , the traffic flow is stochastically stable. Figure 14 shows snapshots of the headway 
configuration of all vehicles at time 2350t s  for different values of  , which shows the same results 
as Figure 13. 

Meanwhile, we can conclude from the above diagrams that giving equilibrium speed guidance to 
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the driver can effectively reduce the instability of traffic flow caused by the random change of the 
driver’s desired velocity. Compared with the SFVDM, the proposed S-SFVDM based on the V2I 
environment has a larger stable region. Moreover, the negative impact of the stochasticity of the 
driver’s desired velocity can be abated effectively by stable speed guidance. The numerical simulation 
results are consistent with the theoretical analysis results. 

6. Conclusions 

In this study, a stochastic car-following model, i.e., an SFVDM, was developed to explore the 
impact of human expectation uncertainty of velocity on traffic stability. The desired velocity of the 
driver was considered as a stochastic process. The magnitude of the stochasticity is related to the traffic 
condition, which determines the non-negativity of the vehicle’s velocity in most cases. Stochastic 
stability analysis was simulated to observe the conditions of local stability and string stability of traffic 
flow. The results demonstrate that the driver’s stochastic desired velocity will decrease the coverage 
of the stable regime. To reduce the negative effects of the internal stochasticity of the driver, we 
developed a stable speed guidance strategy, i.e., the S-SFVDM, based on the V2I environment. 
Furthermore, the driver's memory effect is considered as a gamma distribution to fit the actual situation 
better. Numerical simulations were carried out to validate the proposed models. The results indicate 
that the stability of traffic flow can be enhanced effectively by applying the proposed stable speed 
guidance strategy. Specifically, sending a stable guidance velocity to each driver can weaken the 
negative influence brought about by the driver’s stochastic nature. 

However, the main work of this paper focuses on the model formulation and the derivation of the 
stochastic stability analysis of the proposed model. The model parameters were not calibrated based 
on field or experimental data. In future research, we will conduct car-following experiments to validate 
the numerical results and calibrate the model parameters. In addition, modeling and analysis of 
heterogeneous traffic flow that mixes regular and connected vehicles with the stochastic nature of 
humans are also further research directions. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (72201010) and 
the China Postdoctoral Science Foundation (2021M700304).  

Conflict of interest 

The authors declare that there is no conflict of interest. 

References  

1. G. F. Newell, Nonlinear effects in the dynamics of car following, Oper. Res., 9 (1961), 209–229. 
2. M. Bando, K. Hasebe, A. Nakayama, Y. Shibata, Y. Sugiyama, Dynamical model of traffic 

congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035. 
https://doi.org/10.1103/PhysRevE.51.1035 



362 

Electronic Research Archive  Volume 31, Issue 1, 342–366. 

3. D. Helbing, B. Tilch, Generalized force model of traffic dynamics, Phys. Rev. E, 58 (1998), 133. 
https://doi.org/10.1103/PhysRevE.58.133  

4. R. Jiang, Q. Wu, Z. Zhu, Full velocity difference model for a car-following theory, Phys. Rev. E, 
64 (2001), 017101. https://doi.org/10.1103/PhysRevE.64.017101 

5. S. Yu, Z. Shi, Dynamics of connected cruise control systems considering velocity changes with 
memory feedback, Measurement, 64 (2015), 34–48. 
https://doi.org/10.1016/j.measurement.2014.12.036 

6. J. Chen, R. Liu, D. Ngoduy, Z. K. Shi, A new multi-anticipative car-following model with 
consideration of the desired following distance, Nonlinear Dyn., 85 (2016), 2705–2717. 
https://doi.org/10.1007/s11071-016-2856-4  

7. C. Jiang, R. Cheng, H. Ge, An improved lattice hydrodynamic model considering the “backward 
looking” effect and the traffic interruption probability, Nonlinear Dyn., 91 (2018), 777–784. 
https://doi.org/10.1007/s11071-017-3908-0  

8. T. Tang, H. Huang, S. Zhao, G. Xu, An extended OV model with consideration of driver’s 
memory, Int. J. Mod. Phys. B., 23 (2009), 743–752. https://doi.org/10.1142/S0217979209051966  

9. D. Liu, Z. Shi, W. H. Ai, Enhanced stability of car-following model upon incorporation of short-
term driving memory, Commun. Nonlinear Sci. Numer. Simul., 47 (2017), 139–150. 
https://doi.org/10.1016/j.cnsns.2016.11.007  

10. S. Yu, J. Tang, Q. Xin, Relative velocity difference model for the car-following theory, Nonlinear 
Dyn., 91 (2018), 1415–1428. https://doi.org/10.1007/s11071-017-3953-8  

11. S. Yu, M. Huang, J. Ren, Z. Shi, An improved car-following model considering velocity 
fluctuation of the immediately ahead car, Physica A, 449 (2016), 1–17. 
https://doi.org/10.1016/j.physa.2015.12.040  

12. S. Yu, Z. Shi, An improved car-following model considering headway changes with memory, 
Physica A, 421 (2015), 1–14. https://doi.org/10.1016/j.physa.2014.11.008  

13. C. Chen, R. Cheng, H. Ge, An extended car-following model considering driver’s sensory 
memory and the backward looking effect, Physica A, 525 (2019), 278–289. 
https://doi.org/10.1016/j.physa.2019.03.099  

14. Y. Wang, H. Song, R. Cheng, TDGL and mKdV equations for an extended car-following model 
with the consideration of driver’s memory, Physica A, 515 (2019), 440–449. 
https://doi.org/10.1016/j.physa.2018.09.171  

15. R. Sipahi, F. M. Atay, S. I. Niculescu, Stability of traffic flow behavior with distributed delays 
modeling the memory effects of the drivers, SIAM J. Appl. Math., 68 (2008), 738–759. 
https://doi.org/10.1137/060673813  

16. Y. Chang, Z. He, R. Cheng, An extended lattice hydrodynamic model considering the driver’s 
sensory memory and delayed-feedback control, Physica A, 514 (2008), 522–532. 
https://doi.org/10.1016/j.physa.2018.09.097  

17. Y. Sun, H. Ge, R. Cheng, An extended car-following model considering driver’s memory and 
average speed of preceding vehicles with control strategy, Physica A, 521 (2019), 752–761. 
https://doi.org/10.1016/j.physa.2019.01.092  

18. Z. Xin, J. Xu, Analysis of a car-following model with driver memory effect, Int. J. Bifurcation 
Chaos, 25 (2015), 1550057. https://doi.org/10.1142/S0218127415500571  

19. C. Zhai, W. Wu, A new continuum model with driver’s continuous sensory memory and 
preceding vehicle’s taillight, Commun. Theor. Phys., 72 (2020), 105004.  



363 

Electronic Research Archive  Volume 31, Issue 1, 342–366. 

20. M. Zhou, X. Qu, X. Li, A recurrent neural network based microscopic car following model to 
predict traffic oscillation, Transp. Res. Part C Emerging Technol., 84 (2017), 245–264. 
https://doi.org/10.1016/j.trc.2017.08.027 

21. X. Pei, Y. Pan, H. Wang, S. Wong, K. Choi, Empirical evidence and stability analysis of the linear 
car-following model with gamma-distributed memory effect, Physica A, 449 (2016), 311–323. 
https://doi.org/10.1016/j.physa.2015.12.104  

22. R. Sipahi, F. M. Atay, S. I. Niculescu, Stability of traffic flow behavior with distributed delays 
modeling the memory effects of the drivers, SIAM J. Appl. Math., 68 (2008), 738–759. 
https://doi.org/10.1137/060673813  

23. M. A. Hossain, J. Tanimoto, The “backward-looking” effect in the continuum model considering 
a new backward equilibrium velocity function, Nonlinear Dyn., 106 (2021), 2061–2072. 
https://doi.org/10.1007/s11071-021-06894-2  

24. D. Jia, D. Ngoduy, Enhanced cooperative car-following traffic model with the combination of 
V2V and V2I communication, Transp. Res. Part B Methodol., 90 (2016), 172–191. 
https://doi.org/10.1016/j.trb.2016.03.008 

25. J. Xiao, M. Ma, S. Liang, G. Ma, The non-lane-discipline-based car-following model considering 
forward and backward vehicle information under connected environment, Nonlinear Dyn., 107 
(2022), 2787–2801. https://doi.org/10.1007/s11071-021-06999-8  

26. D. Ngoduy, Analytical studies on the instabilities of heterogeneous intelligent traffic flow, 
Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2699–2706. 
https://doi.org/10.1016/j.cnsns.2013.02.018  

27. J. Larsson, M. F. Keskin, B. Peng, B. Kulcsár, H. Wymeersch, Pro-social control of connected 
automated vehicles in mixed-autonomy multi-lane highway traffic, Commun. Transp. Res., 1 
(2021), 100019. https://doi.org/10.1016/j.commtr.2021.100019 

28. Y. Li, W. Chen, S. Peeta, Y. Wang, Platoon control of connected multi-vehicle systems under 
V2X communications: design and experiments, IEEE Trans. Intell. Transp. Syst., 21 (2019), 
1891–1902. 

29. D. Ngoduy, Effect of the car-following combinations on the instability of heterogeneous traffic 
flow, Transportmetrica B Transport Dyn., 3 (2015), 44–58. 
https://doi.org/10.1080/21680566.2014.960503  

30. B. Wang, T. M. Adams, W. Jin, Q. Meng, The process of information propagation in a traffic 
stream with a general vehicle headway: A revisit, Transp. Res. Part C Emerging Technol., 18 
(2010), 367–375. https://doi.org/10.1016/j.trc.2009.05.011  

31. X. Wang, Modeling the process of information relay through inter-vehicle communication, 
Transp. Res. Part B Methodol., 41 (2007), 684–700. https://doi.org/10.1016/j.trb.2006.11.002  

32. W. Jin, W. W. Recker, Instantaneous information propagation in a traffic stream through inter-
vehicle communication, Transp. Res. Part B Methodol., 40 (2006), 230–250. 
https://doi.org/10.1016/j.trb.2005.04.001  

33. A. Kesting, M. Treiber, D. Helbing, Enhanced intelligent driver model to access the impact of 
driving strategies on traffic capacity, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 368 (2010), 
4585–4605. https://doi.org/10.1098/rsta.2010.0084  

34. Y. Li, L. Zhang, S. Peeta, X. He, T. Zheng, Y. Li, A car-following model considering the effect 
of electronic throttle opening angle under connected environment, Nonlinear Dyn., 85 (2016), 
2115–2125. https://doi.org/10.1007/s11071-016-2817-y  



364 

Electronic Research Archive  Volume 31, Issue 1, 342–366. 

35. J. Wu, X. Qu, Intersection control with connected and automated vehicles: a review, J. Intell. and 
Connected Veh., 5 (2022), 260–269. https://doi.org/10.1108/JICV-06-2022-0023 

36. T. Olovsson, T. Svensson, J. Wu, Future connected vehicles: Communications demands, privacy 
and cyber-security, Commun. Transp. Res., 2 (2022), 100056. 
https://doi.org/10.1016/j.commtr.2022.100056 

37. K. L. Lim, J. Whitehead, D. Jia, Z. Zheng, State of data platforms for connected vehicles and 
infrastructures, Commun. Transp. Res., 1 (2021), 10001. 
https://doi.org/10.1016/j.commtr.2021.100013 

38. D. Ngoduy, S. Lee, M. Treiber, H. Vu, Langevin method for a continuous stochastic car-following 
model and its stability conditions, Transp. Res. Part C Emerging Technol., 105 (2019), 599–610. 
https://doi.org/10.1016/j.trc.2019.06.005  

39. R. Jiang, M. Hu, H. Zhang, Z. Gao, B. Jia, Q. Wu, et al., Traffic experiment reveals the nature of 
car-following, PloS One., 9 (2014), 94351. https://doi.org/10.1371/journal.pone.0094351  

40. R. Jiang, M. Hu, H. Zhang, Z. Gao, B. Jia, Q. Wu, On some experimental features of car-following 
behavior and how to model them, Transp. Res. Part B Methodol., 80 (2015), 338–354. 
https://doi.org/10.1016/j.trb.2015.08.003  

41. R. Jiang, C. Jin, H. Zhang, Y. Huang, J. Tian, W. Wang, et al., Experimental and empirical 
investigations of traffic flow instability, Transp. Res. Part C Emerging Technol., 94 (2018), 83–
98. https://doi.org/10.1016/j.trc.2017.08.024  

42. J. Tian, R. Jiang, B. Jia, Z. Gao, S. Ma, Empirical analysis and simulation of the concave growth 
pattern of traffic oscillations, Transp. Res. Part B Methodol., 93 (2016), 338–354. 
https://doi.org/10.1016/j.trb.2016. 08.001  

43. J. Tian, H. Zhang, M. Treiber, R. Jiang, Z. Gao, B. Jia, On the role of speed adaptation and spacing 
indifference in traffic instability: Evidence from car-following experiments and its stochastic 
model, Transp. Res. Part B Methodol., 129 (2019), 334–350. 
https://doi.org/10.1016/j.trb.2019.09.014  

44. F. Zheng, S. E. Jabari, H. Liu, D. Liu, Traffic state estimation using stochastic Lagrangian 
dynamics, Transp. Res. Part B Methodol., 115 (2018), 143–165. 
https://doi.org/10.1016/j.trb.2018.07.004  

45. J. A. Laval, C. S. Toth, Y. Zhou, A parsimonious model for the formation of oscillations in car-
following models, Transp. Res. Part B Methodol., 70 (2014), 228–238. 
https://doi.org/10.1016/j.trb.2014.09.004  

46. K. Yuan, J. Laval, V. L. Knoop, R. Jiang, S. P. Hoogendoorn, A geometric Brownian motion car-
following model: towards a better understanding of capacity drop, Transportmetrica B Transport 
Dyn., 21 (2018), 915–927. https://doi.org/10.1080/21680566.2018.1518169 

47. J. Tian, C. Zhu, D. Chen, R. Jiang, G. Wang, Z. Gao, Car following behavioral stochasticity 
analysis and modeling: Perspective from wave travel time, Transp. Res. Part B Methodol., 143 
(2021), 160–176. https://doi.org/10.1016/j.trb.2020.11.008 

48. D. Ngoduy, Noise-induced instability of a class of stochastic higher order continuum traffic 
models, Transp. Res. Part B Methodol., 150 (2021), 260–278. 
https://doi.org/10.1016/j.trb.2021.06.013 



365 

Electronic Research Archive  Volume 31, Issue 1, 342–366. 

49. P. Lin, X. Liu, M. Pei, P. Wu, Revealing the spatial variation in vehicle travel time with weather 
and driver travel frequency impacts: Findings from the Guangdong-Hong Kong-Macao Greater 
Bay Area, China, Electron. Res. Arch., 30 (2022), 3711–3734. 
https://doi.org/10.3934/era.2022190 

50. P. Wagner, A time-discrete harmonic oscillator model of human car-following, Eur. Phys. J. B, 
84 (2011), 713–718. https://doi.org/10.1140/epjb/e2011-20722-8  

51. P. Wagner, Analyzing fluctuations in car-following, Transp. Res. Part B Methodol., 46 (2012), 
1384–1392. https://doi.org/10.1016/j.trb.2012.06.007  

52. M. Makridis, L. Leclercq, B. Ciuffo, G. Fontaras, K. Mattas, Formalizing the heterogeneity of the 
vehicle-driver system to reproduce traffic oscillations, Transp. Res. Part C Emerging Technol., 
120 (2020), 102803. https://doi.org/10.1016/j.trc.2020.102803  

53. J. Wen, C. Wu, R. Zhang, X. Xiao, N. Nv Y. Shi, Rear-end collision warning of connected 
automated vehicles based on a novel stochastic local multivehicle optimal velocity model, Accid. 
Anal. Prev., 148 (2020), 105800. https://doi.org/10.1016/j.aap.2020.105800 

54. X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 2008. 
55. R. Ortega, Variations on Lyapunov’s stability criterion and periodic prey-predator systems, 

Electron. Res. Arch., 29 (2021), 3995. https://doi.org/10.3934/era.2021069 

Appendix A. Stability condition derivation for S-SFVDM 

Expand   1  in zt
nv t e      and   2 in zt

nx t e     . 1   and 2   are constants. Therefore, 
Equation (34) can be read as the linear stochastic ordinary differential equation: 

 𝑑X 𝑡 P X 𝑡 𝑑𝑡 Q X 𝑡 𝑑𝑊 𝑡  (A1) 

where 

 P
0 𝑒 1

𝛼𝑉 𝛼 𝜆 𝑒 1 𝜌 𝜆, 𝑘, 𝜏, 𝜂, 𝜙
  (A2) 

  Q
0 0

𝛼𝜎𝛽 0  (A3) 

 𝜌 𝑘, 𝜏, 𝜂, 𝜑 𝜙𝜏𝜂 ∑ 𝑓 𝑘𝜏 𝑒 𝜙𝜏 1 𝜂 ∑ 𝑓 𝑘𝜏 𝑒  (A4) 

Based on Definition 1, Theorem 3 and the corresponding proof will be derived. 
Theorem 3. The stochastic car-following model with the speed guidance strategy considered is 2nd-
moment exponentially stable if 

 𝜎
∑ ∑ ∑

 (A5) 

where /Ts T  . 
Proof. The characteristic equation of the matrix P is 
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𝑧 𝑧 𝛼 𝜆 𝑒 1 𝜙𝜏 𝜂 ∑ 𝑓 𝑘𝜏 𝑒 1 𝜂 ∑ 𝑓 𝑘𝜏 𝑒

𝛼𝑉 𝑒 1 0 (A6) 

Expanding 2
1 2z i z z       into Eq (A6) and ignoring the high-order terms by setting the 

first-order and second-order terms to zeros, the expressions of 1z  and 2z  can be obtained: 

 𝑧
∑

 (A7) 

∑
∑

∑
∑

∑
  (A8) 

The condition of stochastic stability will be held only if 1 0z   and 2 0z  . Therefore, we can obtain 
the stability conditions by taking   as the variable: 

 𝜎
∑ ∑ ∑

 (A9) 

When  
0

1
Ts

k

f k 


   (for example, 100 10Ts s    and  
0

 1
Ts

k

f k 


   for 2 u    and 1m   ; 

10 s was deemed as a reasonable value of the length of effective memory time of drivers [18]), Equation 
(A9) can be simplified as 

 𝜎
∑

 (A10) 
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