
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(1): 229–250
DOI: 10.3934/era.2023012
Received: 15 September 2022
Revised: 06 October 2022
Accepted: 09 October 2022
Published: 28 October 2022

Research article

Statistical analysis of numerical solutions to constrained phase separation
problems

Michael Barg1,*and Amanda Mangum2

1 Department of Mathematics, Niagara University, NY 14109, USA

2 Department of Mathematics and Computer Science, Converse University, Spartanburg, SC 29302,
USA

* Correspondence: Email: mbarg@niagara.edu; Tel: +17162868325; Fax: +17162868215.

Abstract: We compute numerical solutions to a linearly constrained phase separation problem and
a nonlinearly constrained phase separation problem on compact surfaces. Results are presented for
oblate and prolate ellipsoids and Cassinian ovals. We implement a finite element, phase field method
to determine solutions in the form of patches that are approximately geodesic disks for some values
of the parameters. Our patches are numerical solutions to diffuse interface problems, and they exhibit
qualitative features of solutions to corresponding sharp interface problems that are often studied in
a Γ-convergence setting. Our use of a nonlinear conservation constraint is motivated by a desire to
sharpen the interface between two distinct regions: the patch and the rest of the surface. To this end,
we explore features of the patches arising in both problems. A “geodesic protocol” is implemented to
generate various statistics concerning the patch that are useful for measuring patch deviation from a
geodesic disk shape. We then perform the Student’s t-test on paired differences of these statistics to
determine whether or not there is a significant statistical difference between the linear constraint and
nonlinear constraint approaches. The novel use of statistical analysis to compare these two methods
reveals noteworthy differences. We show that the two approaches yield significantly different results
for some of the statistics. The statistical results are found to depend on both the type of geometry and
the patch size in some situations. Small patches are difficult to compute numerically, but we find that
the use of a nonlinear constraint aids in their computation.
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1. Introduction

We consider a phase separation problem that involves the minimization of the functional

Fp(ϕ) =
∫

M

ϵ2

2
||∇Sϕ||

2 + βϕ2(1 − ϕ)2 dS (1.1)

where ϵ > 0 and β > 0 are constant parameters. The integral in Eq (1.1) is taken over a compact
surface M ⊂ R3, dS is surface area measure, and ∇S is a surface gradient operator. The functional
Fp(ϕ) is a Landau-type free energy that is regularly considered in phase separation problems. Indeed,
minimization problems using Fp(ϕ) are studied in [1–3] with the linear conservation constraint∫

M
ϕ dS = ω|M| (1.2)

where ω ∈ (0, 1) is a conservation constraint parameter and |M| is the surface area of M. The problem
of minimizing Eq (1.1) subject to Eq (1.2) with ϕ in an appropriate space of admissible functions is
sometimes called the diffuse interface problem. Using Γ-convergence methods, one can study a related
functional that is defined on certain subsets E ⊂ M with |E| = ω|M|. This latter approach gives rise to
a problem known as the sharp interface problem (see, e.g., [4] or [5]).

The literature concerning relationships between the diffuse interface problem and the sharp interface
problem is vast. As in [6], we study how numerical solutions arising in the diffuse interface approach
compare to those from the sharp interface problem. Let χE be the indicator function for E ⊂ M, i.e.,
χ(x, y, z) = 1 if (x, y, z) ∈ M and χ(x, y, z) = 0 if (x, y, z) < M. If ϕ = χE, then Eq (1.2) reduces to
the area constraint |E| = ω|M|. In this work, we will compare results obtained from minimizing Fp

subject to the linear constraint Eq (1.2) with results obtained from minimizing Fp subject to a nonlinear
constraint in the form of ∫

M
f (ϕ) dS = ω|M| (1.3)

for an appropriate nonlinear function f (ϕ). Our particular choice is f (ϕ) = (ϕ2 − 2ϕ)2, and we note
that Eq (1.3) also reduces to |E| = ω|M| if ϕ = χE. Our motivation for considering such a nonlinear
constraint stems from [7] wherein a similar function of ϕ is utilized in an effort to better capture the
sharp interfacial structure of the boundary between two distinct regions of interest. Our intent in using
Eq (1.3) then is to “encourage” the formation of a sharper interface between E and M \ E than what is
found when the minimization problem is subject to the linear constraint.

Specific details will be given in Section 2, but let us list our two problems for suitably defined spaces
of admissible functionsALC andANLC. When the linear constraint is applied, we have

Problem PLC inf
ϕ∈ALC

Fp(ϕ) (1.4)

when the nonlinear constraint is applied, we have

Problem PNLC inf
ϕ∈ANLC

Fp(ϕ) (1.5)

In both problems, the conservation constraint is built into the space of admissible functions. Let the
Sobolev space W1,2(M) be the completion of C1

pw(M), i.e., the space of piecewise continuously
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differentiable functions on M, with respect to the norm

||u||21,2 =
∫

M
||∇S u||2 + u2 dS , u ∈ C1

pw(M)

As in other work (see, e.g., [8]), we define the admissible function spaces

ALC =

{
ϕ ∈ W1,2(M)

∣∣∣∣ ∫
M
ϕ dS = ω|M|

}
and ANLC =

{
ϕ ∈ W1,2(M)

∣∣∣∣ ∫
M

(ϕ2 − 2ϕ)2 dS = ω|M|
}

We consider a two-phase system in this work, where the surface M might be thought of as an
approximation of a static lipid bilayer membrane. Physical realizations of such systems have been
studied by other authors (see, e.g., [9]). If distinct phases correspond to different concentrations of
two different types of lipids in the membrane, then for certain values of the parameters we expect the
lipid that appears in less quantity to coalesce into a patch. It is observed physically (see [9] or [3]) and
predicted analytically (see [3]), that such patches will tend to take the shape of a geodesic disk centered
near a point on the surface where the Gauss curvature, K, is a maximum provided that the linear
conservation constraint parameterω is small enough. In [1], the authors provide numerical explorations
on ellipsoids that confirm these observations. Larger patches, corresponding to larger values of ω, are
observed to behave like the small ones. In [10], the problem is taken up again by considering numerical
solutions on Cassinian ovals. When Cassinian ovals are used instead of ellipsoids, one finds that
certain large patches deviate from the geodesic disk shape. The authors of [10] develop a scheme for
determining how closely a patch resembles an actual geodesic disk. We call this scheme the “geodesic
protocol”, and we describe the approach in Section 4 so that differences in the quality of solutions
arising in the linearly constrained problem and the nonlinearly constrained problem can be assessed.
The robustness of the aforementioned procedures has clearly been established in previous works. The
protocol for determining relevant features of the patch was developed in [10], and the general phase
separation problem on compact surfaces has been widely studied in both two and three dimensions
(see, e.g., [1–3, 5, 8]). Our new approach of determining statistically significant differences between
the linear and nonlinear constraint methods could be applied to any compact surface previously studied
but is restricted to ellipsoids and Cassinian ovals for this work. These methods differ from what is in
the phase separation literature because we are completing a full statistical analysis on the difference
between the two approaches and not just computing an absolute difference in one measurable quantity
after obtaining solutions in each of two different approaches, as in [11].

The rest of the paper will proceed as follows. Section 2 contains information about our numerical
approach and discretization. Our numerical solutions on ellipsoids and Cassinian ovals are presented
in Section 3. Details about our geodesic protocol are given in Section 4. Statistical analysis of our
solutions is presented in Section 5, and the paper concludes in Section 6.

2. Discretization of problem PLC and problem PNLC

We use a finite element method for the discretization of Problem PLC and Problem PNLC. The finite
minimization problems are then processed with MATLAB’s fmincon routine. We use fmincon’s
interior point method with a user-supplied gradient and Hessian. This routine is chosen since it allows
for a straightforward implementation of both the linear equality conservation constraint and the
nonlinear equality conservation constraint.
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The main format of our approach is standard, and it is essentially the same as the approach used
in [1, 2, 10]. We opt to use the reference triangle T = {(r, s) | 0 ≤ s ≤ 1 − r, 0 ≤ r ≤ 1} in the rs-plane
with vertices at N1(0, 0),N2(1, 0), and N3(0, 1). See Figure 1(a).

N1 N2

N3

s

r

(a) Reference triangle T
(b) Triangulation Mh

Figure 1. The reference triangle is a subset of R2. The faceted surface Mh is a subset of R3.

Let Ω ⊂ R2 be a suitable domain, and let X be a parameterization of M, i.e., X : Ω → R3 with
X(Ω) = M. For convenience, suppose T ⊂ Ω and set Vi = X(Ni) for i = 1, 2, 3. Then Vi for i = 1, 2, 3
are the vertices of a triangular facet τ j ⊂ Mh, where Mh is a faceted surface that approximates M with
mean grid size h. The edges of τ j will be denoted by e12 = V2−V1, e23 = V3−V2, and e31 = V1−V3. In
this context, it is common to refer to the vertices as nodes. Let Nh be the number of nodes in Mh, and
let NT be the number of triangular facets in Mh. We consider Mh =

⋃NT
j=1 τ j as an approximation to M,

and we use Personn’s mesh generator (see [12]) to produce Mh. Figure 1(b) shows Mh for a Cassinian
oval with Nh = 2040 and NT = 4076.

As in [13], the shape functions for linear finite elements are S 1 = 1 − r − s, S 2 = r, and S 3 = s. We
approximate a smooth phase function ϕ on M with the piecewise linear function

ϕh(r, s) =
3∑

i=1

ϕiS i = ϕ1 + (ϕ2 − ϕ1)r + (ϕ3 − ϕ1)s

where ϕi = ϕ(Vi) are phase values at the nodes of Mh. ϕh is defined on Mh. The degrees of freedom in
our minimization problem are the phase values at the Nh nodes in Mh. Let Φ be the vector of the Nh

phase values.
To discretize the phase energy, Fp, we deal with its two terms separately. For the first term, we

approximate ∫
M

ϵ2

2
||∇Sϕ||

2 dS ≈
∫

Mh

ϵ2

2
||∇Sϕh||

2 dS

Let E, F, and G be coefficients of the first fundamental form on M. From [14],

||∇Sϕh(r, s)||2 =
1

EG − F2

G (
∂ϕh

∂r

)2

− 2F
∂ϕh

∂r
∂ϕh

∂s
+ E

(
∂ϕh

∂s

)2
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We use the approximations E ≈ e12 · e12, F ≈ e12 · e23, and G ≈ e23 · e23 in our model. It follows that∫
Mh

ϵ2

2
||∇Sϕh||

2 dS =

NT∑
j=1

∫
T

ϵ2

2
1

EG − F2

G (
∂ϕh

∂r

)2

− 2F
∂ϕh

∂r
∂ϕh

∂s
+ E

(
∂ϕh

∂s

)2 dA||e12 × e23||

= ϵ2

2 Φ
T AΦ

Integration over the reference triangle is done exactly to find coefficients of ϕ1, ϕ2, and ϕ3 on each
triangular facet. The Nh × Nh matrix A is formed by filling 3 × 3 submatrices with such coefficients.
For the second term in Fp, we compute∫

M
βϕ2(1 − ϕ)2 dS ≈

∫
Mh

βϕ2
h(1 − ϕh)2 dS

=

NT∑
j=1

∫
T
βϕ2

h(1 − ϕh)2 dA||e12 × e23||

= N(Φ)

As above, the integrals are computed exactly. This results in a nonlinear function of the phase values,
N(Φ). Since we are not pursuing a complete parametric study here, we set β = 0.25 in our code. This
choice of β is consistent with [10]. Setting Fh

p(Φ) = ϵ
2

2 Φ
T AΦ + N(Φ), we have Fp(ϕ) ≈ Fh

p(Φ).
Our discrete variational problem with linear constraint is then

Problem Ph
LC inf

Φ∈RNh ,AeqΦ=ω|M|
Fh

p(Φ) (2.1)

for a 1 × Nh linear constraint matrix Aeq. Specifically, Aeq is computed via the approximation∫
M
ϕ dS ≈

∫
Mh

ϕh dS

=

NT∑
j=1

∫
T
ϕh dA||e12 × e23||

= AeqΦ

Note that, with appropriate changes arising from our choice of reference triangle, Problemh
LC is the

same as [2] with γ = 0 since we are not including an inhibitory term in the present work.
Our discrete variational problem with nonlinear constraint is

Problem Ph
NLC inf

Φ∈RNh ,ceq(Φ)=0
Fh

p(Φ) (2.2)

for a nonlinear constraint function ceq that codes our nonlinear conservation constraint Eq (1.3). In
writing the function, we use f (ϕ) = (ϕ2 − 2ϕ)2 and the approximation∫

M
(ϕ2 − 2ϕ)2 dS ≈

NT∑
j=1

∫
T
(ϕ2

h − 2ϕh)2 dA||e12 × e23|| (2.3)

where the integration over T is carried out explicitly. ceq(Φ) is then

ceq(Φ) =
NT∑
j=1

∫
T
(ϕ2

h − 2ϕh)2 dA||e12 × e23|| − ω|M|
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The surface areas |M| are computed exactly for the ellipsoids. We use the surface area formula in [15]
as an approximation to |M| for the Cassinian oval surface. See Table 1 for a list of surface areas and
other mesh information. Note that values are rounded to four decimal places for convenience. Also,
naming schemes for the various geometries are presented in Section 3.

Table 1. Mesh information and |M| for all geometries.

Surface h Nh NT |M|
(1, 1, 2) Prolate ellipsoid 0.1069 2192 4380 21.4784
(2, 2, 1) Oblate ellipsoid 0.1077 3492 6980 34.6875(
1,

√
1+
√

17
4

)
Cassinian oval 0.1088 2040 4076 20.7168

Remark 2.1. We use f (ϕ) = (ϕ2 − 2ϕ)2 in Eq (2.3). Similar to the approach in [7], we choose f (ϕ) so
that f (0) = 0, f (1) = 1, and f ′(0) = f ′(1) = 0. It has been our convention that ϕ ≈ χE in an attempt to
approximate the sharp interface problem. However, we could just as well have ϕ ≈ χM\E. In this case,
one might elect to use f (ϕ) = (ϕ2 − 1)2 in Eq (2.3) with f (0) = 1 and f (1) = 0. In future work, one
might consider such other choices for f .

While fmincon is able to handle inequality constraints and bounds on ϕ, i.e., constants lb and ub
such that lb ≤ ϕ ≤ ub, we do not employ those options. Our problem does not contain any inequality
constraints, and we find that MATLAB is better able to return “separated” solutions when we set
lb = ub = []. After MATLAB completes its minimization, numerical solutions are checked against
Def. 3.1 to ensure that appropriate upper and lower bounds are satisfied.

3. Numerical results

We provide an overview of our numerical solutions in this section. We refer to our solutions as
patches. We only wish to consider patches that are suitably well-separated. We adopt a definition
from [10].

Definition 3.1. (a) A strongly separated solution to Problem Ph
LC is a collection of values

ϕ∗h = {ϕ
∗
h,1, ϕ

∗
h,2, . . . , ϕ

∗
h,Nh
} such that Fh

p(ϕ∗h) ≤ Fh
p(Φ) for all Φ ∈ RNh with AeqΦ = ω|M| and

0.9 ≤ max{ϕ∗h} ≤ 1.02 and − 0.02 ≤ min{ϕ∗h} ≤ 0.1

(b) A strongly separated solution to Problem Ph
NLC is a collection of values ϕ∗h = {ϕ

∗
h,1, ϕ

∗
h,2, . . . , ϕ

∗
h,Nh
}

such that Fh
p(ϕ∗h) ≤ Fh

p(Φ) for all Φ ∈ RNh with ceq(Φ) = 0 and

0.9 ≤ max{ϕ∗h} ≤ 1.02 and − 0.02 ≤ min{ϕ∗h} ≤ 0.1

Note that our definition of a strongly separated solution is essentially the definition of a “δ0 strongly
separated solution” from [10] with δ0 = 0.1 and the additional restrictions that max{ϕ∗h} ≤ 1.02 and
min{ϕ∗h} ≥ −0.02. These additional restrictions are used in lieu of a priori bounds lb and ub. The
restrictions ensure that strongly separated solutions do not contain maximum and minimum phase
values that deviate too far from 0 and 1. We can now be more specific about what is meant by a
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“small” patch and a “large” patch. A small patch is a strongly separated solution with 0 < ω ≤ 0.25,
and a large patch is a strongly separated solution with 0.25 < ω ≤ 0.5.

For some choices of the parameters, fmincon is unable to compute strongly separated solutions. It
will sometimes happen that fmincon returns a separated solution with phase values larger than 1.02
and/or smaller than −0.02. We do not use such solutions. Other times, MATLAB terminates with
a constant solution ϕ∗h ≈ ϕconst. In this case, when the linear conservation constraint is imposed,
Eq (1.2) implies that ϕconst = ω. It then follows that Fp(ϕconst) = βω2(1 − ω)2|M|. When the nonlinear
conservation constraint is imposed in such situations, Eq (1.3) implies that ϕconst = G(ω) for a suitable
constant function G that solves

ϕ4
const − 4ϕ3

const + 4ϕ2
const = ω

It then follows that Fp(ϕconst) = βG(ω)2(1 − G(ω))2|M|. As an example, when ω = 0.25, ϵ = 0.5,
and β = 0.25, we find that ϕconst ≈ 0.2929 and Fp(ϕconst) ≈ 0.3720 for our oblate ellipsoid with
|M| ≈ 34.6875. This is in good agreement with the MATLAB returned values of ϕconst ≈ 0.2930 and
Fp ≈ 0.3718. Henceforth, we focus solely on strongly separated solutions.

We seek to answer the question “Does using the nonlinear constraint yield better results?” Better
results can be interpreted in many different ways. We pursue two directions to this end. We will
see that using the nonlinear constraint allows MATLAB to compute strongly separated solutions for
parameter values that do not yield strongly separated solutions with the linear constraint. The nonlinear
constraint is better in this case in terms of providing a means to compute more strongly separated
solutions. Secondly, we will perform statistical hypothesis tests in Section 5 in order to assess if
there are statistical differences in the strongly separated solutions that are computed with the nonlinear
constraint compared to the solutions that are computed with the linear constraint.

In solving the constrained minimization problems, we use the default values for the Lagrange
multipliers that are provided by MATLAB. While it is possible to provide physical interpretations of
Lagrange multipliers in a given context when Fp is viewed appropriately, we do not explore this
direction in the current work. Such explanation would deviate too far from our main objective of
performing statistical analysis of solution quality, regardless of a particular physical meaning.
Preliminary observations of Lagrange multiplier values from the linearly constrained and nonlinearly
constrained cases seem to suggest little difference between the two, but we leave a more careful
analysis for a future study. Additional future work considering physical interpretations of the
Lagrange multiplier arising from the nonlinear constraint in comparison to known physical
interpretations of the Lagrange multiplier arising from the linear constraint could also be pursued.

In the remainder of this section, we present strongly separated solutions on ellipsoids and Cassinian
ovals. In order to compute a strongly separated solution, we input an initial phase configuration into
MATLAB of the form

ϕ0
h,z>1.75 =

{
1 if z ≥ 1.75
0 otherwise

Note that we use the same naming convention, with appropriate corrections in notation, when the
piecewise function is defined by restricting x or y. Figure 2 shows the initial phase configuration ϕ0

h,x>1
that is used for our Cassinian oval solutions.
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Figure 2. An initial configuration ϕ0
h,x>1 for a Cassinian oval.

3.1. Summary of results for ellipsoids

We solved the phase separation problems on ellipsoids

x2

a2 +
y2

b2 +
z2

c2 = 1 (3.1)

We will identify each ellipsoid with the naming scheme (a, b, c) ellipsoid. Our results are from a
(1, 1, 2) prolate ellipsoid and a (2, 2, 1) oblate ellipsoid. All of the solutions on the (1, 1, 2) prolate
ellipsoid are computed with an initial phase configuration ϕ0

h,z>1.75. All of the solutions on the (2, 2, 1)
oblate ellipsoid are computed with an initial phase configuration ϕ0

h,y>1.75.
Solutions are denoted by (ω, ϵ) pairs. For example, we found a (0.05, 0.04) strongly separated

solution on the (1, 1, 2) prolate ellipsoid. This means that we selected the parameters
ω = 0.05, ϵ = 0.04, a = b = 1, c = 2, and ϕh,z>1.75 and ran our minimization program. MATLAB
returned a phase configuration ϕ∗h satisfying Def. 3.1. In this work, we do not claim to have conducted
an exhaustive search of the ωϵ-plane. Instead, the solutions on the ellipsoids were found with a search
over 0.05 ≤ ω ≤ 0.5 with step size 0.05 and 0.04 ≤ ϵ ≤ 0.12 with step size 0.01 in the small ω case
and 0.05 ≤ ϵ ≤ 0.3 with step size 0.05 in the large ω case. In Table 2, example solutions are given for
a (1, 1, 2) prolate ellipsoid. “No Change” means that the same set of ϵ values that worked for the given
ω in the linearly constrained problem worked for the nonlinearly constrained problem.

Of note, when ω = 0.05, we obtain four additional strongly separated solutions when the nonlinear
conservation constraint is used. When ω = 0.1, we obtain three additional strongly separated
solutions when the nonlinear conservation constraint is used. The (0.15, 0.04) and (0.2, 0.04) solutions
to Problem Ph

NLC had min{ϕ∗h} < −0.02. Oddly, the (0.5, 0.2) solution to Problem Ph
NLC resulted in

ϕ∗h ≈ ϕconst ≈ 1.5.
In Table 3, example solutions are given for a (2, 2, 1) oblate ellipsoid. These solutions were found

using the same search in the ωϵ-plane as was used for the presented prolate ellipsoid solutions.
Additionally, we computed the (0.3, 0.04) solution in order to have a sample size of at least thirty
solutions for our statistical analysis in the large solution regime. Of note, when ω = 0.05, we obtain
five additional strongly separated solutions when the nonlinear conservation constraint is used. When
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ω = 0.1, we obtain one additional strongly separated solution when the nonlinear conservation
constraint is used.

Table 2. Strongly separated solutions on a (1, 1, 2) prolate ellipsoid.

ω Valid ϵ for Problem Ph
LC Valid ϵ for Problem Ph

NLC
0.05 {0.04} {0.04, 0.05, 0.06, 0.07, 0.08}
0.1 {0.04, 0.05, 0.06, {0.04, 0.05, 0.06, 0.07, 0.08,

0.07, 0.08, 0.09} 0.09, 0.1, 0.11, 0.12}
0.15 {0.04, 0.05, 0.06, 0.07, 0.08, {0.05, 0.06, 0.07, 0.08, 0.09,

0.09, 0.1, 0.11, 0.12} 0.1, 0.11, 0.12}
0.2 {0.04, 0.05, 0.06, 0.07, 0.08, {0.05, 0.06, 0.07, 0.08, 0.09,

0.09, 0.1, 0.11, 0.12} 0.1, 0.11, 0.12}
0.25 {0.04, 0.05, 0.06, 0.07, 0.08, No Change

0.09, 0.1, 0.11, 0.12}
0.3 {0.05, 0.1, 0.15, 0.2, 0.25} No Change
0.35 {0.05, 0.1, 0.15, 0.2, 0.25} No Change
0.4 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} No Change
0.45 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} No Change
0.5 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} {0.05, 0.1, 0.15, 0.25, 0.3}

Table 3. Strongly separated solutions on a (2, 2, 1) oblate ellipsoid.

ω Valid ϵ for Problem Ph
LC Valid ϵ for Problem Ph

NLC
0.05 {0.04, 0.05} {0.04, 0.05, 0.06, 0.07,

0.08, 0.09, 0.1}
0.1 {0.04, 0.05, 0.06, 0.07, 0.08, {0.04, 0.05, 0.06, 0.07, 0.08,

0.09, 0.1, 0.11} 0.09, 0.1, 0.11, 0.12}
0.15 {0.04, 0.05, 0.06, 0.07, 0.08, No Change

0.09, 0.1, 0.11, 0.12}
0.2 {0.04, 0.05, 0.06, 0.07, 0.08, No Change

0.09, 0.1, 0.11, 0.12}
0.25 {0.04, 0.05, 0.06, 0.07, 0.08, No Change

0.09, 0.1, 0.11, 0.12}
0.3 {0.04, 0.05, 0.1, 0.15, 0.2, 0.25} No Change
0.35 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} No Change
0.4 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} No Change
0.45 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} No Change
0.5 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} No Change

3.2. Summary of results for Cassinian ovals

We solved the phase separation problems on a Cassinian oval

(a2 + x2 + y2 + z2)2 − 4a2(x2 + y2) = c4 (3.2)
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with shape parameters a = 1 and c =
√

1+
√

17
4 . As in [10], these constants are chosen so that the

Gauss curvature at x = y = 0 is equal to the Gauss curvature at z = 0. The Cassinian oval geometry is
interesting to consider since it is qualitatively similar to a discocyte Willmore surface. Additionally, it
is an example of a geometry that contains regions with K > 0,K = 0, and K < 0, unlike the ellipsoids
that have served as benchmark geometries in previous work. Although the Cassinian oval geometry
contains three distinct regions of Gauss curvature, each strongly separated solution is centered at a point

in the positive curvature region. All of the solutions on the
(
1,

√
1+
√

17
4

)
Cassinian oval are computed

with an initial phase configuration ϕ0
h,x>1.

In Table 4, example solutions are given for a
(
1,

√
1+
√

17
4

)
Cassinian oval. See Figure 3 for an image

of the (0.5, 0.15) strongly separated solution to Problem Ph
NLC. We note that the Table 4 solutions were

found with a search considering only 0.05 ≤ ω ≤ 0.5 with a step size of 0.05 and 0.02 ≤ ϵ ≤ 0.1 with a
step size of 0.02. With ϵ ∈ {0.11, 0.12, 0.13, 0.15}, the (0.45, ϵ) and (0.5, ϵ) solutions to Problem Ph

NLC
were computed so that the total sample size of such large solutions would be at least thirty. Of note,
when ω = 0.05, we obtain five additional strongly separated solutions when the nonlinear constraint
is used. We obtain two additional strongly separated solutions when ω = 0.1 and when ω = 0.15.
The (0.4, 0.05), (0.45, ϵ), and (0.5, ϵ) for ϵ ∈ {0.04, 0.05, 0.06, 0.07} parameter pairs failed to produce
strongly separated solutions to Problem Ph

NLC.

Figure 3. A (0.5, 0.15) strongly separated solution to Problem Ph
NLC on a Cassinian oval.

In summary, despite not conducting an exhaustive search of the ω ϵ -plane for strongly separated
solutions, we see that the use of the nonlinear conservation constraint allows for strongly separated
solutions to be computed more readily for the smallest ω values. This is an important benefit to using
the nonlinear constraint since small patches are typically more difficult to compute than larger patches.
Generally speaking, the required computing time is larger when the nonlinear constraint is applied.
As such, using the linear constraint might be preferred for larger patches. Furthermore, our computed
large solutions suggest that the solution space to Problem Ph

NLC might be smaller than the solution space
to Problem Ph

LC in the large regime.
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Table 4. Strongly separated solutions on a
(
1,

√
1+
√

17
4

)
Cassinian oval.

ω Valid ϵ for Problem Ph
LC Valid ϵ for Problem Ph

NLC
0.05 {} {0.04, 0.05, 0.06, 0.07, 0.08}
0.1 {0.04, 0.05, 0.06, 0.07, 0.08} {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}
0.15 {0.06, 0.07, 0.08, 0.09, 0.1} {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}
0.2 {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} No Change
0.25 {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} No Change
0.3 {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} No Change
0.35 {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} No Change
0.4 {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} {0.04, 0.06, 0.07, 0.08, 0.09, 0.1}
0.45 {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} {0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.15}
0.5 {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} {0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.15}

4. Geodesic protocol

Once a solution to Problem Ph
LC or Problem Ph

NLC has been computed, the solution is checked against
Def. 3.1. to determine whether or not it is a strongly separated solution. Solutions that are deemed
strongly separated then enter into the geodesic protocol that we describe in this section. The center of
the patch (xc, yc, zc) is determined first, based on the particular surface geometry. Let (X,Y ,Z) be the
patch center of mass coordinates that MATLAB computes by direct integration of the formulae

X =

∫
Mh

xϕh dS∫
Mh
ϕh dS

, Y =

∫
Mh

yϕh dS∫
Mh
ϕh dS

, Z =

∫
Mh

zϕh dS∫
Mh
ϕh dS

We set (xc, yc, zc) = tc(X,Y ,Z) where tc is determined for the ellipsoids and Cassinian ovals by plugging
tc(X,Y ,Z) into Eqs (3.1) and (3.2), respectively.

After determining (xc, yc, zc), all nodes with corresponding ϕ∗h > 0.75 are labeled as members of the
patch, i.e, the patch is E = {(x, y, z) ∈ Mh | ϕ

∗
h(x, y, z) > 0.75}. From here, the radius of the patch, ρ,

is found by employing a shooting method together with MATLAB’s ode45 to approximate geodesic
curves on the surface. ρ is defined as the length of the longest geodesic connecting the center of the
patch to a node in the patch.

Four statistics of interest can now be computed for each solution. Let NE be the number of nodes in
E. As in [10], we identify nodes that are in violation of a decision criteria. Specifically, such nodes in
violation are vertices (x, y, z) ∈ V where

V = (Mh \ E) ∩
{
(x, y, z) ∈ Mh

∣∣∣ |dg((x, y, z); (xc, yc, zc)) − ρ| ≤ 0.03
}

and dg(X; Y) is the geodesic distance between points X,Y ∈ Mh. In the definition of V , the
tolerance 0.03 is chosen arbitrarily, but it suffices for our purposes of identifying nodes that are close
to ∂E. Four statistics of interest are listed as follows.

1) The number of nodes in violation, denoted by NV .

2) The mean phase value of the nodes in violation, denoted by Φ̄.
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3) The proportion NV/NE.

4) δ = min
{
|dg((x, y, z); (xc, yc, zc)) − ρ|

∣∣∣ (x, y, z) ∈ V
}

Patch nodes, nodes in violation, and ρ are illustrated in the schematic Figure 4. These statistics were
used in [10] in order to measure patch deviation from a geodesic disk shape.

V

Patch

∂E

.
(xc, yc, zc)

.

dg

dg ρ

Figure 4. Illustration of patch statistics with two blue square nodes in violation.

5. Statistical analysis

With an aim toward quantifying differences between solutions to Problem Ph
LC and Problem Ph

NLC we
will test for a mean difference by considering hypotheses in both the small ω and large ω regimes. We
restrict our analysis to the oblate ellipsoid and Cassinian oval geometries in order to best demonstrate
our methods.

The hypothesis tests are conducted for mean differences in eight quantities: NV , Φ̄, P = NV
NE

, δ, NE,
ρ, Fp(ϕ∗h), and total computation time T . We implement the Student’s t-test for our analysis and, in
alignment with standard practices, accept p-values of 0.05 and less as statistically significant. This
p-value measures the probability of our calculated value appearing given that the null hypothesized
difference of zero is true. The smaller the p-value, the more statistically significant the result since
it represents a smaller probability of that result occurring by chance under the null hypothesis. Since
we are conducting t-tests, we will report a sample mean difference and sample standard deviation of
the differences for each test. Sample sizes are needed in order to conduct the hypothesis tests. As
is standard, randomly selected samples of size at least thirty should be used. While a large enough
sample size is used for much of the work that follows, in some instances sample sizes are slightly less
than thirty. Small solutions are particularly difficult to obtain when the linear constraint is used. Table
4 shows that our sample size for small Cassinian oval solutions is n = 24. Furthermore, we are unable
to select random samples since we are limited by the strongly separated solutions that we are able to
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compute. The sample mean difference and sample standard deviation of the differences are computed
by pairing the data. For example, with the oblate ellipsoid geometry, there is a (0.05, 0.04) strongly
separated solution to Problem Ph

LC and a (0.05, 0.04) strongly separated solution to Problem Ph
NLC.

A pair of solutions represents one datum in our analysis. In other words, there is one difference
in each of our eight quantities of interest for each single pair of solutions. Differences in quantities
are formed by subtracting the quantity from the solution to Problem Ph

NLC from the quantity from the
solution to Problem Ph

LC. Figure 5 shows a pair of oblate ellipsoid solutions. For this pair, there is a
slight but noticeable difference in patch size. In Figure 5(a), the solution has 0.0139 ≤ ϕ∗h ≤ 1.0143
and Fp(ϕ∗h) = 0.0225. In Figure 5(b), the solution has −0.0052 ≤ ϕ∗h ≤ 1.0011 and Fp(ϕ∗h) = 0.0243.
Figure 6 shows a pair of Cassinian oval solutions. Note that while the two images are quite similar, the
solutions are not identical. The (0.3, 0.04) solution to Problem Ph

LC has −0.0015 ≤ ϕ∗h ≤ 1.0065 while
the solution to Problem Ph

NLC has −0.0051 ≤ ϕ∗h ≤ 1.003. The free energies of these solutions differs
only slightly. The solution to Problem Ph

LC has Fp = 0.0390 while the solution to Problem Ph
NLC has

Fp = 0.0389.

(a) (0.05, 0.04) oblate ellipsoid solution to Problem Ph
LC (b) (0.05, 0.04) oblate ellipsoid solution to Problem Ph

NLC

Figure 5. Note that these images are viewed from along the y-axis.

We find both statistically significant and insignificant differences in our solutions. In this section, we
highlight the statistically significant differences. The hypothesis tests yielding insignificant results are
included in the Appendix for completeness. At the standard 5% significance level, there is a significant
difference in mean NE and mean total computation time for both geometries in both size regimes. For
small and large oblate ellipsoid solutions and small Cassinian oval solutions, we find significant results
at the 5% significance level for mean differences in ρ, NV

NE
, and Fp(ϕ∗h). The notation µ∗,∗ will be used to

represent a population mean difference. Our notational convention for the subscript is quantity, regime
size. For example, the subscript NE, s pertains to the number of patch nodes for solutions from the
small ω region 0 < ω ≤ 0.25. On the other hand, the subscript NE, l signifies that the quantity refers to
solutions from the large ω region 0.25 < ω ≤ 0.5.
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(a) (0.3, 0.04) Cassinian oval solution to Problem Ph
LC (b) (0.3, 0.04) Cassinian oval solution to Problem Ph

NLC

Figure 6. Some large solutions exhibit no visual difference between constraint type.

While not a feature of a solution patch, total program run time might be of interest to those
researchers with limited computational resources. For example, nearly all of the ellipsoid solutions in
this work were computed on a single core personal laptop. The computer resources were taxed, and it
was not possible to compute solutions on finer meshes that one could consider on a more powerful
machine. The first two hypotheses are for a mean difference in the total program run time:

HIk : µT ,k , 0 for k ∈ {s, l}

The total program run time is the sum of the run time for the minimization of Fp and the run time for
the geodesic protocol. Differences in total run time are computed for pairs of solutions produced by a
single machine. As such, theω = 0.5 oblate ellipsoid solutions are excluded since they were found on a
different machine from the other oblate ellipsoid solutions. Table 5 shows relevant statistics for HIs and
HIl on our geometries. The reported sample mean and sample standard deviation values are in seconds.
Our p-values and negative sample mean differences demonstrate that solutions computed with the
nonlinear constraint take significantly longer to run than solutions computed with the linear constraint.
For those with limited computational power, our statistical results should be considered since we find
insignificant differences in solution patches for some regime sizes and geometries. Solving Problem
Ph

LC is significantly faster without a significantly different solution in such situations.

Table 5. Statistics and results for HIs and HIl.

Geometry Regime Sample Sample Sample Standard p-value
Size Size Mean Deviation

Oblate ellipsoid s 37 −4406.762 4783.744 0.0000024
Oblate ellipsoid l 25 −4661.668 4533.164 0.00003
Cassinian oval s 24 −3132.196 2935.688 0.000026
Cassinian oval l 26 −5217.503 4607.477 0.0000052
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The next two hypotheses are for a mean difference in NE:

HIIk : µNE,k , 0 for k ∈ {s, l}

Table 6 shows relevant statistics for HIIs and HIIl on our geometries. For both geometries, small
patches contain more nodes when the nonlinear constraint is used. Figure 5 clearly demonstrates this
significant effect. By contrast, our results show that, for both geometries, large patches contain more
nodes when the linear constraint is applied.

Table 6. Statistics and results for HIIs and HIIl.

Geometry Regime Sample Sample Sample Standard p-value
Size Size Mean Deviation

Oblate ellipsoid s 37 −27.3784 22.5245 0
Oblate ellipsoid l 30 27.4 27.6138 0.0000076
Cassinian oval s 24 −16.25 10.6332 0.0000001
Cassinian oval l 26 7.7692 9.3480 0.0003

The third set of hypotheses are for a mean difference in ρ:

HIIIk : µρ,k , 0 for k ∈ {s, l}

Table 7 shows relevant statistics for HIIIs and HIIIl on our geometries. The large regime solutions
on the Cassinian oval only yield a significant difference at the 10% significance level. On both
geometries, small patches have a smaller geodesic radius when the linear constraint is used. By
contrast, large patches on both geometries have a smaller geodesic radius when the nonlinear
constraint is applied. This is consistent with the results from HIIk.

Table 7. Statistics and results for HIIIs and HIIIl.

Geometry Regime Sample Sample Sample Standard p-value
Size Size Mean Deviation

Oblate ellipsoid s 37 −0.0575 0.0695 0.00001
Oblate ellipsoid l 30 0.0353 0.0524 0.0009
Cassinian oval s 24 −0.0416 0.0428 0.000086
Cassinian oval l 26 0.0114 0.0299 0.064

Remark 5.1. A significant mean difference in ρ is particularly important to note for small solutions. As
an example, the geodesic radius of our (0.05, 0.04) oblate ellipsoid solution to Problem Ph

LC is 0.5990.
The geodesic radius of our (0.05, 0.04) oblate ellipsoid solution to Problem Ph

NLC is 0.7563. Using
πρ2 ≈ ω|M|, we compute 0.05|M| ≈ 1.7344. In the nonlinear case, we have |E| ≈ 1.7970. In the linear
case we have |E| ≈ 1.1272. These values correspond to percentage errors of 3.61% and 35.01% in
the nonlinear and linear cases, respectively. Using the nonlinear constraint in this instance provides a
solution that is much closer to the size of a solution to the sharp interface problem.

The next two hypotheses are for a mean difference in Fp:

HIVk : µFp,k , 0 for k ∈ {s, l}
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Table 8 shows relevant statistics for HIVs and HIVl on our geometries. The large regime solutions
on the Cassinian oval do not yield a significant mean difference in free energy. This can be seen in our
discussion of the (0.3,0.04) solution shown in Figure 6. For both size regimes on the oblate ellipsoid
and the small size regime on the Cassinian oval, we see that the free energy is significantly larger
when the nonlinear constraint is used. That said, the difference could be slight. For example, the mean
difference only accounts for approximately 3.6% of Fp(ϕ∗h) for the (0.05, 0.04) solution to Problem Ph

LC
on the oblate ellipsoid.

Table 8. Statistics and results for HIVs and HIVl.

Geometry Regime Sample Sample Sample Standard p-value
Size Size Mean Deviation

Oblate ellipsoid s 37 −0.0008 0.0013 0.008
Oblate ellipsoid l 30 −0.0008 0.0013 0.0024
Cassinian oval s 24 −0.0052 0.0007 0.0011
Cassinian oval l 26 −0.00001 0.0005 0.914

The last two hypotheses in this section are for a mean difference in P = NV
NE

:

HVk : µP,k , 0 for k ∈ {s, l}

Table 9 shows relevant statistics for HVs and HVl on our geometries. We notice an apparent
geometry effect upon inspection of the p-values. Solutions on the oblate ellipsoid show significant
differences in the proportion NV

NE
. This can be viewed as a consequence of our result that small

solutions tend to have fewer patch nodes when the linear constraint is applied compared to when the
nonlinear constraint is used. Table A1 in the Appendix shows that there are insignificant mean
differences in NV for all geometries and all size regimes. If NV is neglected, smaller NE values
produce larger proportions NV

NE
. Small solutions on the Cassinian oval only show a significant mean

difference at the 10% significance level.

Table 9. Statistics and results for HVs and HVl.

Geometry Regime Sample Sample Sample Standard p-value
Size Size Mean Deviation

Oblate ellipsoid s 37 0.0114 0.0241 0.0066
Oblate ellipsoid l 30 −0.0028 0.0055 0.0096
Cassinian oval s 24 0.0111 0.03 0.084
Cassinian oval l 26 −0.0001 0.006 0.934

Remark 5.2. We see from Table A1 that there is not a statistically significant mean difference in the
number of nodes in violation for solutions to Problem Ph

LC and solutions to Problem Ph
NLC. If a refined

patch boundary is interpreted to mean that there are fewer nodes in violation, then we conclude that
there is not evidence that solutions to one problem have a more refined patch boundary than solutions
to the other problem.

Remark 5.3. Upon closer inspection of our data, one can find more differences between solutions for
the smallest ω values. Some such differences will be presented in the Appendix. As an example, for the
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smallest ten Cassinian oval solution pairs, there is a significant mean difference in NV
NE

. The p-value of
0.044 is computed via a randomization method in StatKey (see [16]) due to the small sample size of
n = 10. This result and others like it lead us to suspect that a further refinement of our regime sizes,
perhaps based on statistical differences in solutions, might yield interesting results in a future work.

6. Conclusions

We present a thorough investigation into benefits of using a nonlinear constraint instead of a linear
constraint in a well-known phase separation problem. We find that the nonlinear constraint seems to
enlarge the solution space in the sense that more strongly separated solutions can be obtained on a
fixed mesh size for small ω values. We identify a small and large ω regime, and we compute many
strongly separated solutions within each regime. Such work is done for two different geometries:
ellipsoids and Cassinian ovals. Our subsequent statistical analysis of the solutions shows that there
are significant statistical differences between solutions to the linearly constrained problem and the
nonlinearly constrained problem. We employ a geodesic protocol to generate statistics that can be used
to quantify mean differences between strongly separated solutions to Problem Ph

LC and Problem Ph
NLC.

Statistically significant mean differences in total computation time and quantities related to patch size
are highlighted for oblate ellipsoids and Cassinian ovals.
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Appendix

Additional Hypothesis Tests

Three sets of hypothesis tests yield insignificant results that we present here for completeness.
Additionally, some hypothesis tests only demonstrate significant results at the 10% significance level,
for a one-sided test, or for certain subsets of our data. These results are also presented in this Appendix.

We conducted hypothesis tests for a mean difference in number of nodes in violation:

HVIk : µNV ,k , 0 for k ∈ {s, l}

Table A1 contains relevant statistics for HVIs and HVIl on our geometries. As noted in Section 5,
Table A1 shows that there is not a significant mean difference in NV for solutions to the linearly
constrained problem and the nonlinearly constrained problem. This suggests that, on average, either
NV is not able to distinguish a sharper interface in the nonlinearly constrained case or that solution
patches from Problem Ph

NLC do not have a sharper boundary than those from Problem Ph
LC for a fixed

mesh.

Table A1. Statistics and results for HVIs and HVIl.

Geometry Regime Size Sample Size Sample Mean Sample Standard Deviation p-value
Oblate ellipsoid s 37 −0.5405 6.5089 0.616
Oblate ellipsoid l 30 −2 6.136 0.084
Cassinian oval s 24 −1.042 3.973 0.212
Cassinian oval l 26 0.231 3.963 0.768

Remark A.1. If we only consider the first ten paired data values in the small regime on the oblate
ellipsoid, we compute p-value ≈ 0. In this case, we have significant data that, on average, the number
of nodes in violation for solutions to Problem Ph

NLC is 4.5 larger than the number of nodes in violation
for solutions to Problem Ph

LC. This p-value is computed with a randomization method in StatKey
(see [16]) due to the small sample size n = 10.

The next two hypotheses are for a mean difference in the mean phase value of nodes in violation:

HVIIk : µΦ̄,k , 0 for k ∈ {s, l}

Table A2 shows relevant statistics for HVIIs and HVIIl on our geometries. While the two-sided test
for a mean difference is not significant for the small oblate ellipsoid solutions, we do see significant
results at a 10% significance level in the one-sided case (p-value ≈ 0.082). This lends some support to
the nonlinearly constrained problem being better since it appears that solutions to Problem Ph

LC exhibit
larger Φ̄, on average.

Table A2. Statistics and results for HVIIs and HVIIl.

Geometry Regime Size Sample Size Sample Mean Sample Standard Deviation p-value
Oblate ellipsoid s 37 0.0137 0.0585 0.164
Oblate ellipsoid l 30 −0.0038 0.0442 0.646
Cassinian oval s 24 0.011 0.054 0.322
Cassinian oval l 26 −0.010 0.052 0.318
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Remark A.2. If one considers only the first ten paired values in the small regime for the oblate
ellipsoid, the significant mean difference in Φ̄ is even more pronounced since the two-sided test in this
case yields a p-value ≈ 0.084.

The last two hypotheses are for a mean difference in δ:

HVIIIk : µδ,k , 0 for k ∈ {s, l}

Table A3 shows relevant statistics for HVIIIs and HVIIIl on our geometries. There is little to no
evidence of a mean difference in δ.

Table A3. Statistics and results for HVIIIs and HVIIIl.

Geometry Regime Sample Sample Sample Standard p-value
Size Size Mean Deviation

Oblate ellipsoid s 37 0.00002 0.0010 0.898
Oblate ellipsoid l 30 0.0002 0.0008 0.3
Cassinian oval s 24 −0.00006 0.00180 0.874
Cassinian oval l 26 −0.00011 0.00068 0.414

Nomenclature

We provide a summary of our nomenclature for the convenience of the reader. Tables A4 and A5
contains notation first appearing in Sections 1 and 2.

Table A4. Summary of notation in Section 1.

Section Notation Description
Section 1 Fp - Landau-type free energy

ϕ - phase function representing relative density
of a lipid type

∇S - surface gradient operator
ϵ - positive energy parameter
β - positive energy parameter (fixed at 0.25)
dS - surface area element
M - closed, compact surface
ω - conservation constraint
χE - indicator function
C1

pw(M) - space of piecewise continuously differentiable
functions on M

W1,2(M) - Sobolev space
ALC andANLC - admissible function spaces
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Table A5. Summary of notation in Section 2.

Section Notation Description
Section 2 T - reference triangle with vertices N1,N2,N3

τ j - triangular facet with nodes V1,V2,V3

and edges e12, e23, e31

h - mean grid size
Mh - faceted surface
Nh - number of nodes in Mh

NT - number of triangular facets in Mh

ϕh - piecewise linear function defined on Mh

Φ and ΦT - vector in RNh and its transpose, respectively
E, F,G - coefficients of first fundamental form on M
A - matrix used in discretization of first term in Fp

N(Φ) - discretization of second term in Fp

Fh
p - discrete free energy

Aeq and ceq - linear and nonlinear constraint arrays for MATLAB,
respectively

dA - area element on T
ϕconst - constant solution returned by MATLAB

Tables A6 and A7 contain notation first appearing in Sections 3–5. The subscript k ∈ {s, l} refers to
either the small ω regime (k = s) or the large ω regime (k = l).

Table A6. Summary of notation in Sections 3,4.

Section Notation Description
Section 3 ϕ∗h - strongly separated solution

ϕ0
h,z>1.75 - initial phase configuration

a, b, c - shape parameters for surfaces
Section 4 (X,Y ,Z) - patch center of mass coordinates

(xc, yc, zc) - coordinates of patch center on the surface
E - set of nodes in patch
∂E - boundary of E
dg - length of a geodesic
ρ - patch radius
NE - number of nodes in E
V - set of nodes in violation
NV - number of nodes in violation
Φ̄ - mean phase value of nodes in violation

Electronic Research Archive Volume 31, Issue 1, 229–250



250

Table A7. Summary of notation in Section 5.

Section Notation Description
Section 5 HIk - Hypothesis for a mean difference in total program run time

HIIk - Hypothesis for a mean difference in NE
HIIIk - Hypothesis for a mean difference in ρ
HIVk - Hypothesis for a mean difference in Fp

HVk - Hypothesis for a mean difference in NV
NE

HVIk - Hypothesis for a mean difference in NV

HVIIk - Hypothesis for a mean difference in Φ̄
HVIIIk - Hypothesis for a mean difference in δ
µT ,k - mean difference in total program run time
µNE,k - mean difference in NE
µρ,k - mean difference in ρ
µFp,k - mean difference in Fp

µP,k - mean difference in the mean of proportions P = NV
NE

µNv,k - mean difference in NV

µΦ̄,k - mean difference in Φ̄
µδ,k - mean difference in δ
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