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Abstract: In this paper, we use a semi-discretization method to explore a predator-prey model with
Michaelis-Menten functional response. Firstly, we investigate the local stability of fixed points. Then,
by using the center manifold theorem and bifurcation theory, we demonstrate that the system experi-
ences a flip bifurcation and a Neimark-Sacker bifurcation at a fixed point when one of the parameters
goes through its critical value. To illustrate our results, numerical simulations, which include maximum
Lyapunov exponents, fractal dimensions and phase portraits, are also presented.
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1. Introduction and preliminaries

In the past several decades, predator-prey interaction has become a hot point of study in biomath-
ematics [1-12]. The differential equation is the main tool to be used in modeling predator-prey in-
teraction when the populations have generation overlap or the numbers (densities) of populations are
regarded as varying continuously in time. It can help us understand the interactions of different species
within a fluctuating natural environment. Generally speaking, the classical predator-prey model may
be written as

(1.1)

dy

{ &= fa)x — g(x, )y,
dt = h(x,)’)y _dy’

where x and y can be expressed as prey and predator population sizes respectively. The function
f(x) denotes the growth rate of prey with the absence of predator. g(x,y) represents the amount of
prey consumed by per predator per unit time (also called functional response). A(x,y) is on behalf of
predator production per capita, and d is the intrinsic death rate of predator [1].
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Due to the realistic meaning of f(x), one can assume the prey grows logistically with carrying capac-
ity k and growth rate r in the absence of predator, i.e., f(x) = r(1 — 7). Besides a good approximation,
many scholars [2,3] reduce the system (1.1) as

(1.2)

dy

{ &= rx(1- %) - g(x, )y,
o = ag(x,y)y — dy,

where a is the conversion effciency.

As for the functional response g(x,y), there are many different types. The dynamical complexity
of predator-prey system depends on functional response. Liu and Cheng [4] proposed a system with
square-root functional response, while Bian et al. [5] proposed a system with Beddington-DeAngelis
funcional response, and so on. In this paper, we discuss the following system

dx _ _ Xy _
g}t = }".X(}x k) my+x’ (13)
a y(rﬁy+x - d)’

which is called Michaelis-Menten type predator-prey system (or ratio-dependent predator-prey sys-

where m is the number of prey necessary to achieve one-half of the maximum rate c. In this system all
of the parameters are positive.

Now nondimensionalize the system (1.3). Let  — x,rt — 1, % -y, > a, { - £, % - Y.
Then, we can derive a simplier form of the system (1.3) as follows

dx — x(1 —x) - 22,
& ( x e (1.4)
a =PGS — Y-

This continuous system has been discussed in [6—12].

To be honest, although many methods for continuous systems are mature and have been used to
get some interesting results [13,14], it is very difficult to solve a complicated differential equation (
system ) without using a computer. So, we try to use discretization method to derive and study the
discrete model of a complicate differential equation ( system ) so that we can understand the properties
of corresponding continuous systems [15-20]. The discrete system related to the system (1.4) has
not been investigated yet. In this paper, we select the semi-discretization method, which has better
accuracy, to get the discrete version of the system (1.4). To this end, let [¢] represent the greatest
integer not exceeding ¢. Now, we explore the average change rate of the system (1.4) at integer number
points

L0 _ gl _ (1.5)

S Y-

1 da) _ ay(Ir)
w0 a = = x(D) = v
Y di

We know that the system (1.5) has piecewise constant arguments, and that a solution (x(z), y(¢)) of the
system (1.5) for ¢ € [0, +00) has two characteristics as follows:

1) x(¢) and y(7) are continuous on the interval [0, +c0);

2) d"(” and d} (l) exist when ¢ € [0, +00) except for the points {0, 1,2, 3,---}.
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One can derive the following system by integrating the system (1.5) over the interval [n,t] for any
ten,n+1)andn=0,1,2,---

{ (1) = x,e TS (1 — ), (16)

y(t) = y, 5 (1 = ),

where x, = x(n) and y, = y(n). Assuming ¢t — (n + 1)~ in the system (1.6) produces

X1 = xne“x"‘%,

{ o a:
Yn+1

where a, 3,y > 0.

In the sequel, one considers the dynamical properties of the system (1.7). The rest of the paper is
organized as follows: in Section 2, one investigates in detail the existence and local stability of the
nonnegative fixed points of the system (1.7). Then, the sufficient conditions are formulated for the
occurences of flip bifurcation and Neimark-Sacker bifurcation of the system (1.7) in Section 3. Next,
numerical simulations are shown to illustrate the results obtained above in Section 4. In the end, some
brief conclusions and discussions are stated in Section 5.

2. Local stability of fixed points

Because of the biological meaning of the system (1.7), we discuss the local stability of its nonneg-
ative fixed points in this section. By letting
X = _xel_ ;:-}\ , Y = yeB(xi\ 7)
it’s easy to find that there are two nonnegative fixed points £; = (1,0) and E, = (xp,)y) for
max{*+,0} <y < 1 where
1 =pIll —a -p)]
Y
The Jacobian matrix of the system (1.7) at a fixed point E(x,y)is

Xo=1-a(l-vy),y=

1-x— H\ _axr lex—2
JE) = [1+x(-1+ ot )2)] ) Y
,By eﬁ( Xty -y) ( _ ﬁx)’ )eﬁ( Y -Y)
(x+y)? (r+y)?

whose charactertistic polynomial reads as
F(1) = 2> = Tr(J(E))A + Det(J(E)).

In order to analyze the prosperties of the fixed points of the system (1.7), one needs the following
lemma and definition [21,22].

Definition 2.1. Let E(x,y) be a fixed piont of a 2D discrete system with multipliers 1, and A,.
(i) E(x,y) is called sink if |A;| < 1 and |A5| < 1, so, a sink is locally
asymptotically stable.
(i) E(x,y) is called source if |A;| > 1 and |15| > 1, so, a source is
locally asymptotically unstable.
(iii) E(x,y) is called saddle if |A;| < 1 and || > 1 (or || > 1 and |1;] < 1), .
(iv) E(x,y) is called to be non-hyperbolic if either |1;| = 1 or |1;| = 1.
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Lemma 2.2. Let F(1) = 2> + MA + N, where M and N are two real constants. Suppose A; and A, are
two roots of F(A) = 0. Then, the following statements hold.
@) If F(1) > 0, then
(i.1) |4] < Tand |A,| < 1ifand only if F(—1) > 0and N < 1;
(i2) A4y =—-land A, # =l ifand only if F(—1) = 0and M + 2;
(i.3) 4] < T and |A5| > 1 if and only if F(—1) < 0O;
(i.4)|A44] > 1 and |A;| > 1 if and only if F(—1) > 0and N > 1;
(i.5) A1 and A, are a pair of conjugate complex roots and, || = |A,] = 1
ifand only if =2 < M <2 and N = 1;
(i.6) Ay = =—-1ifand only if F(-1) = 0and M = 2.
(i) If F(1) = 0, in other words 1 is one root of F(A) = 0, then, another
root A satisfies |A| = (<, >)1 if and only if |N| = (<, >)1.
(@ii) If F(1) < 0, then F(A) = 0 has one root lying in (1, c0). Moreover,
(iii.1) the other root A satisfies A < (=) — 1 if and only if F(—1) < (=)0;
(iii.2) the other root —1 < A < 1 if and only if F(—1) > 0.

By using Definition 2.1 and Lemma 2.2, the following conclusions can be obtained.
Theorem 2.3. The fixed point E, = (1,0) of the system (1.7) is a saddle.
The proof for Theorem 2.3 is easy and omitted here. Now consider the fixed point E,. For

-1 2+2a(1-y%) 1-y»)-1 .
max{®=,0} <y < 1, denote ) = m and B, = % Obviously, By > 1.

Theorem 2.4. Assume max{‘%l, 0} <y < 1, then, E;, = (xo,Y0) is a positive fixed point of the system
(1.7). Furthermore, the following statements about the fixed point E, are true.

I) When,B <ﬁ0,
(a) if0<a<lora>1landy< ﬂ/"(—:] then, E, is a stable node;

(b) ifa > 1andy > 1/%, then, for 0 < B < B, E, is an unstable node; for p = B, E, is
nonhyperbolic, for B, < B < By, E, is a stable node.

2) When B = By, then, E, is non-hyperbolic.
3) When B > B, then, E; is a saddle.

Proof. The Jacobian matrix J(E;) of the system (1.7) at E; is

) 2
J(Ez):(a(l ¥?) ay )

B -y 1-pyl-7y)

whose characteristic polynomial can be written as
F) =2 -pl+g, 2.1)

where
p=Tr(J(Ey)) =1+a(l —y*) - By(l - ),
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q = Det(J(E)) = a(1 = ") — aBy(1 —y)*.

Obviously,

F(1) = By(1 = y)[1 - a(l - y)] > 0,
F(-1)=2+2a(1 - y*) = By(1 = )1 + a(1 —y)]
=y = YI[l +a(l =B - p),

F-1)>E=<0= < (=>)B) and ¢g>(=<)] < < (=>)8.

So, when 8 < By, F(-1) > 0. If 0 <@ < lora>landy < /<%, thenB; <0< B,s0g < 1,
which reads |4,| < 1 and |1,| < 1 by Lemma 2.2(i.1), therefore, E, is a stable node.

Ifa>1andy > \/% then, for 0 < B < B, ¢ > 1, which reads |4, > 1 and |4s] > 1 by
Lemma 2.2(i.4), therefore, E, is an unstable node; for § = B4, ¢ = 1, so, Lemma 2.2(i.5) says E is
nonhyperbolic; for 8; < 8 < By, g < 1, which indicates |/11,2| < 1 by Lemma 2.2(i.1), and so E, is a
stable node.

When 8 = By, F(—1) = 0. Namely, —1 is a root of the characteristic polynomial, namely, E, is
non-hyperbolic.

When S8 > By, then, F(—1) < 0. Lemma 2.2(i.3) says that |4;| < 1 and |4,| > 1, so E, is a saddle.
The proof is over.

3. Bifurcation analysis at the fixed point £,

In this section, by using the bifurcation theory and center manifold theorem in [23-27], we must
pay attention to the flip bifurcation and Neimark-Sacker bifurcation of the system (1.7) at the fixed
point E;.

Theorem 2.4 shows that when 8 = By or § = f3, the fixed point E; is non-hyperbolic. More-
over, the dimensional numbers for the stable manifold and the unstable manifold of the fixed point
E, vary when the parament 8 goes through these values, which indicates a bifurcation may occur at
each case. In the following analyzation, the paraments comply with (@,8,y) € Sg, = {(,B,y) €
R} |a>0,8>0,max{=,0} <y < 1}.

3.1. Flip bifurcation

When S8 = By, F(—1) = 0, which is an indispensable condition for a flip bifurcation to occur. One
now explores whether it really exists at the fixed point E;. In fact, the answer is positive.

Theorem 3.1. Suppose the parameters (a,,y) € Sg,. If the parameter B varies in a small neighbor-
hood of By, then, the system (1.7) experiences a flip bifurcation at the fixed point E,.

Proof. Firstly, let u,, = x,, — xo, v, = Y, — Yo, which transform the fixed point E; to the origin, and the
system (1.7) to

a(vn+yp)

1—(up+x0)—
{ it = (1, + Xp)e' "I — x,

unx (3.1
( +xn+v0+v =7
Vaet = (v + yo) T 7y
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Secondly, setting a perturbation 5* of the parameter 5 around S, i.e., 8" = f— By with 0 < || < 1.
And letting B8; | = B, = B, the system (3.1) is perturbed into

1=ty +x0) — —20)
Ut = (U, + Xo)e' I — g,
« un+xq _
Vil = (Vn + yo)e(ﬁ”Jr’BO)(”nﬂoﬂ'nfvo M _ Yo, (3'2)

ﬁjH-l = ﬁ;kl'
By Taylor expansion, the system (3.2) at (u,, v,, ;) = (0,0, 0) can be expaned into

_ 2 2
Up+1 =  A1ooUn t Ao10Ve + Q2oolt,, + Ao20V,, + A110UsVy
3 3 2 2 3
+asoolt, + dozoV;,, + A210U,Vn + A120U,V;, + 0(:01)’
_ 2 2
Vast = biooutn + bo1ovs + boo1B;, + baoott;, + ooV,

+booafBs” + biiotnVe + bio1unB; + botivifB;
+b3oott; + bosovy + boosB; + barouv,
+b12otty V2 + boa1 V2B, + baoi 2B, + bioaitn B’
+b01zvnﬂ22 + binu,veB, + O(P?),

ﬁ:;+1 = ﬁ:’

where p; = (Ju2 +v2 + 322,

ayo = a(l - 72)»0010 = —CWZ,

_al -y -2+ A+ p[-1+ay(d -y +ald -]}

(3.3)

= 21— a(1 = )] ’
3 ay(1 + ay) B ay* (=1 + 2y + 2a — 2ay)
amo = m,ano = —a(l—y) 5
- 1 —a—ay +2ay* + 4ay® - 2ay* - 2ay° — &? + a*y — 5a%y?
300 =

6[1 —a(l =)

N Ty + 2a%y* — 4a*y® + o - 3a’y? + 3a’y* — a’yP
6[1 — a1 =y

—ay? + 6ay’ — 6ay* + o’y — 2a%y? + 4a*y?

b

o 21 —a(l- )P
—a*y* - 227y — &Py + 207y} - &Py
201 - a(1 =P ’
_ 2ay’ - 6ay* + 207y + o2yt - 6a%y’ + 207y - 2a7)°
s 21— a(l- )P |
6ay* + 6a%y® + a’y°
apso = —

6[1 —a(1 - )P

b102 = bOOl = b002 = bOOS = b102 = b012 = 09

bipo = B(1 - 7’)2, boio = 1 = By(1 = y),bio1 =

bay = 2(1 =yl + a(1 - ’}/2)][1 —yv+ay(l —y)]
(1= +a(l =Pl —a(l —y)]
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Let

1.e.,

[y + ay(1 = y)][-2 + 2y — 2a(1 — y)]

1-Pll+ad-PIPl-ad-y]

[2y + 2ay(1 — Y)HH-2 - 2a(1 =) + 2y[1 + a(1 — y)I*}
Yl +a(l =Pl - a( - y)]

2(1 =PI+ a1 - Pyl +ad -l +2[1 +a(l -y )1}
[1+a(l - PPl -al -y

2)/3 + 2&7 (1- 2)

(1=l +ad =PI - a1 =y

Y212y + 2ay(1 = y)I'[-1 + 2y — a(l - y)]

6(1 =y [l +a(l =Pl —al -y

b020 -

b =

b300

bozy =

[y + ay(1 =y = 69)y2[1 + a(1 =) = [2 + 2a(1 —y)'}x

boin =
20 Y21 +a(l =PI - a(l —y)P

[y oy -0 -8(1 —y) +2a(1 —y?) + 8ay(1 - )]
Yl +a(l =Pl —al -y ’

[29% + 2ay*(1 — yH)1(-2 + 3y)

(1= + a1 =PI —a(d -y
Y[2 + 2a(1 = y)I’(1 — 3y +29?)

(1=l + a1 =Pl - a1 -p)P

_ Iy +ay( = y)I=2 +2y = 2a(1 - y)]

(1 =PI + (1 = YP[L - alpha(l = y)I*

(1 -2+ 2a(1 =) —y[l + (1 = Y]}

by =

b =
20! [1+a(l =PI —a(l —y)]
L Y2+ 2a( - y) +yll +a(l - p)])
T [+ a( =yl -a(l-y)]
b, = L=NI=2-2aC )+ 71 + (1 - )]}

[1+a(l =yl -al -y)]

a0 aoio 0
J(Ey) =| bioo boio O
0 0 1
a(l —v?) —ay? 0
_ | 20-pl+a(—y»] 2+2a(1-%)
J(E2) = V[yl+a+(1—7)]y - Ir+a(1 Z) 0
0 0 1

whose three eigenvalues are

Electronic Research Archive
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- (1-yA-y)—ay(l-y)—1+pu
2T 201 + a(1 — )]

,Az =1,

with corresponding eigenvectors

2&72[1 + a(l —vy)] 2&72[1 + a(l —vy)] 0
& = K+pu 6 = K—-pu 6 =10
0 0 1

where

K=1+ay(l-y) +a(1-y1-y)+2a -7,
p=a*(l-y1-y)+a-y)(1 -y +1.

Set T] = (61’527 53)’ i-e-’
2ay’[1 +a(l1 —y)] 2ay*[1+a(l-y)] O

0 0 1
then,

H-K L0

dauy’[l+a(l-y)]  2u
T_l = L _1 O

1 dapy [1+a(1-y)] 2u
0 0 1

Let

(un’ vmﬁZ)T = Tl(Xn’ Yn, (Un)T,
the system (3.2) is changed as follows

Xn+1 = _Xn + F(Xm Yn» wn) + O(P;),
Yoo = Y, + G(X,, Yy, w,) + 0(,0;),

Wptl = Wy,

where p; = X2 + Y2 + w2,

F(Xo, Yo, 0) = MagoXy + MonoYy + mogw,,” + my10X, Y, + mio X,w,
+ mo11 Y,w, + myoeX,, + mosoY, + mopw,” + moX, Y,
+ M12X, Yy + Moo Xpwy + MiopXw,” + Mmoo Yy w,
+ Mo Y,w,” + mi11 X, Yoy,

G (X, Yoo ) = boo Xy + lono Y + looows” + 110X, Yy + Lio1 X,
+ Lo Yo, + BooX;, + losoY,) + looswy” + bioX, Y,
+ 10X Yy + bhot Xpwy + Lo Xaw,” + lon1 Yyw,

2
+ o Y,w,” + 111 X, Y0,

Mgy = M1z = Mooz = Mooz = 0,

b

(3.4)

Electronic Research Archive Volume 31, Issue 1, 37-57.
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b
mago = 4(Adng + zz—l‘f)azy“[l +a(l —y)P

b b
+2(Aay o + 21—:’)@2[1 +a(l = PIK + ) + (Aagyp + 2°—ff>(1< +u)?,
b
mio = 8(Adaxo + 22—/‘f)a2y4[1 +a(l -]
020

+ 4(Aay + b—)a’?’ [1+a(l —y)]K + 2(Aap + —)(K2 ),

b
Mmoo = 4(Aax + ﬂ)a Y1 +a(l -y

+2(A61110+—)a’7 [1+a(l —)IK - u)+<Aaozo+ﬂ>(K— 2,
myor = @m )+%ay [1+a(l -],
b
mou:ﬁm—) 7‘” 21+ a(l = )],

bsg
m3o0 = 8(Aazn + E)CY YOI + a1 —y)P + (Aagso + ﬂ)(K + )’

b
+ 4(Aay + 22—;f>a2y4[1 +a(l =K + p)
+2(Aary + ﬂ))cw [1+a(l —y)I(K + w2,
b 3 bozo 3
moso = 8(Aazp + —)01 o1 + a(l =) + (Aagzo + —)(K — )
2u 2u
brio, 5 4 2
+ (a0 + 0y 1+ ol = V)P (K -0
b120 2 2
+ 2(Aayy + z))“)’ [1+a(l-y)I(K-pw-,
b b
Mmoo = 24(Aasy + 23—;’10>a3y6[1 +a(1 =) + 3(Aag + ﬂ)(K — WK + p)?
brio, 5 4 2
+ (a0 + 0y 1+ a1 = Y)FGK +10)
b
+2(Aayy + 21—j>)a72[1 +a(l = PIK + p)?* +2K* - 1P,
b
mix = 24(Aas + 23—2“)04 YOI + (1 = )P + 3(Aags + ﬂ)(K (K + )

b
+ 4(Aay + 22—;>a2y4[1 +a(l - Y)PGK — )

+ 2Adap + @»aﬂl +a(l = MIIK - @ + 20K — 2],

2b201 2 4 021

mpo1 =

b1
Y +a( -y +—(K+ W’ + r —Zay’[1+a(l = Y)IK +p),
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2b b b

Mot = —2 Py + a(1 =) + 2°—Z‘(K—u>2 + %ayz[l +a(l =YK — ),
2b b 2b

miy = —2a* 1+ a(l - PP + 20—;‘<K2 —ud) + T“laﬂl +a(1 - K,

Lioa = lo12 = looz = lpoz = 0,

b
Loo = 4(Bao — 22—/‘f)a2y4[1 +a(l -y
b b
+2(Bay o — 21_;)”2[1 + (1 = PIK + 1) + (Bagy — 2°—jf>(l< +w)?,

b b
Iio = 8(Bazg — 22—3)012%[1 + (1 — ) + 4(Bayyo - 2‘—5>ay2[1 +a(l —y)IK

b 020

+ 2(Bagyy — 2—)(K2 - ,Uz),
i
b
lono = 4(Bag — 22—ff)a2y4[1 +a(l —y)P
b b
+2(Bayy - %)aﬂl + (1 = Y)I(K — ) + (Bago — —2)(K — p)?,
u 2u
_ bo1 bion  ,
Loy = —2—(K +u) — —ay’[l+a(l -y,
H H
b b
lott = ——(K — 1) — —ZLay*[1 + a(1 = )],
2u U
b b
Iz00 = 8(Bas — 23—ff)a3y6[1 +a(l — )] + (Bags — 20—;0)(1( + )’

b
+ 4(Bayo — 22—;0>a2y4[1 +a(l =YK + p)

b
+2(Bayy — 21—if>a72[1 +a(l = Y)I(K + p)?,

b b
loso = 8(Baszg — %)aﬁyﬁ[l +a(l =) + (Bagso — =2)(K — )’
u 2u

b
+ 4(Bayo — 22_;"’274“ +a(l =YK - p)

b
+2(Bayy — zl—jfmz[l +a(l —PIK - w?,

b
23—ff>a3y6[1 +a(1 =) + 3(Bags -

b030

lr10 = 24(Bazgo — z

)K — p)(K + p)?
+ 4(Bazo — ];2—;)&2)’4[1 +a(l —yY)IFGK +p)

+2(Bay - bzl—jf)a)’z[l +a(l = PIEK - +2(K* = 2],

b030

b
L2 = 24(Baszg — %)0376[1 +a(1 =) + 3(Bags - 250K~ 1) (K + )
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b
+ 4(Bay — 22_;)“274[1 +a(l - Y)PGK — )

+2(Ba — [’21—;‘5@2[1 +a(1 = IK +p)* + 2(K* — 1)),

ot = =222 00201 + a1 - I - ﬁ(K O l%owz[l +a(l =YK + p),
oot =~ 2220241 1 a1 — )P —@< 10)? —l%ay [1+a(l - »IK - p),
hit =~ 222 201 4 a1 - )P — b2°21<1<2—u2>—@a72[1+a(1—y)]1<,
u U
where A = Wj(l_w], = Wj(l_m,

Next, suppose on the center manifold

Y, = h(Xy, ) = haoX> + hyy Xaw, + hopyh + 0(03),
where p; = /X2 + w?2. According to
n+1 h(Xn+la wn+1) - /IZh(Xna wn) + G(Xn’ h(Xna wn) wn) + 0(P3
h(Xn+] ’ wn+1) - hZO(_Xn + F(Xn’ h(Xm wn), wn))
+ i1 (=X, + F(Xp, h(X,, ), ), + hopw;, + 0(P§),

one has

/th(Xna wn) + G(Xn, h(Xm wn)a wn) = hZO(_Xn + F(Xna h(Xna wn)a (Un))2
+ hl](_Xn + F(Xna h(Xna wn)a wn))wn
+ hpw;, + 0(03).
By comparing the corresponding coeflicients of terms in the above equation, we get
hao = 0,h11 = 0,hpy = 0.
That’s to say the system (3.4) which is restricted to the center manifold can be written as
n+l f(Xn, wn) - _X + F(Xn’ h(Xn» wn) wn) + 0(P3
= =X, + hooX;, + Lot Xuwy + booX;, + o Xpw, + 0(03),

and

fz(Xm U)n) = f(f(Xna (Un)» wn)
= Xn - 21101ann - (21300 + 2Z%OO)XS
= Looli01 X2w, + By X002 + 0(03).
Therefore, we have

0 of? (92 2
S (X, wp)loo) =0, 8}{ 0 =—1, %ko,m 6)?2 loo) =
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622
X gw lo.0) = =2Lo
- l%([( + )+ 2b101a)/2[1 +a(l =)
- +a(l -y -9’ +a’y(1-y)
_ W =ylrad=y)+tald =y +eryd =y 4
o)
a3f2

_FXgl(O’O) = l300 + lioo
g 2y° +2ay’(1 - 7?)
(1= +a(d =PI -ad -yP
Y212y + 2ay(1 - )’
6(1 —y)’[1 +a(l = P[l —a(d -y7P
L yrayd- YHI8y + 2a(1 — y?) + 8ay(l —y?) + 2]
Y1+ a1 =Pl —al -y))
L ey =2 +20(1 =) +5°[1 + a(l -9’
YL+ a(l =Pl - a(l -]
L yray(—yH2+2y - 2a(1 - y)]
(L= +a(l =Pl —a(l -y)P
Y1 +2a(1 = Y)1P(1 + 3y + 29?)
(1=l +a(l =Pl —a(d -]
N [@?Y° + 607y + 6ay*1[2 + 22(1 = Y)(1 = y)) + a(1 = )2 - )]
2403y2(1 = )(1 =yl + a(1 = Y)P[1 - a(1 - YT
N 202(1 = )1 =y + a1 —y)(1 -y +2
3a2y2 (1 -y =)L+ a1l =PIl —a(l -]+ 1

> 0(+ 0),

i.e.,
3 2

X3

According to (21.1.42)—(21.1.46) in [24], all of the conditions for the occurrence of a flip bifurcation
are satisfied. The proof is over.

|(0,0) < 0(75 O)

3.2. Neimark-Sacker bifurcation

When 8 = B, a pair of imaginary roots with |1;| = |1,| = 1 occur, which is the necessary condition
for a Neimark-Sacker bifurcation to occur. That is to say, there may be an occurrence of a Neimark-
Sacker bifurcation at the fixed point E,. In fact, one has the following results.

Theorem 3.2. Suppose the parameters (a,p,6) € Sg, and a > L Let B = w Then, the

1—y2
system (1.7) undergoes a Neimark-Sacker bifurcation at the fixed point E, if the parament 8 varies
in a small neighborhood of the critical value 3,. Moreover, if L < (>)0 in (3.9), then an attracting (

repelling) invariant closed curve bifurcates from the fixed point E; for > (<)B;.
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Proof. Firstly, set a perturbation 8** of the parameter 8 around S, in the system (3.1), i.e., 8 = 8 — 3
with 0 < || < 1, the perturbation of the system (3.1) reads

a(vn+yp)

1-(up+x0)—
{ et = (0, + Xo)e' T IR — xg,

(3.5)

- un+xq _
B +B1)( Un+xQ vty

Vas1 = (Vy +Y0)e ” - Yo.

The characteristic equation of the linearized eqution of the system (3.5) at the fixed point (0,0) is

FQ) =2 - pB™A+qpB™) =0, (3.6)

where
l-—ay(l-—y)+ (1 =y)(1-7) B
a(l-vy)
qB*) =1-ap™y(1 - ).

@ > # implies p*(0) — 4¢(0) < 0, so, the two roots of F(1) = 0 are

pB) = Byl —y),

p(B™) £ i~J4q(B™) — p*(B*)

A12(87) = >

The Neimark-Sacker bifurcation needs to satisfy the following two conditions to occur:

D () so

2)  AL0)#1,i=1,234.

Due to )
_ oy -y

d/l ok
|/ll,2(ﬁ**)| — /q(é‘**)’ (M)ﬁ**_o = 2

dﬁ**

and obviously /l’i’Z(O) #1,i=1,2,3,4, so the two conditions are satisfied.

< 0(+ 0),

Secondly, one expands (3.5) into power series up to the third-order term around the origin to get the
normal form of the system (3.5) as follows:

_ 2 2
Upt1 = CroUp + Co1Vp + Coolty, + C11URV, + C2Vy,

3 2 2 3 3
+c3ouy, + Co1lt,v, + CroltyV;, + o3V, + 0(0y),

= 2 2 (37)
Vsl = dyolty + do1v, + doout, + diju,v, + dopv;,

3 2 2 3 3
+d3ol/tn + d21unv,, + duunvn + d03Vn + 0(p4),

where p4 = \Ju2 + 2,

C10 = a100, Co1 = Ap10, C20 = A2005C11 = A110»
Co2 = Ap20, C30 = A300, C21 = 4210, C12 = A120, Co3 = Ap30»
2
a(l —y7) -1 1 —ay(-vy)

dip=——,d
10 ay 01 CZ(I _)/)

2
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_ a1 =y*) = 1[=1 = 2ay(1 = y) + (1 = )]
202y(1 =)l = (1 - )]
_vled =y - 1][-1-2a(l =y) +a( - 2)+204(1—“Y)]
222(1 = y)’[1 = a(1 = )]
[a(1 =9*) = 111 +2a(1 —y) - a(l - 2)—201(1—7)]

i @*(1—yP[1 —a(l —y)]
o 671 = yPla(l - y) ~ 1] - 6ay(l — y)la(l - ¥) - 1T
¥ 60°y(1 - y)[1 - a(l - )
[a(1 > —17°
6a3y(1 — [l - a(l =)’
[a(1 — %) — 1[6a%y*(1 —y)’ — 6a*y*(1 - y)*]
dos = 5 2
6a3(1 —y)’[1 — a(l —y)]
[a(1 =92 = 1@y (1 —y) + Y2 [=1 = 2a(1 —y) + (1 = y2) + 2a(1 — y)? I}
6a3(1 —y)°[1 - a(l -yP
p :[a<1—y2>—1][6a2y<1—y>3 4a’(1 - y)* —da(l - )]
o 203(1 —y)’[1 - a(l —y)]2
, [a(1 =) ~ 1P[3a(1 =) + 20’1 =) = [a(] - 2)—1]
203(1 —y)’[1 - a(l =)l
dn:[a(l—vz)—l]mazﬂl ¥ =22%y(1 —y)* + 2&y(1 — y)’ — 4a?y*(1 - y)’]

203(1 = y)'[1 = a(1 = )P
N Pla(l = y®) = 11[=1 + 2a(1 - y) + a(l = ¥) + 2a(1 = )? 1
203(1 = y)*[1 = a(1 = )P

Then, we can obtain the two roots (eigenvalues) of Eq (3.6) are a pair of conjugate complex as
follows:

1 —ay(l -y +a*(1 -yH(1 —)/)+19
2a(1 -vy)

A2(B7) =

where 6 = \/4a2(1 —y)? = [1 —ay(1 =) + 21 = ¥2)(1 = p)I*.
Their corresponding eigenvectors are

(20272(1 - 7)) (0]
Vip = F1 s
R 0

where R = —1 + ay(1 —y) + *(1 = y»)(1 — ).

Let . 1
2.2 — 1
T, = (O 2a7y"(1 - 7)} then T, = [ 2a7y26(1-y) 9)
2 1 M
0 R 2a%y*(1-y) 0

Transform the variables
(I/t, V)T = TZ(Xa Y)T’
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then, the system (3.7) is changed to the form as follows
2%y (1-y)-R 9 - 3
X - 270(1 ;) X+ 057 + FX, Y) + o(p3),

Yo -l X+ LUKy L GX,Y) + o(pd),

(3.8)

where ps = VX2 + Y2,
F(X, Y) = 620X2 + €11XY + €02Y2 + €30X3 + €21X2Y + €12XY2 + 603Y3,

G(X,Y) = fooX* + fuXY + fooV? + f3oX° + i X°Y + fiuuXY? + fi V2,

d
e = (Ccpp + %)92 e3 = (Ccoz + —)93
_ @ 2 4 20N 4.4 1-— 2
en = (Ccpp + 9 )R™ + (CC20+ 0 )a v (-y
d
+2(Ceyy + %)Razyza -,
_ d02 dll 2.2
el = 2(CC02 + F)RQ + Z(CC“ + 7)Ra Y (1 — ’}/),
d d
e = (Ccoz + %)R3 + 8(Cc3 + %)04676(1 —y)
d
+2(Ccyy + %)Rzazyz(l — )
d
+4(Ccy + ﬂ)Ra“y“a -7
e = 3(Ceos + —)Re2 +2(Cepp + —)Rza Y21 =),
e, = 3(Ceos + 7)R"‘er +4(Ccpp + 7)R@a 221 —y)

d
+4(Ceyy + %)Ra“y“a -7,

foo = Dea, fao = Degst’,
for = D{4a*y* (1 = y)’ca9 + R*cor — 2Ra*y*(1 = y)en),
fir = D{2ROco> +20a*y*(1 = y)eu),
fos = D{8a®y°(1 — y)c30 + Rcos}
+ DR2R*@*Y*(1 = y)cin + 4y (1 = y)ea ),
fo1 = D(3DR*6cos + 26°’y*(1 = y)cna),
fiz = D{46a’*y* (1 = y)’cay + 4ROy (1 = y)c1z + 3R*Ocos ),

— R _ 1
where C = —555-50050 D = 370

One can easily calculate that

- d — d,
Fyx = 2Cen + =,))F, Frux = 6(Ceos + =506
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_ d d
Fyy = 2(Ccoy + %)RH +2(Ceyy + %)Razyz(l —),
_ d d
szzakm+i§m2+&CQW+§%dW%l—w2
d
+4(Ceyy + —)Ra YA (1 - ),
0
— d d
Fxxy = 6(Ccos + ﬁ)RHQ +4(Ceyp + ﬁ)Rzoﬂﬂl -,
Fxyy = 6(Ccos + —)R29 +8(Ccyp + —)RGa (1 -7)
+8(Ccyy + —)Ra Y -y,
0
_ d d
Fny:6«km+—§MP+4&CQ0+7?m%ﬂl—yf
d
+12(Ceya + %)Rzazyz(l -7)

+24(Ccy) + C%‘)Ra“y“(l — )%,

Gxx = 2Dcpot?, Gxy = D{2ROcy, + 200y (1 = y)cny),

Gyy = 2D{4a*y* (1 = y)*ca0 + R*cn — 2Ra*y* (1 — y)en ),
Gxxx = 6Dco38, Gxxy = 2D{3DR*0cys + 26°a*y*(1 — y)cna),
Gxyy = 2D{46a*y*(1 — y)*ca1 + 4RO*Y*(1 — y)c1n + 3R*6cg3),
Gyyy = 6D{8°y°(1 — y)’c30 + RPcos)

+ 6D2R*a*Y* (1 — y)cin + 4a*y* (1 — y)’ea ).

To determine the local stability of the closed orbit bifurcated from the Neimark-Sacker bifurcation
of the system (3.8), the discriminating quantity L should be calculated and not to be zero [25-27],

where
(1-22 )/12

_—520511) - —|§11| — &oal* + Re(aday), (3.9)

L= —Re( -

1 — — — — — —
o = g[FXX — Fyy +2Gxy + i(Gxx — Gyy — 2Fxy)],

1 — — = —
li = Z[FXX + Fyy + i(Gxx + Gyy)l,
1 — — — = — —
oo = g[FXX_FYY —2Gxy + i(Gxx — Gyy + 2Fxy)],

1 — _ _ _
Oy = 1_6[FXXX + Fxyy + Gxxy + Gyyy

+ i(EXXX + EXYY - ﬁxxy - FYYY)]-

By calculation we get

1
G = g{2Cep + —)92 2(Ceqy + —)R2
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d
— 8(Ccyo + %)a“y“(l —y)
+ 2D{2R0cy, + 200”y*(1 — y)eni})

1
+ gi{zpcoze2 — 2D{4(1 — )2y cao + R2con)

d d
— 24(Ccpy + E)Re +4(Ceyy + i)Razyza 1

ly = Z[z(ccoz + —>0272 +2(Cep + 22 Ry

i[2Dcp” + 2D{4a*y* (1 — y)*ca0 + R con}l,

._;-hl'd

G = g12Cep + —)92 2(Cegp + —)R2
— 8(Ccy + ?a‘*y‘*( 1-y)?
— 2D{2R0cy, + 260> (1 — y)cii})

1
+ gi{2DC0292 - 2D{4a4y4(1 - ’}/)2C20 + RZCOZ}
d d
+24(Ccpp + E)Re +4(Ceyy + i)Ral 2(1 = y)l,
O = —[6(CCO3 + —)93 +8(Ccay + —)Ra/ (1 -7)

+6(Ccos + 7)R29 +8(Cepp + 7)Reazﬂl — )
+ 2D{3DR*6cy; + 26°a*y* (1 — y)cin}
+6D{8a°y°(1 — y)’c30 + R7co3)

+ 6D2R*a*y*(1 — y)ein + 4a*y* (1 — y)Pea )]

1
+ Ez{6DcO393 +6DR*0cy; — 12(Ccyp + —)Rza/ (1 -7y)

+2D{40a*y* (1 — y)ca1 + 4RO V(1 = y)c1n)

d d
— 6(Ccys + ﬂ)Raz +4(Ccyy + £)R2a2y2(1 — )

—6(Ccos + —)R3 +48(Cczp + ——)(1 —y)®

9 6 6
— 24(Ccy; + %)Raf‘y“(l — 2.

Based on the above analysis, it is clear that a Neimark-Sacker bifurcation of the system (1.7) occurs
at the fixed point E, and that the stability of the invariant closed curve bifurcated from the fixed point
E, is determined by the value of L. Up to here, the proof for Theorem 3.2 is complete.
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4. Numerical simulation

In this section, numerical simulations are performed to validate above theoretical analysis, including
bifurcation diagrams, phase portraits, maximum Lyapunov exponents and fractal dimensions of system
(1.7) at the fixed point E.

%107 Maximal Lyapunov exponents

9 9.1 92 93 94 95 96 97 098 99 10 9 9.1 92 93 94 95 96 97 98 9.9 10
b b

(a) B€(9,10) (b) B €(9,10)

x104 Maximal Lyapunov exponents

0 -5
05 06 07 08 09 1 1.1 1.2 13 14 15 05 06 07 08 09 1 1.1 12 13 1.4 1.5
b

(c) € (05,1.5) (d) € (0.5,1.5)

Figure 1. Bifurcation of the system (1.7) in (5, x)-plane and Maximum Lyapunov exponent.

Firstly, vary S in the range (9, 10), and fix @ = 1.5,y = 0.5 with the initial value (x¢, yp) = (0.3, 0.3).
Figure 1(a) shows that the existence of a flip bifurcation at the fixed point E, = (0.25,0.25) when
B = Bo = 9.7, which is in accordance with the result in Theorem 3.1. Figure 1(b) means the spectrum
of the maximum Lyapunov exponent. Flip bifurcation may lead to chaos, which makes the system
more complex.

Then, let g € (0.5, 1.5). The bifurcation diagram is depicted in Figure 1(c), which illustrates that
the fixed point E; is stable for § > §; = 0.67, and unstable when 8 < ;. Hence, a Neimark-Sacker
bifurcation occurs at E, when 8 = f;, whose multipliers are 4;, = 47%4—;/975" with [4;,] = 1. The
maximum Lyapunov exponents related to Figure 1(c) are disposed of in Figure 1(d), which exhibits
the existence of periodic orbits and chaos as the parameter 8 decreases.

Take the initial values (xo,y9) = (0.3,0.3) in Figure 2. These phase portraits illustrate that the
dynamical properties of the fixed point E, have big changes with the parameter § increasing. They
change from unstable to stable. What’s more, an invariant closed curve around E; occurs when 8 = £3;.
These phenomenons verify the result of Theorem 3.2.
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The occurrence of a Neimark-Sacker bifurcation causes the system to jump from stable window to
chaotic states through periodic and quasi-periodic states, and trigger a route to chaos.

0.18
005 01 015 02 025 03 035 04 045 05 055 01 015 02 025 03 035 04 045 05 018 02 022 024 026 028 03 032 034
x x x

@) f=0.6 (b) B =0.63 (©) B =0.66

0.18 02 — 02
0.18 0.2 022 024 026 028 03 032 034 0.18 02 022 024 026 028 03 032 034 0.18 02 022 024 026 028 03 032
x x

(d) p=0.67 (e) =0.7 (f) p=0.73

Figure 2. Phase portraits for the system (1.7) with @ = 1.5,y = 0.5 and different 8 with the
initial value (xy, yo) = (0.3, 0.3) outside the closed orbit.

5. Discussion and conclusions

This work is concerned with a Michaelis-Menten predator-prey model. Using the semi-
discretization method, the system (1.4) is transformed into the system (1.7). Comparing the corre-
sponding continuous system in [9], the discrete model has more rich dynamical behaviors. With the
given parametric conditions, one demonstrates the existence and local stability of two nonnegative
fixed points £y = (1,0) and E, = (1 — a(1 —y), W). Utilizing the center manifold theorem,
one determines the existence conditions of the flip bifurcation and Neimark-Sacker bifurcation of the
system (1.7) around the fixed point E,. Especially, E, is asymptotically stable when g > 8, = %
and unstable when 8 < ;. So, it is clear that the system (1.7) undergoes a Neimark-Sacker bifurcation
when the parameter 8 goes through the critical value ;. This phenomenon indicates that the coexis-
tence of prey and predator when the parameter S = ;. Our results clearly display that the system (1.7)
1s very sensitive to its parameters: different parameter perturbations will lead to different bifurcations.
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