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Abstract: For solving the linear complementarity problem (LCP), we propose a preconditioned
new modulus-based matrix splitting (PNMMS) iteration method by extending the state-of-the-art new
modulus-based matrix splitting (NMMS) iteration method to a more general framework with a cus-
tomized preconditioner. We devise a generalized preconditioner that is associated with both H+-matrix
A and vector q of the LCP. The convergence analysis is conducted under some mild conditions. In
particular, we provide a comparison theorem to theoretically show the PNMMS method accelerates
the convergence rate. Numerical experiments further illustrate that the PNMMS method is efficient
and has better performance for solving the large and sparse LCP.
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1. Introduction

In this paper, we are concerned with the solution of the linear complementarity problem, abbreviated
as LCP, that consists in finding a pair of real vectors z ∈ Rn and v ∈ Rn satisfying the conditions

z ⩾ 0, v := Az + q ⩾ 0, z⊤v = 0, (1.1)

where A ∈ Rn×n is a given matrix, q ∈ Rn is a given vector.
The LCP (1.1) not only provides a unified framework for linear programming, quadratic program-

ming, bi-matrix games, but also can be used to model many practically relevant situations such as
spatial price balance problem, obstacles and free boundary problem, market equilibrium problem, op-
timal control problem, contact mechanics problem and so forth. To solve the LCP (1.1) numerically,
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various iteration methods have been presented and investigated, for example, the pivot algorithms [1,2],
the projected iterative methods [3–5], the SOR-like iteration methods [6, 7], the multisplitting meth-
ods [8–13], the modulus-based matrix splitting (MMS) methods [14, 15], the Newton-type iteration
methods [16, 17], the multigrid methods [18] and others. Notably, among these methods, the MMS
iteration method is particularly attractive since its ability to obtain numerical solutions more quickly
and accurately which was first introduced in [14], and was extended in many works [19–23]. Making
use of z = |x|+x

γ
and v = Ω

γ
(|x| − x), Bai [14] transformed the LCP (1.1) into an equivalent system of

fixed-point equation
(Ω + A)x = (Ω − A)|x| − γq, (1.2)

where γ is a positive constant and Ω ∈ Rn×n is a positive diagonal matrix. Based on (1.2), the MMS
method was presented as follows.

Method 1.1 (MMS method). Let A = M − N be a splitting of the given matrix A ∈ Rn×n, and the
matrix Ω + M be nonsingular, where Ω ∈ Rn×n is a positive diagonal matrix. Given a nonnegative
initial vector x0 ∈ Rn, for k = 0, 1, 2, . . . until the iteration sequence {zk}+∞k=0 ⊂ R

n converges, compute
xk+1 ∈ Rn by solving the linear system

(M + Ω)xk+1 = Nxk + (Ω − A)|xk| − γq,

and set
zk+1 =

1
γ

(|xk+1| + xk+1),

where γ is a positive constant.

Furthermore, motivated by this method for solving the LCP (1.1), many researchers extended
the MMS iteration method together with its variants to solve the nonlinear complementarity prob-
lems [24–26], the horizontal linear complementarity problems [27], the implicit complementarity prob-
lems [28–30], the second-order cone linear complementarity problems [31], the circular cone nonlinear
complementarity problems [32], the semidefinite linear complementarity problems [33] and so forth.

Recently, from a different perspective, Wu and Li [34] subtly designed a new equivalent form by
directly exploiting the inequality system of the LCP (1.1) and reformulated the LCP (1.1) as a system of
fixed-point equation without employing variable transformation, which could be described as follows

(Ω + A)z = |(Ω − A)z − q| − q. (1.3)

Based on (1.3), a new modulus-based matrix splitting (NMMS) iteration method for solving the large
and sparse LCP (1.1) was presented as Method 1.2.

Method 1.2 (NMMS method). Let A = M − N be a splitting of the given matrix A ∈ Rn×n, and matrix
Ω+M be nonsingular, whereΩ ∈ Rn×n is a positive diagonal matrix. Given a nonnegative initial vector
z0 ∈ Rn, for k = 0, 1, 2, . . . until the iteration sequence {zk}+∞k=0 ⊂ R

n converges, compute zk+1 ∈ Rn by
solving the linear system

(Ω + M)zk+1 = Nzk + |(A −Ω)zk + q| − q.

The NMMS iteration method has the merits of simple calculation and high calculation efficiency,
so it is feasible and practical in actual implementations. Investigating Method 1.1 and Method 1.2, the
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MMS and NMMS iteration methods have resemblances, but they do not belong to each other. Com-
pared with the MMS method, the NMMS method does not need to use the skill of variable transforma-
tion in the process of iteration, which provides a new general framework for solving the LCP (1.1). It
was shown in [34] that the NMMS iteration method is superior to the MMS iteration method for cer-
tain LCPs. Furthermore, by ingeniously utilizing the matrix splitting technique and properly choosing
the involved relaxation parameters, the NMMS iteration method can induce some new modulus-based
relaxation methods, such as the new modulus-based Jacobi (NMJ) method, the new modulus-based
Gauss-Seidel (NMGS) method, the new modulus-based successive overrelaxation (NMSOR) method
and the new modulus-based accelerated overrelaxation (NMAOR) method. In this paper, we mainly
focus on the NMMS iteration method for solving the LCP (1.1).

Preconditioned acceleration is a classical acceleration technique for fixed-point iterations, and can
essentially improve the convergence rate. In order to accelerate the convergence of the MMS iteration
method for solving the LCP (1.1), some preconditioning solvers have been developed. For example,
Li and Zheng [35] and Zheng and Luo [36] respectively developed a preconditioned MMS iteration
method and a preconditioned two-step MMS iteration method by utilizing a variable transformation
and the preconditioners were both chosen as

P̄ =



1 t
1 t
. . .
. . .

1 t
1


. (1.4)

Ren et al. [37] proposed the preconditioned general two-step MMS iteration method based on the
two-step MMS iteration method [38] and gave its convergence analysis. Wu et al. [39] presented the
preconditioned general MMS iteration method by making use of the left multiplicative preconditioner
in the implicit fixed-point equation, and four different preconditioners were chosen for comparison
with P1 = I + t1C1 and P2 = I + t2(C1 +Cm), which were both lower-triangular matrices, P3 = I + t3C⊤1 ,
which was the preconditioner in (1.4), and P4 = I + t4(C1 +C⊤1 ), which was a Hessenberg matrix. The
element ck j of Ci was given as

ck j =

{
1, f or k = j + i,
0, others,

and ts > 0, s = 1, 2, 3, 4. Experimental results show that the preconditioners P1 and P2 have better
computational efficiency than P3 and P4 in most cases. Dai et al. [40] proposed a preconditioner P̃
which was defined as follows

P̃ =



1 −
a1k1
ak1k1

−
a1kr
akrkr

. . .
...

...

1 −
ak1kr

akrkr
...

. . .
...

−
akrk1
ak1k1

1
...

...
. . .

−
ank1
ak1k1

−
ankr
akrkr

1


, (1.5)
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and suggested a preconditioned two-step MMS iteration method for the LCP (1.1) associated with an
M-matrix.

In this paper, we get inspiration from the work of [35] and extend Method 1.2 to a more general
framework with a customized preconditioner. Different from the above mentioned preconditioners, we
develop a generalized preconditioner associated with both H+-matrix A and vector q of the LCP (1.1)
and devise a preconditioned new modulus-based matrix splitting (PNMMS) iteration method for solv-
ing the LCP (1.1) of H+-matrix. Particularly, the PNMMS iteration method can yield a series of
preconditioned relaxation modulus-based matrix splitting iteration methods by suitable choices of ma-
trix splitting. We give the convergence analysis of the PNMMS iteration method under some mild
conditions and provide a comparison theorem to show the PNMMS iteration method accelerates the
convergence rate theoretically.

The rest of this paper is arranged as follows. In section 2, we present some classical definitions
and preliminary results relevant to our later developments. Section 3 establishes the PNMMS iteration
method for solving the LCP (1.1) and its convergence properties are explored in detail in section 4.
The comparison theorem between the NMMS and the PNMMS method is presented in section 5. Sec-
tion 6 provides some numerical examples to illustrate the theoretical results. Finally, some concluding
remarks are given in section 7.

2. Preliminaries

In this section, we will present the notations and some auxiliary results that lay our claims’ founda-
tion.

Let A = (ai j) ∈ Rn×n. t ridiag(a, b, c) represents a matrix with a, b, c as the subdiagonal, main
diagonal and superdiagonal entries in the matrix. We denote the spectral radius of matrix A by ρ(A). I
is the identity matrix with suitable dimension. A is referred to a Z-matrix if ai j < 0 for any i , j. If A
is a Z-matrix and satisfies A−1 ⩾ 0, then the matrix A is called an M-matrix. The comparison matrix of
A is denoted by ⟨A⟩ = (⟨a⟩i j) ∈ Rn×n, where

⟨a⟩i j =

{
|aii|, i f i = j,
−|ai j|, i f i , j.

Obviously, the comparison matrix is a Z-matrix. A is called an H-matrix if its comparison matrix is an
M-matrix. If A is an H-matrix with positive diagonals, it is an H+-matrix, see [41]. An M-matrix is an
H+-matrix, and an H+-matrix is an H-matrix.

Let A = D− L−U = D− B, where D, −L, −U and −B represent the diagonal matrix, strictly lower
triangular matrix, strictly upper triangular matrix and off-diagonal matrix of matrix A, respectively. We
say A = M − N is a splitting if M is nonsingular. The splitting A = M − N is called a weak regular
splitting of A ∈ Rn×n, if M−1 ⩾ 0,M−1N ⩾ 0, see [42]; an M-splitting if M is an M-matrix and N is
nonnegative; an H-splitting if ⟨M⟩ − |N| is an M-matrix; an H-compatible splitting if ⟨A⟩ = ⟨M⟩ − |N |,
see [15]. Note that an M-splitting is an H-compatible splitting, and an H-compatible splitting is an
H-splitting.

Lemma 2.1 ( [14]). Let A ∈ Rn×n be an H+-matrix, then the LCP (1.1) has a unique solution for any
q ∈ Rn.
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Lemma 2.2 ( [43]). Let A ∈ Rn×n be an H+-matrix, then |A−1| ⩽ ⟨A⟩−1.

Lemma 2.3 ( [44]). Let A be a Z-matrix, then the following statements are equivalent:

• A is an M-matrix;
• There exists a positive vector x, such that Ax > 0;
• Let A = M − N be a splitting of A and M−1 ⩾ 0, N ⩾ 0, then ρ(M−1N) < 1.

Lemma 2.4 ( [44]). Let A, B be two Z-matrices, A be an M-matrix and B ⩾ A, then B is an M-matrix.

Lemma 2.5 ( [45]). A is monotone if and only if A ∈ Rn×n is nonsingular with A−1 ⩾ 0.

Lemma 2.6 ( [46]). Suppose that E = F − G and Ē = F̄ − Ḡ are weak regular splittings of the
monotone matrices E and Ē, respectively, such that F−1 ⩽ F̄−1. If there exists a positive vector x such
that 0 ⩽ Ex ⩽ Ēx, then for the monotonic norm associated with x, ∥F̄−1Ḡ∥x ⩽ ∥F−1G∥x. In particular,
if F−1G has a positive Perron vector, then ρ(F̄−1Ḡ) ⩽ ρ(F−1G).

Lemma 2.7 ( [47]). Let A = (ai j) ∈ Rn×n be an M-matrix, then there exists δ0 > 0 such that for any
0 < δ ⩽ δ0, A(δ) = ( ai j(δ) ) ∈ Rn×n is a nonsingular M-matrix, where

ai j(δ) =
{

ai j, ai j , 0,
−δ, ai j = 0.

3. The PNMMS method

In this section, the PNMMS iteration method for solving the LCP (1.1) will be constructed and the
new generalized preconditioner will be introduced.

Enlightened by the idea of preconditioner in [40], we propose a generalized preconditioner P asso-
ciated with both H+-matrix A and vector q of the LCP (1.1) with the following form

P := (pi j) =



1 |a1k1 |

ak1k1

|a1kr |

akrkr

. . .
...

...

1 |ak1kr |

akrkr
...
. . .

...
|akrk1 |

ak1k1
1

...
...
. . .

|ank1 |

ak1k1

|ankr |

akrkr
1


, (3.1)

where pii = 1, the elements pikm =
|aikm |

akmkm
⩾ 0, m ∈ {1, 2, . . . , r} and km satisfies qkm < 0, while other

entries are all 0.
It is worth noting that the preconditioner (3.1) is established on the premise that A is an H+-

matrix, which is an extension of the preconditioner established by M-matrix in [40], and naturally
includes (1.5).

Let PA = M̄ − N̄ be a splitting of the matrix PA, we can rewrite the fixed-point system (1.3) as

(PΩ + M̄)z = N̄z + |P(Ω − A)z − Pq| − Pq,

then we construct the PNMMS iteration method below.
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Method 3.1 (PNMMS method). Let P ∈ Rn×n be a given preconditioner, PA = M̄ − N̄ be a splitting
of the matrix PA ∈ Rn×n, and the matrix PΩ+ M̄ be nonsingular, where Ω ∈ Rn×n is a positive diagonal
matrix. Given a nonnegative initial vector z0 ∈ Rn, for k = 0, 1, 2, . . . until the iteration sequence
{zk}+∞k=0 ⊂ R

n converges, compute zk+1 ∈ Rn by solving the linear system

(PΩ + M̄)zk+1 = N̄zk + |P(Ω − A)zk − Pq| − Pq. (3.2)

Method 3.1 provides a general framework of the PNMMS method for solving the LCP (1.1). Be-
sides including the NMMS method [34] as special case, it can generate a series of relaxation versions
by suitable choices of matrix splitting. The framework of the PNMMS method is summarized as the
following Algorithm 1.

Algorithm 1 The PNMMS method for the LCP (1.1).
Step 0 : We have A, P, Ω ∈ Rn×n and q ∈ Rn in advance. Select an arbitrary initial vector z0 ∈ Rn. Give
ε and set k := 0.
Step 1 : Compute

Ā = PA, q̄ = Pq, Ω̄ = PΩ.

Step 2 : Consider Ā = M̄ − N̄ be a splitting of Ā.
Step 3 : Solve zk+1 by (

Ω̄ + M̄
)

zk+1 = N̄zk + |(Ω̄ − Ā)zk − q̄| − q̄.

Step 4 : If Res =∥min(Az + q, z)∥2 ⩽ ε, then stop. If not, then turn to Step 5.
Step 5 : Set k := k + 1, then turn back to Step 3.

Remark 3.1. Let P ∈ Rn×n be a given preconditioner and PA = M̄ − N̄ = D̄ − L̄ − Ū be the splitting
of the matrix PA ∈ Rn×n. Here, we give the following remarks on Method 3.1.

• When P = I, then Method 3.1 reduces to the NMMS method [34].
• When M̄ = D̄, N̄ = L̄ + Ū, then Method 3.1 reduces to the preconditioned new modulus-based

Jacobi (PNMJ) method:

(PΩ + D̄)zk+1 = (L̄ + Ū)zk + |P(Ω − A)zk − Pq| − Pq.

• When M̄ = D̄ − L̄, N̄ = Ū, then Method 3.1 becomes the preconditioned new modulus-based
Gauss-Seidel (PNMGS) method:

(PΩ + D̄ − L̄)zk+1 = Ūzk + |P(Ω − A)zk − Pq| − Pq.

• When M̄ = 1
α

D̄− L̄, N̄ = 1−α
α

D̄+ Ū, then Method 3.1 turns into the preconditioned new modulus-
based successive overrelaxation (PNMSOR) method:

(αPΩ + D̄ − αL̄)zk+1 = ((1 − α)D̄ + αŪ)zk + α(|P(Ω − A)zk − Pq| − Pq).

• When M̄ = 1
α

D̄ − β
α

L̄, N̄ = 1−α
α

D̄ + α−β
α

L̄ + Ū, then Method 3.1 reduces to the preconditioned new
modulus-based accelerated overrelaxation (PNMAOR) method:

(αPΩ + D̄ − βL̄)zk+1 = ((1 − α)D̄ + (α − β)L̄ + αŪ)zk + α(|P(Ω − A)zk − Pq| − Pq).
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4. Convergence analysis

In this section, we will analyze the convergence of Method 3.1 for the LCP (1.1) with an H+-matrix.
Some mild convergence conditions are given to guarantee the convergence of Method 3.1.

First of all, a general convergence condition for Method 3.1 is established in Theorem 4.1.

Theorem 4.1. Let A ∈ Rn×n be an H+-matrix, P be a given nonsingular matrix with positive diagonals
such that PA is an H+-matrix. Make PA = M̄ − N̄ be a splitting of the matrix PA and PΩ + M̄ be an
invertible H+-matrix, where Ω is a positive diagonal matrix. Let

F̄ := ⟨PΩ + M̄⟩, Ḡ := |N̄| + |P||Ω − A|, (4.1)

if ρ(F̄−1Ḡ) < 1, then the iteration sequence {zk}+∞k=0 ⊂ R
n produced by Method 3.1 converges to the

unique solution z∗ ∈ Rn of the LCP (1.1) with a nonnegative initial vector.

Proof. Let A be an H+-matrix, it follows from Lemma 2.1 that the LCP (1.1) has a unique solution z∗,
which means

(PΩ + M̄)z∗ = N̄z∗ + |P(Ω − A)z∗ − Pq| − Pq. (4.2)

Subtracting (4.2) from (3.2), we have

(PΩ + M̄)(zk+1 − z∗) = N̄(zk − z∗) + |P(Ω − A)zk − Pq| − |P(Ω − A)z∗ − Pq|.

If PΩ + M̄ is invertible, then it holds that

zk+1 − z∗ = (PΩ + M̄)−1
(
N̄(zk − z∗) + |P(Ω − A)zk − Pq| − |P(Ω − A)z∗ − Pq|

)
. (4.3)

Taking absolute value on both sides of (4.3) and utilizing the triangle inequality, one can obtain

|zk+1 − z∗| =
∣∣∣∣(PΩ + M̄)−1

(
N̄(zk − z∗) + |P(Ω − A)zk − Pq| − |P(Ω − A)z∗ − Pq|

)∣∣∣∣
⩽ |(PΩ + M̄)−1|

(
|N̄(zk − z∗)| +

∣∣∣|P(Ω − A)zk − Pq| − |P(Ω − A)z∗ − Pq|
∣∣∣)

⩽ |(PΩ + M̄)−1|
(
|N̄||zk − z∗| + |P||Ω − A||zk − z∗|

)
= |(PΩ + M̄)−1|

(
|N̄| + |P||Ω − A|

)
|zk − z∗|

⩽ ⟨PΩ + M̄⟩−1
(
|N̄| + |P||Ω − A|

)
|zk − z∗|

:= F̄−1Ḡ|zk − z∗|,

where the last inequality follows from Lemma 2.2. Evidently, if ρ(F̄−1Ḡ) < 1, then the sequence {zk}+∞k=0
converges to the unique solution z∗ of the LCP (1.1). □

In particular, if P = I, the following corollary can be obtained.

Corollary 4.1. Let A ∈ Rn×n be an H+-matrix, A = M−N be a splitting of the matrix A, and the matrix
Ω + M be nonsingular H+-matrix, where Ω is a positive diagonal matrix. Let

F := ⟨Ω + M⟩, G := |N| + |Ω − A|,

if ρ(F−1G) < 1, then the iteration sequence {zk}+∞k=0 ⊂ R
n produced by Method 1.2 converges to the

unique solution z∗ ∈ Rn of the LCP (1.1) with a nonnegative initial vector.
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Theorem 4.2. Let A ∈ Rn×n be an H+-matrix, P be a given nonsingular matrix with positive diagonals
such that PA is an H+-matrix. Make PA = M̄ − N̄ be a splitting of the matrix PA and PΩ + M̄ is an
invertible H+-matrix. The diagonal matrix satisfies

Dx ⩽ Ωx <
(⟨PA⟩ + |P|⟨A⟩)x

2∥BP∥∞
(4.4)

or
1
2

D−1
P (|P||A| − ⟨PA⟩)x < Ωx < Dx, (4.5)

where A = D − B, P = DP − BP and x is an identity column vector. Then the iteration sequence
{zk}+∞k=0 ⊂ R

n produced by Method 3.1 converges to the unique solution z∗ ∈ Rn of the LCP (1.1) with a
nonnegative initial vector.

Proof. Denote Ē := F̄ − Ḡ, where F̄ and Ḡ are given as in (4.1), then it can be concluded that

Ē = ⟨PΩ + M̄⟩ − |N̄| − |P||Ω − A|

= (DPΩ + DM̄) − |BPΩ + BM̄ | − |N̄ | − |P||Ω − A|

⩾ DPΩ + DM̄ − |BPΩ| − |BM̄ | − |N̄| − |P||Ω − A|

= ⟨P⟩Ω + ⟨M̄⟩ − |N̄ | − |P||Ω − A|

= ⟨PA⟩ + ⟨P⟩Ω − |P||Ω − A|

⩾ ⟨PA⟩ + ⟨P⟩Ω − |P|(|Ω − D| + |B|)

=

{
⟨PA⟩ + |P|⟨A⟩ − 2|BP|Ω, Ω ⩾ D,
⟨PA⟩ − |P||A| + 2DPΩ, Ω < D.

For the case Ω ⩾ D, the parameter Ω satisfies (4.4), we have

(⟨PA⟩ + |P|⟨A⟩ − 2|BP|Ω)x > 0.

It is obvious that ⟨PA⟩ + |P|⟨A⟩ − 2|BP|Ω is a Z-matrix. According to Lemma 2.3, it implies that
⟨PA⟩ + |P|⟨A⟩ − 2|BP|Ω is an M-matrix. It can be got from Lemma 2.4 that Ē is an M-matrix.

For the case Ω < D, the parameter Ω satisfies (4.5), it holds that

(⟨PA⟩ − |P||A| + 2DPΩ)x > 0.

Analogously, ⟨PA⟩ − |P||A| + 2DPΩ is an M-matrix. In the light of Lemma 2.4, it follows that the
Z-matrix Ē is a nonsingular M-matrix.

As we know Ē = F̄ − Ḡ be a splitting of the M-matrix Ē. Since PΩ + M̄ is an H+-matrix, then
F̄−1 = ⟨PΩ+M̄⟩−1 ⩾ 0 and F̄ is an M-matrix. It is obvious that Ḡ = |N̄ |+|P||Ω−A| ⩾ 0. Then Lemma 2.3
leads to ρ(F̄−1Ḡ) < 1, the assertion then follows by Theorem 4.1, the proof is completed. □

In particular, if P = I, it implies that ∥BP∥∞ = 0. Taking the right-hand side of (4.4) to be +∞,
then the following corollary can be obtained. It is worth noting that Corollary 4.2 leads to a broader
convergence region than Theorem 4.2 in [34].
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Corollary 4.2. Let A ∈ Rn×n be an H+-matrix, A = M−N be a splitting of the matrix A, and the matrix
Ω + M be nonsingular H+-matrix. If the diagonal matrix Ω satisfies

Ω ⩾ D or Ωx > |B|x,

where A = D−B and x is an identity column vector. Then the iteration sequence {zk}+∞k=0 ⊂ R
n produced

by Method 3.1 converges to the unique solution z∗ ∈ Rn of the LCP (1.1) with a nonnegative initial
vector.

Similarly, we establish the following convergence theorem on the PNMAOR method.

Theorem 4.3. Let A ∈ Rn×n be an H+-matrix, P be a given nonsingular matrix with positive diagonals
such that PA is an H+-matrix. Make PA = D̄−L̄−Ū = D̄− B̄, P = DP−BP and ρ := ρ(D̄−1(|B̄|+|BPΩ|)).
If the positive diagonal matrix Ω satisfies DPΩ ⩾

1
2α D̄. Then for any initial vector, the PNMAOR

iteration method is convergent if the following conditions are satisfied

(1) when 1
2α D̄ ⩽ DPΩ <

1
α

D̄,

0 ⩽ β ⩽ α,
1

2(1 − ρ)
< α <

3
2(1 + ρ)

, ρ <
1
2

;

α < β <
1

4ρ
,

4βρ + 1
2

< α <
3 − 4βρ

2
, ρ <

1
4β
.

(2) when DPΩ ⩾
1
α

D̄,

0 ⩽ β ⩽ α, 0 < α <
2

1 + ρ
, ρ < 1;

α < β <
1

2ρ
, 2βρ < α < 2 − 2βρ, ρ <

1
2β
.

Proof. Since

M̄ =
1
α

D̄ −
β

α
L̄, N̄ =

1 − α
α

D̄ +
α − β

α
L̄ + Ū,

where PA = M̄ − N̄. By some calculations, it holds that

F̄ = ⟨PΩ + M̄⟩ = ⟨PΩ +
1
α

D̄ −
β

α
L̄⟩ = DPΩ +

1
α

D̄ − |BPΩ +
β

α
L̄|

⩾ DPΩ +
1
α

D̄ − |BPΩ| −
β

α
|L̄|,

and

Ḡ = |N̄ | + |P||Ω − A| ⩽ 2|N̄| + |PΩ − M̄|

= 2|
1 − α
α

D̄ +
α − β

α
L̄ + Ū | + |PΩ −

1
α

D̄ +
β

α
L̄|

⩽
2|1 − α|
α

D̄ +
2|α − β|
α
|L̄| + 2|Ū | + |PΩ −

1
α

D̄ +
β

α
L̄|

=
2|1 − α|
α

D̄ +
2|α − β|
α
|L̄| + 2|Ū | + |DPΩ −

1
α

D̄| + |BPΩ −
β

α
L̄|
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⩽
2|1 − α|
α

D̄ +
2|α − β|
α
|L̄| + 2|Ū | + |DPΩ −

1
α

D̄| + |BPΩ| +
β

α
|L̄|,

where F̄ and Ḡ are defined as (4.1). It is obvious to see that F̄ is an M-matrix and Ḡ ⩾ 0. According
to Lemma 2.3, we need to prove Ē = F̄ − Ḡ is an M-matrix, where

Ē ⩾ DPΩ − |DPΩ −
1
α

D̄| +
1 − 2|1 − α|

α
D̄ −

2(|α − β| + β)
α

|L̄| − 2|Ū | − 2|BPΩ|. (4.6)

When 1
2α D̄ ⩽ DPΩ <

1
α

D̄ and 0 ⩽ β ⩽ α, we know DPΩ − |DPΩ −
1
α

D̄| ⩾ 0. Based on (4.6), we can
simplify it to

Ē ⩾
1 − 2|1 − α|

α
D̄ − 2|L̄| − 2|Ū | − 2|BPΩ|

=
1 − 2|1 − α|

α
D̄ − 2(|B̄| + |BPΩ|) := Ê.

From Lemma 2.4, if Ê is an M-matrix, then Ē is an M-matrix, and it holds if and only if

1 − 2|1 − α| ⩾ 0, ρ(
α

1 − 2|1 − α|
D̄−1 · 2(|B̄| + |BPΩ|)) < 1,

and then we can obtain
1

2(1 − ρ)
< α <

3
2(1 + ρ)

, ρ <
1
2
.

When 1
2α D̄ ⩽ DPΩ <

1
α

D̄ and α < β, we know DPΩ− |DPΩ−
1
α

D̄| ⩾ 0 and α|L̄| ⩾ 0. Based on (4.6),
we can simplify it to

Ē ⩾
1 − 2|1 − α|

α
D̄ −

4β
α
|L̄| − 2|Ū | − 2|BPΩ|

⩾
1 − 2|1 − α|

α
D̄ −

4β
α

(|B̄| + |BPΩ|) := Ê.

From Lemma 2.4, if Ê is an M-matrix, then Ē is an M-matrix, and it holds if and only if

1 − 2|1 − α| ⩾ 0, ρ(
α

1 − 2|1 − α|
D̄−1 ·

4β
α

(|B̄| + |BPΩ|)) < 1,

and then we get
4βρ + 1

2
< α <

3 − 4βρ
2
, ρ <

1
4β
.

When Ω ⩾ 1
α

D̄ and 0 ⩽ β ⩽ α, we know DPΩ − |DPΩ −
1
α

D̄| = 1
α

D̄ > 0. Based on (4.6), we can
simplify it to

Ē ⩾
1
α

D̄ +
1 − 2|1 − α|

α
D̄ − 2|L̄| − 2|Ū | − 2|BPΩ|

=
2(1 − |1 − α|)

α
D̄ − 2(|B̄| + |BPΩ|) := Ê.
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From Lemma 2.4, if Ê is an M-matrix, then Ē is an M-matrix, and it holds if and only if

1 − |1 − α| ⩾ 0, ρ(
α

2(1 − |1 − α|)
D̄−1 · 2(|B̄| + |BPΩ|)) < 1,

and then we have
0 < α <

2
1 + ρ

, ρ < 1.

When Ω ⩾ 1
α

D̄ and α < β, we know DPΩ− |DPΩ−
1
α

D̄| = 1
α

D̄ > 0 and α|L̄| ⩾ 0. Based on (4.6), we
can simplify it to

Ē ⩾
1
α

D̄ +
1 − 2|1 − α|

α
D̄ −

4β
α
|L̄| − 2|Ū | − 2|BPΩ|

=
2(1 − |1 − α|)

α
D̄ −

4β
α

(|B̄| + |BPΩ|) := Ê.

From Lemma 2.4, if Ê is an M-matrix, then Ē is an M-matrix, and it holds if and only if

1 − |1 − α| ⩾ 0, ρ(
α

2(1 − |1 − α|)
D̄−1 ·

4β
α

(|B̄| + |BPΩ|)) < 1,

and then we obtain
2βρ < α < 2 − 2βρ, ρ <

1
2β
.

Therefore, the convergence of the PNMAOR method can be proved by Lemma 2.3, thus completing
the proof. □

Under the conditions of Theorem 4.3, if we take the specific choices of α and β for the PNMAOR
method, the following corollaries on the PNMJ, PNMGS and PNMSOR methods can be derived.

Corollary 4.3. Let A ∈ Rn×n be an H+-matrix, and P be a given nonsingular matrix with positive
diagonals such that PA is an H+-matrix. Make PA = D̄ − L̄ − Ū = D̄ − B̄, P = DP − BP and
ρ := ρ(D̄−1(|B̄| + |BPΩ|)). If the positive diagonal matrix Ω satisfies DPΩ ⩾

1
2α D̄. Then for any initial

vector,

• if α = 1 and β = 0, the PNMJ iteration method is convergent;
• if α = β = 1, the PNMGS iteration method is convergent;
• if α = β, the PNMSOR iteration method is convergent for 1

2(1−ρ) < α <
3

2(1+ρ) , ρ <
1
2 , i f 1

2α D̄ ⩽ DPΩ <
1
α

D̄,
0 < α < 2

1+ρ , ρ < 1, i f DPΩ ⩾
1
α

D̄.

When P = I, the convergence theorem of the PNMAOR method can be extended to the NMAOR
method in [34]. For most cases, the range of the parameters of the AOR method is usually set as
0 ⩽ β ⩽ α, then the following result can be obtained.

Corollary 4.4. Let A ∈ Rn×n be an H+-matrix. Make A = D−L−U = D−B satisfy ρ := ρ(D−1|B|) < 1
2

and Ω ⩾ 1
2αD. Then for any initial vector, the NMAOR iteration method is convergent for

0 ⩽ β ⩽ α and
1

2(1 − ρ)
< α <

3
2(1 + ρ)

.
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5. A comparison theorem between PNMMS and NMMS

In this section, we provide a comparison theorem between the PNMMS iteration method and the
NMMS iteration method, which indicates that the PNMMS method for solving the LCP (1.1) can
accelerate the convergence rate of the original NMMS method.

Let
Ω = D, M = D − L, N = U and M̄ = D̄ − L̄, N̄ = Ū,

where A = D − L − U and PA = D̄ − L̄ − Ū. It is easy to see that this is a special case of the NMMS
method and the PNMMS method, other relaxation versions can also be theoretically analyzed in the
similar way.

We get the following useful lemma on the premise of the structure-preserving preconditioner P
in (3.1). The proof of Lemma 5.1 is similar to that of Lemma 4.1 in [48] and thus we omit the detail.

Lemma 5.1 ( [48]). Let A ∈ Rn×n be an H+-matrix, P be the preconditioner from (3.1) such that PA
is an H+-matrix. Assume that D, L and D̄, L̄ are given by A = D − L − U and PA = D̄ − L̄ − Ū,
respectively. Then

D̄ ⩽ D, |L| ⩽ |L̄|.

Theorem 5.1. Let A ∈ Rn×n be an H+-matrix, P be the preconditioner in (3.1) such that PA is an
H+-matrix. Make A and PA have the splitting A = D − L −U and PA = D̄ − L̄ − Ū, respectively. Then
for the iterative matrices F−1G of the NMMS method and F̄−1Ḡ of the PNMMS method, it holds that

ρ(F̄−1Ḡ) ⩽ ρ(F−1G) < 1,

where F, G are given as
F = 2D − |L|, G = |L| + 2|U | (5.1)

and F̄, Ḡ are given as
F̄ = 2D̄ − |L̄|, Ḡ = |L̄| + 2|Ū |. (5.2)

Proof. Since
|Ω − A| = |Ω − D + L + U | ⩽ |Ω − D + L| + |U |,

we generalize the convergence conditions of Corollary 4.1 and Theorem 4.1, and obtain the conclusions
ρ(F−1G) < 1 and ρ(F̄−1Ḡ) < 1, where F, G and F̄, Ḡ are given as (5.1) and (5.2), respectively. Now
we only need to prove ρ(F̄−1Ḡ) ⩽ ρ(F−1G).

Here, we denote

E := F −G = 2D − 2|L| − 2|U |, Ē := F̄ − Ḡ = 2D̄ − 2|L̄| − 2|Ū |. (5.3)

It is easy to check that E and Ē of (5.3) are both M-matrices, then E−1 ⩾ 0 and Ē−1 ⩾ 0. In this way,
Lemma 2.5 shows that E and Ē are monotone matrices. Since F = 2D−|L| and F̄ = 2D̄−|L̄| are both M-
matrices, we have F−1 ⩾ 0 and F̄−1 ⩾ 0. Evidently, the matrix G = |L|+2|U | ⩾ 0 and Ḡ = |L̄|+2|Ū | ⩾ 0
are nonnegative matrices. So we know that E = F − G and Ē = F̄ − Ḡ are weak regular splittings.
From Lemma 5.1, we figure out that 2D̄ − |L̄| ⩽ 2D − |L|, hence (2D − |L|)−1 ⩽

(
2D̄ − |L̄|

)−1
, that is to

say F−1 ⩽ F̄−1. Following Lemma 2.3, since E is an M-matrix, there exists a vector x > 0 such that

Electronic Research Archive Volume 31, Issue 1, 123–146.



135

Ex > 0. For the preconditioner (3.1), we have P ⩾ I. Moreover Ē = PE, we infer the conclusion
0 ⩽ Ex ⩽ Ēx easily.

If the matrix A is irreducible, then F−1G is also a nonnegative irreducible matrix. In combina-
tion with Lemma 2.6 and Perror-Frobeni theorem [45], F−1G has a positive Perron vector such that
ρ(F̄−1Ḡ) ⩽ ρ(F−1G). However, if the matrix A is reducible, then we can construct an irreducible matrix
A(δ) by Lemma 2.7 which leads to ρ(F̄−1Ḡ) ⩽ ρ(F−1G). □

In view of the above, the comparison theorem shows that the convergence rate of the PNMMS
method is faster than the NMMS method whenever these methods are convergent.

6. Numerical experiments

In this section, four numerical examples will be presented to illustrate the efficiency of the PNMMS
iteration method for solving the LCP (1.1). All test problems are conducted in MATLAB R2014b on
a PC Windows 10 operating system with an intel i5-10400F CPU and 8GB RAM. In the numerical
results, we report the number of iteration steps (denoted by “Iter”), the elapsed CPU time in seconds
(denoted by “Time”), the relative residual (denoted by “Res”) and the spectral radius (denoted by
“Rho”). The stopping criterion of iteration is defined as

Res = ∥min(Azk + q, zk)∥2 ⩽ 10−6,

or the prescribed maximal iteration number kmax = 500 is exceeded (“ − ” is used in the fol-
lowing tables to demonstrate this circumstance). All tests are started from the initial vector z0 =

(1, 0, 1, 0, · · · , 1, 0, · · · )⊤ ∈ Rn.
With regard to the comparison of Method 3.1 and Method 1.2, we exhibit the performance of the

PNMSOR and the NMSOR method. In our implementations, the parameter Ω is chosen as Ω = 1
α

D,
the parameter α is obtained experimentally.

Example 6.1 ( [14]). Consider the LCP (1.1) with A = Â + µI ∈ Rn×n, in which

Â = t ridiag(−I, S ,−I) =



S −I
−I S −I

−I S . . .

−I . . . −I
. . . S −I
−I S


∈ Rn×n

with S = t ridiag(−1, 4,−1) ∈ Rm×m and n = m2, the vector

q = (−1, 1,−1, 1, · · · ,−1, 1, · · · )⊤ ∈ Rn.

For this example, the system matrix A is a strictly diagonally dominant symmetric positive definite
H+-matrix when µ > 0, it is known that the LCP (1.1) has a unique solution. The preconditioner is
chosen as (3.1), where km ∈ {1, 3, 5, 7, · · · }.
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The value of optimal parameter α involved in the PNMSOR and NMSOR methods is obtained
experimentally, which leads to the least number of iteration steps. We present the iteration steps for
the PNMSOR and NMSOR methods under different α for the test problem in Figure 1. As shown in
Figure 1, the PNMSOR method is better no matter how the parameter α is chosen. When the parameter
selection is α ∈ (0.9, 1.1), it can be regarded as a good choice, and then we set α = 1. Numerical results
for Example 6.1 with the different problem sizes of n and µ = 4 are reported in Table 1.
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Figure 1. Experimental optimal pa-
rameter for Example 6.1
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Figure 2. Residual comparison for
Example 6.1

Table 1. Numerical results for Example 6.1.

Method
n

256 1024 4096 16384

NMSOR

Iter 10 11 11 11
Time 0.0021 0.1123 2.0915 131.5611
Res 6.0407 × 10−7 2.0204 × 10−7 3.9786 × 10−7 7.7943 × 10−7

Rho 4.1313 × 10−1 4.1930 × 10−1 4.2096 × 10−1 4.2139 × 10−1

PNMSOR

Iter 7 7 7 7
Time 0.0014 0.0739 1.2387 75.1883
Res 1.0844 × 10−7 1.6364 × 10−7 2.4015 × 10−7 3.5057 × 10−7

Rho 2.7729 × 10−1 2.8296 × 10−1 2.8451 × 10−1 2.8491 × 10−1

It follows from Table 1 that the PNMSOR method is superior to the NMSOR method with respect
to iteration steps and the elapsed CPU time. We also present the spectral radius of the iterative matrix,
which further verifies the theoretical result of the comparison theorem from the numerical experiment.
In addition, we provide a diagram of the relationship between the iteration steps and the relative resid-
ual of two methods in Figure 2. It follows from Figure 2 that the relative residual of the PNMSOR
method decreases faster than that of the NMSOR method in each step, and the final error accuracy
can be determined to be about 10−15. That is to say, even if we improve the accuracy of the solution,
the PNMSOR method also has great advantage and can be solved at a faster speed. As a result, the
PNMSOR method has better computational efficiency in Example 6.1.
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Example 6.2 ( [14]). Consider the LCP (1.1) with A = Â + µI ∈ Rn×n, in which

Â = t ridiag(−0.5I, S ,−1.5I) =



S −1.5I
−0.5I S −1.5I

−0.5I S . . .

−0.5I . . . −1.5I
. . . S −1.5I
−0.5I S


∈ Rn×n

with S = t ridiag(−0.5, 4,−1.5) ∈ Rm×m and n = m2, the vector

q = (−1, 1,−1, 1, · · · ,−1, 1, · · · )⊤ ∈ Rn.

For this example, the matrix A is a nonsymmetric positive definite H+-matrix with strict diagonal
dominance when µ > 0, thus the LCP (1.1) has a unique solution. We present the iteration steps for the
PNMSOR and NMSOR methods under different α and the residual comparison for the test problem in
Figure 3 and Figure 4, respectively. The experimentally optimal parameter α is located in (0.85, 1.2),
and we choose α = 1. Numerical results for Example 6.2 with the different problem sizes of n and
µ = 4 are reported in Table 2.
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Table 2. Numerical results for Example 6.2.

Method
n

256 1024 4096 16384

NMSOR

Iter 12 12 13 13
Time 0.0020 0.1249 2.4304 136.7768
Res 2.6442 × 10−7 7.7866 × 10−7 3.4928 × 10−7 7.3951 × 10−7

Rho 3.4965 × 10−1 3.5477 × 10−1 3.5615 × 10−1 3.7080 × 10−1

PNMSOR

Iter 6 6 7 7
Time 0.0011 0.0693 1.2343 66.7233
Res 5.7054 × 10−7 8.6806 × 10−7 8.3153 × 10−7 1.2105 × 10−7

Rho 2.2499 × 10−1 2.2935 × 10−1 2.3055 × 10−1 2.3512 × 10−1

It follows from Table 2 that the performance of the PNMSOR method is much more competitive
than the NMSOR method in terms of computing efficiency, especially for large and sparse problems.

Example 6.3 (Black-Scholes American option pricing). Consider the American option pricing prob-
lem which was introduced in [50]. Let V(S , t) and G(S , t) represent the value of an American option
and the given payoff function of this option correspondingly. By a standard no-arbitrage argument,
V(S , t) must satisfy the following complementarity conditions



(
∂V
∂t
+

1
2
σ2S 2∂

2V
∂S 2 + (r − δ)S

∂V
∂S
− rV

)
(V(S , t) −G(S , t)) = 0,

∂V
∂t
+

1
2
σ2S 2∂

2V
∂S 2 + (r − δ)S

∂V
∂S
− rV ⩽ 0,

V(S , t) −G(S , t) ⩾ 0,
S ⩾ 0 , 0 ⩽ t ⩽ T.

This model can be further reformulated into the following inequality system

∂u
∂t
−
∂2u
∂x2 ⩾ 0, u − g ⩾ 0 and

(
∂u
∂t
−
∂2u
∂x2

)
(u − g) = 0, (6.1)

which satisfies u(x, 0) = g(x, 0), 0 ⩽ t ⩽ 1
2σ

2T and lim
x→±∞

u(x, t) = lim
x→±∞

g(x, t). Here, we limit x ∈ [a, b]
and choose the values of a and b based on the way in [50]. Using the forward difference scheme for
time t and implicit difference scheme for the price x to discretize (6.1), one can obtain

Au − b ⩾ 0, u − g ⩾ 0 and (Au − b)(u − g) = 0. (6.2)

By utilizing the transformation z = u−g, q = Ag−b, then (6.2) can be rewritten as the LCP (1.1) [50].
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Following the parameter setting in [50], we take

A =



1 + 2λθ −λθ

−λθ 1 + 2λθ −λθ

−λθ 1 + 2λθ . . .

−λθ
. . . −λθ
. . . 1 + 2λθ −λθ

−λθ 1 + 2λθ


∈ R(n−1)×(n−1),

where λ = dt
(dx)2 , dt =

1
2σ

2T
m denotes the time step, dx = b−a

m denotes the price step. Through the different
choices of parameter θ, we can obtain different schemes, i.e., θ = 0, 1

2 , 1. Here, we choose θ = 1, and it
becomes a backward difference problem. Evidently, the matrix A is an H+-matrix as well. After that,
let q = Ag−b where g = 0.5z∗, b = Az∗−v∗ and the exact solution z∗ = (1, 0, 1, 0, · · · , 1, 0, · · · )⊤ ∈ Rn−1,
v∗ = (0, 1, 0, 1, · · · , 0, 1, · · · )⊤ ∈ Rn−1 and the initial value z0 = (1, 1, 1, 1, · · · , 1, 1, · · · )⊤ ∈ Rn−1 in this
experiment.

From Tables 3–6, we compare the efficiency of the PNMSOR method and the NMSOR method
for solving the LCP (1.1) generated from the American option pricing, and show the influence of
American option changes under different volatility (σ = 0.2, 0.6) and different maturity (T = 0.5, 5)
on the solving efficiency. The selection of parameters depends on the reference [50] and the specific
parameters are indicated in the tables below. By a simple calculation of vector q, the preconditioner P
is chosen the same as in Example 6.1 and α = 1.

Table 3. Numerical results for Example 6.3.
(a = −0.5, b = 0.5, σ = 0.2,T = 0.5)

Method
(m, n)

(400, 800) (800, 1600) (1600, 3200) (3200, 6400)

NMSOR

Iter 41 63 107 195
Time 0.2651 1.7211 12.1052 87.7615
Res 8.4847 × 10−8 2.2189 × 10−7 3.1211 × 10−7 1.7606 × 10−7

Rho 9.5993 × 10−1 9.7957 × 10−1 9.8969 × 10−1 9.9482 × 10−1

PNMSOR

Iter 20 29 43 69
Time 0.1303 0.7637 4.6886 30.4895
Res 5.5860 × 10−7 8.4083 × 10−7 9.4161 × 10−7 8.7167 × 10−7

Rho 8.5442 × 10−1 9.2228 × 10−1 9.5978 × 10−1 9.7953 × 10−1
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Table 4. Numerical results for Example 6.3.
(a = −1, b = 1, σ = 0.6,T = 0.5)

Method
(m, n)

(400, 800) (800, 1600) (1600, 3200) (3200, 6400)

NMSOR

Iter 69 118 217 417
Time 0.4147 3.3851 23.5351 182.5583
Res 9.8260 × 10−7 2.2605 × 10−7 1.9309 × 10−7 1.3172 × 10−7

Rho 9.8179 × 10−1 9.9082 × 10−1 9.9539 × 10−1 9.9769 × 10−1

PNMSOR

Iter 30 45 77 134
Time 0.1693 1.2625 8.3526 60.4824
Res 7.8560 × 10−7 3.9124 × 10−7 4.1874 × 10−7 9.4258 × 10−7

Rho 9.3036 × 10−1 9.6410 × 10−1 9.8177 × 10−1 9.9081 × 10−1

Table 5. Numerical results for Example 6.3.
(a = −1.5, b = 1.5, σ = 0.2,T = 5)

Method
(m, n)

(400, 800) (800, 1600) (1600, 3200) (3200, 6400)

NMSOR

Iter 44 68 119 217
Time 0.2755 1.8640 12.9576 94.6231
Res 7.6780 × 10−7 4.2072 × 10−7 1.2522 × 10−7 4.0707 × 10−7

Rho 9.6379 × 10−1 9.8158 × 10−1 9.9071 × 10−1 9.9533 × 10−1

PNMSOR

Iter 23 29 46 74
Time 0.1424 0.7828 5.0038 32.5015
Res 2.8951 × 10−7 4.4231 × 10−7 9.0936 × 10−7 6.5158 × 10−7

Rho 8.6728 × 10−1 9.2957 × 10−1 9.6368 × 10−1 9.8155 × 10−1

Table 6. Numerical results for Example 6.3.
(a = −2, b = 2, σ = 0.6,T = 5)

Method
(m, n)

(400, 800) (800, 1600) (1600, 3200) (3200, 6400)

NMSOR

Iter 144 268 − −

Time 0.8479 7.2326 − −

Res 8.2116 × 10−7 8.5279 × 10−7 − −

Rho 9.9263 × 10−1 9.9631 × 10−1 − −

PNMSOR

Iter 54 91 166 312
Time 0.3191 2.5341 17.6367 133.2185
Res 3.3286 × 10−7 7.1404 × 10−7 4.9194 × 10−7 5.0296 × 10−7

Rho 9.7107 × 10−1 9.8536 × 10−1 9.9264 × 10−1 9.9631 × 10−1
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As shown in Table 3, compared with the NMSOR method, the PNMSOR method can shorten a
half of time in the case of small volatility and short maturity. And the overall elapsed CPU time is the
shortest. For the case of large volatility and short maturity in Table 4, the PNMSOR method also has an
incredible solving speed, but the overall elapsed CPU time is longer than that in small volatility. It can
be seen from Table 5 that although the elapsed CPU time has increased, the influence of maturity limit
on the solving efficiency is not as great as that of volatility. At this point, the performance of our method
is still excellent. From Table 6, the case with large volatility and long maturity consumes the longest
solution time, but the PNMSOR method still has its superiority. At higher dimensions, the NMSOR
method can not reach sufficient accuracy within 500 steps, but the PNMSOR method can converge
rapidly. We observed that experimentally, when the size is (1600, 3200), the NMSOR method achieves
3.6375 × 10−8 precision at step 516 and takes 55.0822 seconds; when the size is (3200, 6400), the
NMSOR method reaches the precision of 3.9548×10−7 at step 1011 and costs 432.2135 seconds, what
they mean is that the NMSOR method is convergent, but it does not reach sufficient accuracy within
the presupposed maximum number of iteration steps. Over here, we can find the superior performance
of the PNMSOR method more vividly by comparison.

Example 6.4 (Continuous optimal control problem). Consider the quasi-variational inequality prob-
lem (QIP) from the continuous optimal control problem, which was proposed in [49]: find z ∈ K(z)
such that

(v − z)⊤(Az + F(z)) ⩾ 0, ∀v ∈ K(z), (6.3)

where K(z) = ϕ(z)+K, K is a positive cone in Rn, ϕ(z) and F(z) represent the implicit obstacle function
and the mapping from Rn to itself, respectively.

The QIP (6.3) can be simplified to the LCP (1.1) by setting F(z) = q and v = 2z. In Example 6.4,
let A = Â + 4I ∈ Rn×n, where

Â =



S −I −I

S −I . . .

S . . . −I
. . . −I −I

S −I
S


∈ Rn×n

with S = t ridiag(−1, 4,−1) ∈ Rm×m and n = m2, which may be more consistent with the actual
condition in the application. Apparently, there is a unique solution to this problem for any q ∈ Rn. The
vector q is the same as in Example 6.1 and α = 1. Numerical results for this example are reported in
Table 7, from which we can find that the PNMSOR method is superior to the NMSOR method in terms
of CPU time.
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Table 7. Numerical results for Example 6.4.

Method
m

16 32 64 128

NMSOR

Iter 12 13 13 14
Time 0.0021 0.1361 2.4458 179.7574
Res 7.9676 × 10−7 4.3903 × 10−7 7.1648 × 10−7 2.8173 × 10−7

Rho 1.8952 × 10−1 1.9214 × 10−1 1.9285 × 10−1 1.9303 × 10−1

PNMSOR

Iter 6 7 7 8
Time 0.0015 0.0886 1.3135 103.4370
Res 8.8630 × 10−7 3.0009 × 10−7 8.5745 × 10−7 1.1832 × 10−7

Rho 2.1656 × 10−2 2.2673 × 10−2 2.2966 × 10−2 2.3044 × 10−2

On the whole, from these numerical results, we can see that the PNMMS iteration method for
solving the LCP (1.1) is much more competitive than the NMMS iteration method.

7. Conclusions

In this paper, a class of preconditioned new modulus-based matrix splitting (PNMMS) method
with a generalized preconditioner is developed to solve the LCP (1.1). The convergence analysis of
the PNMMS method is established when A is an H+-matrix. Particularly, we provide a comparison
theorem between the PNMMS iteration method and the NMMS iteration method, which exhibits that
the PNMMS method improves the convergence rate of the original NMMS method for solving the
LCP (1.1). Numerical experiments are reported to demonstrate the efficiency of the proposed method.
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