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Abstract: Infectious diseases have a great impact on the economy and society. Dynamic models of
infectious diseases are an effective tool for revealing the laws of disease transmission. Quarantine and
nonlinear innate immunity are the crucial factors in the control of infectious diseases. Currently, there
no mathematical models that comprehensively study the effect of both innate immunity and quarantine.
In this paper, we propose and analyze an SEIQR epidemic model with nonlinear innate immunity. The
boundedness and positivity of the solutions are discussed. Employing the next-generation matrix, we
compute the expression of the basic reproduction number. Under certain conditions, the phenomenon
of backward bifurcation may occur. That is to say, the stable disease-free equilibrium point and the
stable endemic equilibrium point coexist when the basic reproduction ratio is less than one. And the
basic reproduction number is no longer the threshold value to determine whether the disease breaks out.
We investigate the globally asymptotical stability of the disease-free equilibrium point for the system
by constructing Lyapunov function. Also, we research the global stability of the endemic equilibrium
by using geometric approach. Numerical simulations are carried out to reveal the theoretical results
and find some complex dynamics (for example, the existence of Hopf bifurcation) of the system. Both
theoretical and numerical results indicate that the nonlinear innate immunity may cause backward
bifurcation and Hopf bifurcation, which makes more difficult to eliminate the disease.

Keywords: innate immunity; SEIQR epidemic model; backward bifurcation; stability

1. Introduction

Infectious diseases can spread and turn into epidemics, taking thousands of lives within a matter
of just a few days. Many scholars have studied the epidemiological mechanism of infectious diseases
through various methods and given preventive strategies. Mathematical models can help us to gain
insights into the dynamics of diseases and their control strategies [1-3]. Epidemic models have been
developed by many scholars since the first epidemiological model created by Daniel Bernoulli [4].
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In [5], considering both individual behavioral responses and governmental actions, Lin et al. proposed
a conceptual model for the COVID-19 outbreak in Wuhan, China. In order to forecast the evolution
of the COVID-19 outbreak in Mexico, Avila-Ponce de Ledn et al. proposed an SEIARD mathematical
model which incorporated the asymptomatic infected individuals [6]. In [7], a bacterial meningitis
transmission dynamics was considered by Asamoah et al. The existence of backward bifurcation was
discussed and optimal control problem was solved. In [8], an ordinary differential model of malaria
was established. In this paper, stability of disease-free and endemic equilibria, bifurcation phenomena
were investigated. In [9], a delay Ebola epidemic model was studied by Al-Darabsah et al. In [10], He
et al. built an SEIR model for COVID-19 incorporating some general control strategies. In [11], based
on the COVID-19 data in Ghana and Egypt, Asamoah et al. formulated a COVID-19 infection model
to present the sensitivity assessment and optimal economic evaluation. In [12], Zhao et al. studied
a stochastic switched SIRS epidemic model. The stationary distribution and extinction of the disease
were discussed. In [13], Omame et al. considered a co-infection model for SARS-CoV-2 and ZIKYV,
which exhibited backward bifurcation. In [14], considering the infectious force in latent period and
infected period, Zhao et al. lucubrated an SEIR epidemic model with discontinuous treatment strategy.

For the sake of the effective strategies to disease control and prevention, quarantine is the most
effective way to reduce the transmission of the infected to the susceptible. For example, many coun-
tries have taken quarantine measures in the fight against COVID-19. Many scholars introduced the
quarantine class into the epidemic models. In [15], Herbert et al. showed six epidemic models with
quarantine and different forms of the incidence. In [16], a compartmental model incorporating asymp-
tomatic class, quarantine and isolation was presented by Ali et al. The strategies for effective control
of the epidemic were proposed by analyzing the model. In [17], Tulu et al. built a fractional-order
model for Ebola with the strategies to vaccination and quarantine. They gained that vaccination and
quarantine are effective control measures for Ebola.

Innate immunity is the body’s natural immune defense function formed during germline develop-
ment and evolution [18]. It is a series of defense mechanisms formed by organisms in the process of
long-term evolution. In [19], Kabir et al. built an epidemic model for natural and artificial immunity
with durability and imperfectness of protection. In [20,21], the authors considered the mathematical
models with the nonlinear innate immunity rate. However, there currently no models that comprehen-
sively consider the effect of the nonlinear innate immunity and quarantine.

This paper is organized as follows. In Section 2, we built an SEIQR epidemic model and describe
it. Preliminaries, such as boundedness, positivity of system (2.2) are discussed in Section 3. In Section
4, we present the expressions of equilibria and the basic reproduction number. The global stability
result of the disease-free equilibrium and the existence result of backward bifurcation for system (2.2)
are derived in Section 5. In Section 6, the global stability of endemic equilibrium is shown via using
geometric approach. We present some numerical examples to verify the theoretical results obtained in
previous sections. Finally, we conclude this article with a brief discussion.

2. Model formulation

In this work, therefore, we will investigate the effects of quarantine and nonlinear innate immu-
nity. And we shall consider an SEIR model with quarantine and nonlinear innate immunity. Sup-
pose that N(¢) denotes the number of total population. The total population is subdivided into five
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different classes, namely, the susceptible (S(#)) individuals, the exposed individuals (E(?)), the in-
fected individuals (I(7)), the quarantined individuals (Q(#)) and the recovered individuals (R(?)). Hence,
N() = S(t) + E(t) + I(t) + Q(t) + R(t). In the present paper, we assume that the recovered individ-
uals confer permanent immunity and they do not revert to the susceptible individuals, like varicella,
measles, rubella [22,23]. The flowchart of the epidemiological SEIQR model is illustrated in Figure 1.

HE() O |diy  pom /IR(f)T
BS(OI(T) 7
—_— aE(f) X ij cIr) o ff’Q(f)\l[ ) ]
aE(t) N
L+ kE(1) 71(7)

PE(T)

Figure 1. The flowchart of the proposed SEIQR model.

From the flowchart, we will establish the following model:

BO — A - BSOIE) — uS (1) + 1152()0’

B0 = BS (1(1) ~ () ~ pE(t) ~ pE(D) ~ 52
T = TE@) = €10 ~ yI(0) — ul (1) ~ dl(0), .
L0 = 1) - pO(1) - Q)

t

TG = PE@ +yI(t) + Q) — uR(1).
In model (2.1), the parameters A, u, d, o, &, p, v, ¢, B, a and k are nonnegative. A is the replenishment
rate of susceptibles; £ is the infection rate; u is the natural death rate of the population; d denotes the
disease-related mortality rate; o~ denotes the transfer rate between the exposed and the infectious; £ is
quarantine rate of the infected; p is the recovery rate of the infectious individuals; ¢ is the recovery rate
of the quarantine individuals. We assume that the exposed transformed into the susceptible with the
nonlinear innate immunity rate %g()t) [20,21]. For biological significance, we postulate that the initial
conditions of system (2.1) satisfy: S(0) >0, E(0) >0, 1(0) >0, Q(0) >0 and R(0) > 0.

Since R(?), the recovered population, is independent of the first four equations of system (2.1), the
rest of the paper will consider only the following four-dimensional system:

asw® _ A —-BSOI(t) — uS (1) + 1152%)’

e =BS I — cE(t) - pE(1) — RE(1) ~ 17

dlaz,‘) 1+kE(1)° (22)
“g = OE® =&l = yI(0) - pl(0) - (),
100 = ¢1() - Q1) — P Q).
The initial conditions associated with the system (2.2) are as follows
$(0)>0, E(0)>0, I(0) >0, Q(0) > 0. (2.3)

3. Basic properties

In this section, we shall present some basic properties such as boundedness, positivity of system
(2.2).
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Theorem 3.1. For all # > 0, the solutions (S (¢), E(¢), I(¢), O(#)) of system (2.2) with initial condition
(2.3) are positive.

Proof. Set#; = sup{t > 0: S(0) > 0,E0) > 0,1(0) > 0,0(0) > 0}. The following inequality is
given by the first equation of system (2.2)

dS (1)
dt

>A—-BS@I(t)— uS ().

The above inequality can be rewritten as:

dS ! !
%{S(I)GXPW + fo BI(s)dg]} = Alexplut + fo BI(s)ds]}.
Thus y | .
S () explut; + f BI(s)ds] —S§(0) > f Aexpluz + f BI(s)ds]dz,
0 0 0
so that

11

S (1) 2 §(0) exp[—ut; —f BI(¢)ds]+

0 | Z
expl—ut — f Bl(s)ds] f Aexpluz + f Bl(s)dsldz
0 0 0
> 0.

Similar to the above method, we can obtain E(¢) > 0, I(¢) > 0, Q(¢) > O for all time ¢ > 0. Hence,
for all r > 0, the solutions of system (2.2) satisfying the initial value condition (2.3) are positive. This
completes the proof of Theorem 3.1.

Define

A
D=A{S,E,,O)eR,:0<S+E+I1+Q0<—}. 3.1
u
Theorem 3.2. The region D is invariant, which indicates that all solutions of system (2.2) with
initial condition (2.3) in D remain in D for all # > 0.
Proof. Adding the two sides of system (2.1) respectively, we have

dN(1) 4 B
Hence
dN(1)

<A —uN().

From above we obtain that
0< N < ‘2 + (S (0) + E(0) + 1(0) + Q(0) + R(0)) exp(—pu).
Therefore, if N(0) < 2, then
lim sup(S (1) + E(1) + 1) + 0(0) + R() < 3.
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Hence, for all ¢t > 0,
[SO+E@®+ 1)+ 0@)] < %

That is, all orbits of system (2.2) with initial conditions S (0) > 0, E(0) > 0,1(0) > 0,Q(0) > 0in D

remain in O for all # > 0. Thus, the region D is positively-invariant. Furthermore, if N(0) > ﬁ, then

either N(¢) approaches % as t — oo or the solution enters D in finite time. Hence, the region D attracts
all solutions in R%.
Throughout this paper, we shall consider the dynamical behaviors of system (2.2) on the region D.

4. Equilibria

Setting the right-hand sides of system (2.2) to 0, we can get that system (2.2) has only one disease-
free equilibrium, denoted by PO(%, 0,0,0).
Next, we shall calculate the basic reproduction number, denoted by R, of system (2.2) by applying
the next generation matrix method in [24] offered by van den Driessche et al.
Let x = (I, E)". We can re-express system (2.2) as follows
% =F(x) - V(x),

where

(c+p+wE+ 1ifE

—cE+E+y+u+dl
&I+ (¢ + Q0

—A+BST+puS — 2=

V(ix) =

We can obtain

Ve o+pt+u+a 0
- -0 E+y+u+d ]’

Then the next generation matrix for system (2.2) is

AcB AB
Fv-1 :( pE+y+utd)(uro+pta)  p(E+y+ut+d) )
0 0

AoB

PE+y+u+d)u+o+p+a)
According to Theorem 2 in literature [24], the basic reproductive rate of system (2.2) is spectral radius

p(FV™Y,ie.,

The spectral radius of matrix FV~!, denoted by p(FV~'), equals to
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3 Ao
CuE+y+tp+duto+p+a)

Ro

From [24], the local stability of the disease free equilibrium PO(%,O, 0,0) for system (2.2) can

directly established. The result is listed as following.

Theorem 4.1. The disease-free equilibrium Po(ﬁ, 0,0, 0) of system (2.2) is locally asymptotically

stable when R, < 1; and PO(%, 0,0, 0) is unstable when R, > 1.

In the following, we shall discuss the existence of the endemic equilibrium. Let P*(S*, E*, I*, Q%)
be an arbitrary endemic equilibrium of system (2.2). Setting the right-hand sides of (2.2) to 0, we can

x _ Erytutd yx x _ A(I+kE*)+aE*
get £ = — ', S* = Y v

AN + A0 + A5 =0,

where
Al =kB(o +p+ ),
Ay = (0 + p + p)(Bo + kyu + kud + ku® + kép) — AkBor,
As=cul+y+u+d)(u+o+p+a)(l—=Rpy.
Denote

A = A% - 4A]A3

= A5 —4AjopE+y+u+d(pu+o+p+a)l —Ro).

Solving the equation A = 0, we can obtain that Ry = R*, where

A3

CAAouE+ytut+dutotpta)

R =1

The following equivalent relations are true:

A<0eR <Ry A=0oR =Ry;; A>0 R >Ro.

Hence, for the existence of equilibria of system (2.2), the following conclusions are correct.

Theorem 4.2. System (2.2) always exists a disease free equilibrium P, and

, 0" = %I*. Here I” satisfies the following quadratic equation

4.1

(4.2)

(1) iIf R <Rpor R" =Ryor R <Ry <1andA, > 0, system (2.2) has no endemic equilibrium;
) ifR" < Ry=1land Ay <O0orRy >1orR =Ry < 1, system (2.2) has only one endemic

equilibrium P*(S*, E*, I*, 0");

(i) if R* < Ry < 1 and A, < 0, system (2.2) has two unequal endemic equilibrium points denoted

by P.(S., E., L., Q.)and P*(S*, E*, I", O"), where

M- VE A+ VA

L, ,
2A, 2A,
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5. Stability of disease-free equilibrium P,

In this section we shall investigate the locally and globally asymptotical stability of disease-free
equilibrium PO(IT" 0,0, 0) and endemic equilibrium P*.

Theorem 5.1. The disease free equilibrium PO(%, 0,0,0) is globally asymptotically stable when

Ao

HE+y+p+d) (o +p+pu+ )

Proof. Consider Lyapunov function V(¢) = alE(t) + a,I(t) + a3 Q(t), where ay, a,, a; are undeter-
mined non-negative real numbers. Then the derivative of V(7) along the solution curves of (2.2) has
the following form,

R, <1, where R, =

av() _ dE(t) do(t)
& = aj + ar + as Te

=a1(,BSI a'E pE — uE - &
+a3 (&l — ¢Q — nQ)
Sal['%AI—(O'+p+,u+

+a3[§1 - (¢ + ) O]
Now we select the coeflicients a;, a, and az, with the zero coefficients of E and /. Hence we obtain

1 A
b =gl sp s £ )(§+7+#+d)—%]

dl(t)

)+ ay(cE =&l —yl —ul —dI)

CREl+ aloE - (E+y +p+dl]

a =0, =0+p+u+

Substituting the values of a;, a, and as to V(t), the derivative of V(f) can be expressed as

(L2 = (0 +p+u+ EDE+y +p+ D@+ 0.

A
Clearly, dv(’) < 0 when R, = 7P < 1. Furthermore, % = 0 if and

pE+r+p+dio+p+p+ L)

onlyif E=1=0=0.

Next, we shall examine the possibility of backward bifurcation for system (2.2). To do this, we
firstly introduce the approach presented by Castillo-Chaves et al. (see [25]), which is based on the use
of the general center manifold theory [26]. Considering a general system of ODEs with a parameter ¢:

dx

- =F(y,s); F:R"xR — R and F € C*(R" x R). (5.1)

Assume that y = 0 is an equilibrium for system (5.1) for all values of the parameter ¢, that is F(0, ¢) =
0, for all ¢. Let Q@ = D,F(0,0) = ( (0 0)) be the Jacobian matrix of F(y, ¢) at point (0, 0).
Lemma 5.1. (Castillo-Chavez and Song [25]) Assume:

(A1) 0 is a simple eigenvalue of Q and all other eigenvalues of Q have negative real parts;

(A2) Matrix Q has a (non-negative) right eigenvector w = (wy,wy,--- ,w,)" and a left eigenvector
v = (vi, v, ,V,) corresponding to the zero eigenvalue.

Let F; denotes the k" component of F and,

a= an V w~w~ﬁ(0 0)
LT ooy
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b = i vkw-ﬂ(o 0)
& Toxios T

Then the local dynamics of system (5.1) around y = O are totally determined by a and b.

I)a> 0,b > 0. When ¢ < 0, with |¢] < 1, y = 0is locally asymptotically stable and there exists
a positive unstable equilibrium; when 0 < ¢ < 1, y = 0 is unstable and there exists a negative and
locally asymptotically stable equilibrium;

2)a<0,b <0. When ¢ < 0, with |g| < 1, ¥ = 0 is unstable; when 0 < ¢ <« 1, y = 0 is locally
asymptotically stable and there exists a positive unstable equilibrium;

3)a>0,b < 0. Wheng < 0, with |[¢] < 1, y = 01s unstable and there exists a locally asymptotically
stable negative equilibrium; when 0 < ¢ <« 1, y = 0 is stable and a positive unstable equilibrium
appears;

4)a < 0, b > 0. When ¢ changes from negative to positive, y = 0 changes its stability from
stable to unstable. Correspondently, a negative unstable equilibrium becomes positive and locally
asymptotically stable.

Remark 5.1. The requirement that w is non-negative is unnecessary (see [25]).

Introducing S = x1, E = x2, [ = x3, Q = x3, we rewrite system (2.2) as

dn@ _ —
- =A-Brs —wn + s = F

L =By —ox2 —pxe — e — T = P 52)
“a = X2 —&xs = vk — s —dys = Fs,
=i =X — dxa — xa = Fa.

We will apply Lemma 5.1 to show that system (5.2) may exhibit a backward bifurcation when

Ro = 1. We consider the parameter S as bifurcation parameter. Corresponding to R, = 1, we can get
ﬁ _ ﬂ* _ uE+rtut+d)(uto+p+a)
- - Ac :
The Jacobi matrix of system (5.2) is

—u a - 0

w_ | 0 —(c+p+tu+a g4 0

HFPo.F) = 0 o —(ﬂ+dﬂ+’y+§) 0
0 0 3 —(¢+ )

And the eigenvalues of J(Py, ") are givenby 4; = —u, Ay = 0, A3 = —(u+d+y+&)and Ay = —(¢ + ).

Obviously, the matrix J(Py, ") has a simple zero eigenvalue 1, = 0. And the other eigenvalues of
J(Py,B*) are negative real numbers. Therefore, we can use the center manifold theory to discuss the
dynamics of system (2.2) when Ry = 1. Hence, the disease free equilibrium P, is a nonhyperbolic
equilibrium.when S = B* (or equivalently when Ry = 1). Therefore, the assumption (A1) of Lemma
5.1 is then verified.

Now we will calculate a right eigenvector of the matrix J(Py, 5*) associated with the zero eigenvalue
Ay = 0, denoted by w = (wy, wa, w3, wy)". It is found by

_pA 0

—u a n wq
0 —(c+p+u+a %A 0 w2 1 _p
0 o —(u+d+y+8&) 0 wy |
0 0 3 —(p+p) J\ W4
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Thus, we can get
—uw; + aw, — B—AW3 =0,
H A
w3 =0,
ow,—(u+d+y+EwW; =0
Ews = (g +wws =0

%[M - /il—A], Wy = w, ws = ¢ + u, wy = €. Therefore, the right

—(c+p+u+aw, +

This implies w; =
eigenvector is
+u au+d+y+§é PA, p+wu+d+y+§)
St day ) PA GrWA ARy o g (5.3)
u o u o
Furthermore, the left eigenvector v = (vy, v,, v3, v4) of the matrix J(Py, 8*) which satisfies v-w = 1
is given by

—uvy =0,
avi—(c+p+u+ay,+ovy =0,
—%Avl+ﬁ7Av2—(p+d+y+§)v3 +év, =0
—(@p+mvs =0

Then, the left eigenvector v turns out to be
o o+p+u+a
=, P+ Rutd+y+éE+o+p+a) (@+WRutd+y+E+o+p+a)
Calculating all the partial derivatives of F; (i = 1,2,3,4) with respect to y; (i = 1,2,3,4) and g at
the disease-free equilibrium PO(%, 0,0,0), we get

0). (5.4)

PF PF PF

IS T S Y
x10xs  Ox30x %

2F 2F ZF

OF, PR :5,3 > ok

1dys  Ox10x3 ox;3
0%F, 3 ﬁA 0°F, _BA
0B u a0B p
and all the other second-order partial derivatives are equal to 0.
Thus, we can calculate the coeflicients a and b defined in Lemma 5.1, i.e.,

2

0°F
EI—ZV](WWJa 6 (Po,,B)

ki, j=1
4 2
Fi
b i Py, "
;ka 6)(i6,8( 0.87)

Considering system (5.2) and taking into account of a and b only the nonzero derivatives of the
8*Fi « 0Fy o s
terms o (Py, ") and aX,-aﬁ(PO’ B"), it follows that

o°F
a= 2V1W1W33X1 —(Po, ) + viw; aa (Po.S)

F
+2VW W3 5 5)(1 m S(Po, ") + Vzwg(a)(%z (Po, 5%,
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and X X
0°F, 0°F,
b= ——(Py,B) + Py, B).
V1W36X36ﬁ( 0.8") V2W38)(36ﬁ( 0.8
From (5.3) and (5.4), we obtain
_ 207 (¢p+p1)? B a(u+d+y+&)  BA ak(u+d+y+&)?
a= (¢+y)(2p+d+y-l|—1§+(r+p+u)[;_1( oy - 7) + Ty]’ (5.5)
and
o BA

b= du+d+y+éto+ptap

Obviously, the coeflicient b is always positive. According to Lemma 5.1 we can conclude that the sign
of a determines the local dynamics of the disease-free equilibrium Py, when 8 = 5*.

Define R; = “47+0(1 1 k) Note thata < 0if R} < 1,and a > 0if R; > 1. Hence, from Lemma
5.1, we have the following results.
Theorem 5.2. (1) Assume that the basic reproductive rate R, equals to 1. System (2.2) exhibits a
backward bifurcation if R} < 1. Otherwise, system (2.2) exhibits a forward bifurcation if R} > 1.

(2) The endemic equilibrium is locally asymptotically stable when the basic reproductive rate Ry >
1 and close to one.

T e @ T 0
Forward bifurcation. Backward bifurcation.
Figure 2. Bifurcation diagram of system (2.2). The dash curve represents unstable equilib-
rium while the solid curve represent stable equilibrium. Here we set A = 2 for (a) and A = 3
for (b). The other parameter values are: S = 0.0030,u = 0.006,a = 10.98,k = 15,0 =
0.84,£ =03,y =0.15,d = 0.009,p = 1.16,¢ = 0.32.

6. Global stability of endemic equilibria

In the following, we will utilize the geometric approach to observe the global stability of the en-
demic equilibrium for system (2.2). Firstly, we present some preliminary results on the geometric
approach to global dynamics, one can find them in [28-30]. Let B be the Euclidean unit ball in R?, and
let 98 and B be its boundary and closure, respectively. Denote the set of Lipschitzian functions from
X to Y by Lip(X — Y). We consider a function ¢ € Lip(8 — D) as a simply connected rectifiable
surface in O C R". A function ¢ € Lip(08 — D) is a closed rectifiable curve in D and is called simple
if it is one-to-one. Define 3(¢, D) = {¢ € Lip(B — D)|psg = ¥}. If D is an open, simply connected
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set, then ) (¥, D) is nonempty for each simple closed rectifiable curve ¢ in D. Let || - || be a norm on

R\ 2/, A function &S on surface in D is defined as follows:
0 0
Sp = f 1P+ (52 A =E)du, 6.1)
B U 8142

where u = (u;,u), u —> @(u) is Lipschitzian on B, P is an (

LS

) X ( ! ) matrix such that ||[P7!] is
>

T

bounded on ¢($B), and the wedge product ;T‘fl A 579‘; is a vector in R' 2 /. The following lemma develops
on the results in [28] and [30].

Lemma 6.1. Suppose that ¢ is an arbitrary simple, closed and rectitiable curve in R”. Then there
exists 0 > 0 such that Sy > ¢ for all ¢ € > (¥, R").

Let x — f(x) € R" be a C! function for x in a set D C R". We consider the autonomous equation
in R” i

X
i f(). (6.2)

For any surface ¢, the new surface ¢, is defined by ¢,(1) = x(¢, p(u)). If ¢,(u) is reviewed as a function
of u, ¢,(u) is a time ¢t map determined by system (6.2). If ¢,(u) is viewed as a function of ¢, ¢,(u) is the
solution of (6.2) passing through the initial point (0, ¢(u)). The right-hand derivative of S¢,, denoted

D, Sy, is defined by
D, Sy, f ;}E?O(HQ + hQ(p.(w)oll — lloldu, (6.3)

Pt
. [2] . . . .. . . .
where the matrix Q = P;P~' + PZL" P~!. Here P is the directional derivative of P in the direction of

the vector field f, g—f:m is the second additive compound matrix (we can find its definition in [31]) of

‘;—ﬁ, ando=P- (aa—:’l A g—;’;) is a solution to the differential equation

do
i O(gp(u))o. (6.4)

Then, the right-hand derivative D, Sy, is expressed as

D, Sy, = f D.|lolldu.
B

At a general point P(S, E, I, Q), the Jacobian matrix is given by

—BI — u TTHER —BS 0

of | Bl ~o-p-p- i pS 0

O0x 0 o —-u+d+y+&) 0
0 0 & —(¢+p)

The second additive compound matrix of % is the 6 X 6 matrix given by

M, BS O BS 0 0

Mn 0 mgp 0 0
oft _ & My; 0 mm BS
ox Bl 0 My 0 0o |

0 pI & Mss S
0 0 0 o M66

S oo O 9
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where

My=-Bl-p-—oc-p-pu-

My =-Bl—p—p—p, Myyu=-0—-p—p-

Mss = -0 —p—pu—

Let

Then

_a
(1 +kE)?’

The derivative of P in the direction of the vector field f is

Then

and

a4
(1 + kE)?

My =-pl-p—¢—y-—p—d,

—(u+d+y+9),

ﬁ—(flﬂ'ﬂ), Moo = —(u+d+y+&) = (o +p).
I 00 00O
071 00O0O
P 00017 0O
00 EO0O0O
00 0O0E@O
00 0O0O0E
yr 0 0 0 O 0
o 11 0 0O O O
Pl o o o 11 0 O
o o 1/E 0 0 O
0o 0 o0 0 I/E ©0
o o o 0 0 1/E
-r/ygy 0 0 0 0 0
o -r/g o 0 0 0
0 0 0 -ry 0 0
0 0 -EJ/E O 0 0
0 0 0 0 -EJE 0
0 0 0 0 0 —-E'/E
-rygy 0 0 0 0 0
0O -rjg o 0 0 0
0 0O -r/ja o 0 0
0 0 0O -EJ/E O 0
0 0 0 0 -E'/E 0
0 0 0 0 0 -E'/E
= PP+ PU_p!
On BS pBS 0 0 0
g sz m 0 0 0
| 0 Bl Qs 0 0 0 (6.5)
0 5 0 Qu g AS |
0 O % Bl QOss pBS
0 0 0 0 o Q66
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where
Ou =5 - pl e T = P By —da oo o
Q33=—%—M—f—7—d+(lid<—k]2)2, Q44:—O-—IE—M—,31—¢+§+7+d,
Q55=—O-TE—ﬂ—0'—P—¢—ﬁ+f+7+d, Q66=—O-TE—(¢+ﬂ)'

We consider the following norm introduced in [34, 35] for o = (01,02, 03,04,05,06)" € Rg, ol =
max{U,, U,}, where U,(01, 02, 03) has the following form

max{loil, loz| + losl} if sgn(o) = sgn(o,) = sgn(ps),
max{loz| + loi| + losl} if sgn(o;) = sgn(o,) = —sgn(3),
U , 02, = ) 6.6
101:02:03 =3 1 stionl, loals losl) if sen(z) = —sgn(ey) = sen(on), 00
max{loi| + losl,loz2| + losl}  if —sgn(o;) = sgn(o,) = sgn(o3)

and U;(04, 05, 0¢) has the following form

loal + los| + losl if sgn(o4) = sgn(os) = sgn(s),
max{los| + losl, losl + losl}  1f sgn(os) = sgn(os) = —sgn(os),
U,(04, 05, = ) 6.7
2(04:05:€6) =\ 1naxlol loal + log) it sgn(os) = —sgn(os) = sgn(os), ©.7)

max{los| + losl, los| + losl}  1f —sgn(os4) = sgn(os) = sgn(oe).

Furthermore we use the following relations
lo2l < U, losl < Uy, o2 + o3l < U

and
loil, loi +0jl, los + 05 + 06l < Us(0) (i,j=4,5,6, i+ )).

Lemma 6.2. There exists a positive constant 7, such that D_|lo|| < —nllo|| for all o0 € R* and all
S,E,I,Q > 0, provided that the following inequation

maX{%A - te(ion;fw)/% -u+a, —te(ionfoo)ﬁi; —u—-§é-y—-d+20+p+2a,
sup &£ — inf ”—f—u—¢+§+y+d+%}<—n (6.8)
1€(0,+00) te(0,+00)

holds for some 7. Here D, ||o|| the right-hand derivative of ||o||, o is the solution of % = Qp.
Proof. We show the existence of some n7 > 0 such that

D, |loll < =nllel|

for all o € R*, where o is a solution of Eq (6.4). By linearity, if the above inequality is true for some
o, then it also holds for —o. Based on the different orthants and the definition of the norm || - || in (6.6)
and (6.7) within each orthant, the full calculation to demonstrate the proof involves 16 separate cases
and subcases.
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Case 1. U, > U>, 01,02,03 > 0, and |o;| > |02 + |o3]. Then

lloll = loil,

so that
D.lloll = o]
= (-5 —u—Bl+ 7%5)01 + BS 02 + BS 03
< (_‘% — =Bl + (13’,12)2)IQ1| + BS (lo2| + loal)
<(-BL—p-pr+ aaeloil + B2l

A S 1 a
= (; % —p+ g2 llel]
= (& -5 —p+ ool

Case 2. U, > U>, 01,02,03 > 0, and |o;| < |02 + lo3]. Then

llell = loal + losl,
so that
D.|loll =05 + 05

=001 +(__ ﬁl M= g Y~ d+0'+p+ 1+kE)Q2+ (14_1<15)2Q2
+Blos + (—‘”—’ —p—E—y—d+ 75505

< ololl +(—BS—’ —Bl—p—é—y—d+0+p+ iplodd + mraglosl
+Bllos| + <—@ ~p=E-y —d+ gl

<o(ol +losh+ (B —p—é-y—d+0o+p+ )l
+(-B —p—e—y—d+ 5ol

< (—’”’ p—E&-y—d+20+p+ 2loll

< (—ﬁs’ —pu—€-y—d+20+p+aoll.

Case 3. (Lll > (LIQ, 01 < 0, 02,03 > 0, and |Q1| > |Q2| Then

lloll = lo1l + losl,
so that
D.lloll = -0] ";193
= —(—ﬂ— —u-pl+ (131165“)2)91 ~B50=fS0s
+Blo> + (—— —H-&-y—d+ (1+kE)2)Q3
< (_[ﬂ —u—pBI+ (li’l‘i)z)@]l +BS 02| + BSlos|
+B10s| + (—— —p—&-—y—d+ (1+kE)2)|Q3|
< (—‘ﬂ —u+ (lj’_ig)z +BS)loi|
+(—[ﬁ p—&-y—d+ (12@)2 +BS)les|
< (A @ 1+ guElell
<81y ol

Case 4. 7/11 > (le, 01 < 0, 02,03 > 0, and |Q1| < |Q2| Then

lloll = loal + losl,
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so that

D.|lol|

—Q2+Q3

=oo+(-BL—pr-pu-¢&-y- d+0+p+ 7550+ G0
+ﬁlgz+<—“—’—u £~y —d+ giE)os
<a|gl|+(—“—’—ﬁ1—u—§—y d+0 +p+ 2p)loa] + rilos!
+Bllo2| + <—@ —p—E—y—d+ g8l
<0(|Qz|+|93|)+(—ﬂﬂ—,u—§—7—d+<f+p+ﬁ)l@zl
+H-B —p—é—y—d+ 5)los]

<(—@ p—E€—y—d+20+p+ 7)ol

<(—@ p—E&-y—d+20+p+aoll

Case 5. U, > U, 01,02 > 0, 03 <0, and |0z| > |o1] + |os]. Then

so that

D.|lol|

lloll = loal,
-0,
=01+ (B -pr-p-¢-y- d+0+p+ 7050+ qrEes
<colol+ (B —Bl—p—¢—y—d+0+p+ ploal + rimlosl
<(B -p-é-y-d+20+p+ Dol
<(—@—u E—y—d+20+p+2a)oll.

Case 6. U, > U3, 01,02 > 0, 03 <0, and |0z] < |o1] + los|. Then

so that

lloll = lo1l + losl,

D.llll = o] -0}
= (5 +p+pl - (1+kE)2)Q1 TS0 +BSes
+B1o> + (—/% —p—&-y—d+ (1:1]1?155)2)93
< (-B1_u-pI+ aaeloil + BSloal + BS los|
+Blloal + (<5 —p—¢ =y —d + 75 los

S a
< (—'B—S—u + ok + Bl
(B —p—E—y —d+ G495 + BS)losl
< (& - @—u+(li§§)z)||g||

< BBl

Case 7. U, > Uy, 02,03 > 0,0, <0, and lo1] = max{|oal, |os]}. Then

so that

Electronic Research Archive

llell = loil,

D.lloll =0} -
= (-5 —p =Bl + 7%E5)01 + BS 02 + BS 03
< (_@ —u—pBI+ (li’l‘i)zﬂg]l +BS (loa| + losl)

< (—"S—’ — =Bl + G201 + B2loi]
A S 1 a

s(ZTA Bg, p+ G2 lel

<G -5 —p+aloll
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Case 8. Uy > U», 02, 03 > 0, 02 < 0, and |0,| = max{oi|, |os}. Then
lloll = loal,

so that
Dillell =-¢,

1 a a
=ooi+ (-G Pl —p—E—y—d+0o+p+ 550 + Trm0s
<oloil+ (T Bl —pu—E~y—d+0o+p+ iplol + iglosl

BS1

S(-5 —u—-§&é-y—d+20+p+2a)oll

Case 9. U, > U, 01,03 > 0, 0, <0, and |o3| > max{|o;|, 0>}. Then

llell = losl,

so that
Dylloll = 05
=Blor + (-5 —p—é—y—d+ 325505
<Blloal + (5 —p =& -y —d + F%5)los|

<& - —u+alel

Case 10. (Lll < 7/{2, 04, 05, 06 > 0. Then
lloll = loal + los| + losl,
so that
D.llell = QIQ +05 + 0
= S0+ (T —p Bl — ¢+ &+ 7y + d)os + (55505 — BS 06
+50s +Blos+ (% —p—0—p—¢ - rim +E+y + d)os + S 06
+005 + (=25 — (¢ + )06

Slor+os) + (- —p—¢p+E+y + dlodl
+(-ZE —p—p—p+E+y+dlos| + (—ZE — (¢ + w)losl-

IA

Using |0z + 03] < Uy < loal + los| + losl, it follows
Dilloll < (5 - F -u-¢+&+y+dloll
Case 11. U, < U;, 04, 05 > 0, 06 < 0 and |os| > |0e|. Then
lloll = loal + losl,

so that

D.lloll =0} + 05

S0r+ (= —p =Bl — ¢+ &+ +d)os + 505 — BS 06

+50s +Blos + (% —p—0—p—¢— rim +E+y + d)os + S 06
o2 +03) + (ZE —pu— ¢+ & +y+d)lodl

H-TF —pu—o—p-¢+&+y+dosl.

IA
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Using |0, + 03] < U, < |o4] + |os], it follows

Diloll < (4 - —pu—¢+&+y+dloll

Case 12. U, < U;, 04, 05 > 0, 06 < 0 and |os| < |0g|. Then

lloll = loal + losl,

so that
D.lloll =0} — o
=50+ (=F —pu—Bl— ¢+ &+ +d)os + iE05 — BS0s
+00s + (—ZE — (¢ + 11))06
Clool + (—FF —pu =Bl — ¢ + & +y + d)loul + iglos| — BS los|
+orlos| + (—ZE = (¢ + 1))loel.

Using |o,] < Uy < |o4] + los], it follows

IA

Diloll < (4 —2E —p—gp+é+y+d+a+o)oll

Case 13. U, < U3, 04, 06 > 0, 05 < 0 and |os| > |04] + |og|- Then

lloll = losl,
so that

D.lell = e
=503 —Plos+ (- —pu—0—p-¢— = +E+y + d)os — BSos
<Dosl+ (L —p-0—p-¢— i +E+7 + dos|

Using |o3| < U, < los|, it follows

Diloll < (5 - —pu—-¢+&+y+dloll

Case 14. (Lll < (le, 04, 06 > 0, 05 < 0 and |Q5| < |Q4| + |Q6| Then

lloll = loal + losl,

so that
Dilloll =0, + 0
=50+ (= F —p=pI- ¢+ &+y+d)ou+ rigros — S0
+005 + (=ZF = (¢ + 11))0s
< Lloal + (- %L —p— Bl =+ & +y + d)os + rizlos| - BS lod

+0los| + (—ZF = (¢ + w)losl-
Using |oa] < U, < loal + logl, it follows

Diloll < (5 -ZE—pu-¢p+é+y+d+a+ool
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Case 15. (Lll < (le, 05, 06 > 0, 04 < 0 and |Q5| < |Q4| Then

lloll = loal + losl,

so that
D,lloll = -0} + 0§
=[S0+ (- F —p =Pl - ¢+ &+y + d)os + 5705 — BS 06
+070s + (—ZF — (¢ + 11))06
Clool + (—FF — =Bl — ¢ + & +y + d)loul + ilos| — BS los|
+0los| + (—ZE — (¢ + w)logl-

Using |0,] < Uy < |o4] + logl, it follows

IA

Diloll < (5 -ZE—pu-¢p+é+y+d+a+ool
Case 16. U, < U;, 05, 06 > 0, 04 < 0 and |os| > |04]. Then

lloll = los| + losl,
so that

Dilloll =05 + 0
= S0 +Blos+ (- ZF —p—0 —p—¢ - e +E+y + d)os + S 06
+0705 + (=ZF — (¢ + )06
< Llos| + pllos] + (=% — i — ¢ + £ +y + d)los| + S lol
+0los| + (—ZE — (¢ + w)los|-

Using |os| < U, < |os| + logl, it follows
Diloll < (5 - F —p—¢+é+y+d+ =Dl
From Case 1 to Case 16 and the condition of Lemma 6.2, we can obtain

D, |loll < =nllel|

for all o € R*.

From [32,33] we know that the geometric approach can be applied to prove the globally asymptotic
stability when the epidemic model has a unique endemic equilibrium. In this situation, there exists a
compact absorbing set 9, and a surface remains in D for all time. From Section 4, we find that system
(2.2) will possibly exhibit bistability. For this case, system (2.2) does not exist an absorbing set. Hence,
we shall consider the following sequence of surface {¢*} in the following lemma.

Lemma 6.3. Let  be a simple closed curve in 9. There exist a positive € and a sequence of surface
{¥*} that minimize S given by (6.1) relative to Y(y, D) such that {1,//; c Dyforallk =1,2,3,--- and
all £ € [0, €].

Proof. Let { = %min{E,I : (S,E,1,Q) € y}. Itis easy to see £ > 0. From the second and third
equations of (2.2), we can get the inequality % > —0E(t)—pE(t)-uE(t)— ljfg()t), ‘% > —(E+y+u+d)l
in 9. Hence we can conclude that there is an € > 0 such that, if a solution satisfied E(0) > £, I1(0) > £,
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then it remains in D for ¢ € [0, €]. Thus we only require to prove there exists a sequence {i/*}, such that
it minimizes S relative to X(y, D), where D = {(S,E,1,Q) e D E > ¢, 1 > ¢).

Let o(u) = (S (), E(w), I(), Q(u)) € (¥, D). Define a new surface @(u) = (S (w), E(u), I(u), O(u))
by

o(u) if E(u)>¢,1u)=¢,

(S.¢,E, Q) if E(u)<{,I(u)>¢and S(u)++1I(w)+ Q(u) < %,

(53505 —20.0.8 5355 =20 if E) < 1) = ¢ and S @)+ + 1) + Qw) > 4,
o) =3 (S.E.{,Q) if Eu)> ¢ 1(u) < and S@u)+E@)+{+0w <4,

(5355 = 20,08 5355 =20) i E@ > ¢ 1) < ¢ and @) + E) + ¢ + Q) > 4,

($.4.4.9) if Eu) < ¢ 1) < and S(u) +2{ + Q) < 4,

(5354 = 20,88 5355 —20) i Ew) < ¢ 1(w) < ¢ and S(u) +2¢ + Qw) > 4,

From the above definition of @(u), it is not difficult to know @(u) € (i, D). Also Sp = fB I%((?T@l A

25\ du and Sp = [ 11(55 A 32)ldu. In the following, we will prove S¢ < S.

According to the definition of wedge product, we obtain that

s s
0 ou
det{ G¢ 9
oug ouy
a s
ou ou
det{ %1 GF
ouy ouy
95 95 95 0S5
ou u ou up
PR o8 o8 det| 90 4g
4 A 4 _ uy A ouy _ uy ouy
o N T L of | = OE  OF
U Uz Ouy ouy det Oup  Ouy
i1 it o or
uy ouy ouy ouy
JE  OF
Ouy ouy
ol of
ou ou
det| 90 56
uy ouy

. . 0p O v o~ o~ o~ o~ 2 o

is a vector in R® for each u € B. Denote a_:i A a_;; = (X, X, X3, X4, X5, %) and % A ﬁ =

(x1, X2, X3, X4, X5, X¢) ' . We will prove |%;| < |x;| (i = 1,2,3,4,5,6) in the following seven cases.

Case 1. If E(u) > ¢, I(u) > Z, then = ¢ and therefore, |%;| < |x;| (i = 1,2,3,4,5,6).

Case2. f E(u) < ¢, I(u) > {and S (u) + E(u) + { + Q(u) < //—j, then o(u) = (S (u) + £ + I(u) + Q(u)).
Hence, we can obtain

o5 95
det( A %_Q)
uy Ouy
0
s as
9% , 9% _ det(%i %_)
6u1 (9142 u, Ou
0
a0 a0
det( E %ﬁ )
duy Ouy
0
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Therefore, it follows %; = x; (i = 1,3,5) and %; = 0 (i = 2,4,6). Hence |X;| < |x]| (i = 1,2,3,4,5,6).

Case 3. If Eu) < £, I(u) 2 ¢ and S (u) + E(u) +{ + Qu) > 4, then §(u) = (555(5 =20, 4, ¢, 55505 =
20)). Therefore, 6@ aafz = 0. Thus,
9 A o~ Qoe _11
Ou;j ouj
o= (-2
uj M S +0) 0
0
for j = 1,2. Therefore, —‘Z’ and £ have linear dependent. Hence, 667“’ A a¢ = 0. Thus x;, = 0

(i=1,2,3,4,5,06). Thereforelx,|<|xl|(z— 1,2,3,4,5,6).
Case 4. f E(u) > ¢, I(u) < {and S(u) + E(u) + £ + Q(u) < 2" then ¢(u) = (S (w), [(v), L, O(u)).
Hence,

s oS
e By 7
ouy ouy
95 98
ou 0
det( G¢ G
aso a(p 6141 61/{2
A= = 0
Ouy  Oup a0 90
ou Ou
det| GH 3£
ouy uy
0
0

almost everywhere. Therefore, X; = x; (i = 1,2,4), X; = 0 (i = 3,5,6). Therefore |X;| < |x;| (i =
1,2,3,4,5,6).

Case 5. If E(u) > ¢, I(u) > £ and S (u) + E(u) + &+ Q(u) > ;—j, then p(u) = (Sf—Q( —20),¢,¢, S S+Q
2(0)). Thus,

1
oS 90
% _A _24)—S% By g
duj S+07 | 0
0
for j = 1,2. Therefore, —‘7’ and a¢ have linear dependent. Hence, W A 5o = 0. Thus X; = 0

(i=1,2,3.4.5.6). Therefore |5 < || (i = 1,2.3.4.5,6).
Case 6. If E(u) < £, I(u) < £ and S (u) + 2£ + Q(u) < 2, then §(u) = (S (u). £, £, Q(w)), thus,

s as

da(% %)
uy ouy

0 0

dp  Op _

ou 1 Guz

S O O OO

Therefore, X, = x; = 1)and X5; =0 (i = 2,3,4,5,6). Hence |%| < |x;] i =1,2,3,4,5,6).
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Case 7. If E(u) < ¢, I(u) < ¢ and S (u) + E(u) +2¢ > £ then @(u) = (S+Q —20),¢,8, S S+Q -20)).
Thus,

-1
P o)
690 _(__ 20) ajj T X | -1
ou; M (S + 0)? 0
0
for j = 1,2. Therefore, g—¢ and “’ have linear dependent. Hence, ;7“’ A a¢ = 0. Thus x5, = 0
(i=1,2,3,4,5,6). Thereforelx,|<|xl|(z—1 2,3,4,5,6).
11
We also note that £(«) = max{E(u), ¢} and I(«) = max{I(u), {}. Thus W < o Tw = I(u) Let
/I 0 0 0 0 0
o 1/ 0 0 0 0
P 0 0 0 1/I 0 0
10 0 1/E 0 0 0o |
0 0 0 0 1/E 0
0 0 0 0 0 1/E

by comparing the vector P - (6“> A é]“’) and the vector P - (6“’ A a“”) we have | L% < | x| (i=1,2,4)
and | Xl < | x| (i=3,5,6) for their correspondlng component.

From above seven cases, we can obtain || =2 Bcp A aa;;” < ||aa;"1 A g:;ll and S@ < So.
From Lemma 6.2, we can choose w = 1nf{&,o ¢ € (i, D)}. Assume that {¢*} is a sequence of

surfaces that minimizes S relative to (¥, D), then hm S¢* = w. Let {#*} be a sequence of surfaces that

minimizes S relative to (i, D) defined by the above construction. Hence, for each k, Sg* < S¢*.
the other hand, since {S@*} is bounded, we assume that {S@*} is convergent without generality From
SF* < S¢* (for each k), we can obtain that hm S@* < @. From ¢* € L(y, D), we get ¢ € (g, D).

Then, for each k, glm S@* > w. Therefore, %ml Sgo = . From S¢* < S¢* (for each k), we can obtain

inf{S@: ¢ € 2(y, D)} <inf{Sp: ¢ €W, D)} =@

From ¢ € 2(, D), we have inf{S¢ : ¢ € (¢, D)} > @, which implies inf{S@ : ¢ € (W, D)} = @. At
last, we can show that lim S¢* = @ = inf{S@ : ¢ € (i, D)}. It follows that ¢* minimizes S relative

k—oo
to (¥, D).

From Lemmas 6.2 and 6.3, we can obtain the following theorem.
Theorem 6.1. If the inequality (6.8) holds true, then any w—limit point of system (2.2) in the interior
of O is an equilibrium, and so each positive semitrajectory of system (2.2) in D limits to a single
equilibrium.

The proof of Theorem 6.1 is similar to the proof of Corollary 5.4 in [27], we omit it.

From Theorem 6.1, we have the following theorem.
Theorem 6.2. Suppose that inequality (6.8) is satisfies, then

(1) when system (2.2) has only one disease-free equilibrium, then all solutions of system (2.2) limit
to Py;

(2) when Ry > 1, then all solutions of system (2.2) converge to the the endemic equilibrium P*;
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Figure 3. When R) < R* < 1, the disease free equilibrium Py is locally stable.

(3) when system (2.2) has two endemic equilibrium point, i.e., R; < Ry < 1 and A; < 0, then
solutions of system (2.2) either go to the disease-free equilibrium Py, or tend to the upper equilibrium
Pr.

7. Numerical simulation

In this section, we present some numerical simulations by using the method of Runge-Kutta through
Matlab 2018a software to corroborate the theoretical results and find the complex dynamics of system
(2.2).

Casei.. Let A = 2.5, = 0.003,u = 0.006, a = 1098,k = 15,0 = 0.84,¢ = 0.3,y = 0.15,d =
0.009,p = 1.16,¢ = 0.32. We can get A, = 0.00506 > 0, R* = 0.9973, Ry = 0.1739 and Ry < R* < 1.
It is easy to see that the conditions of Case (i) of Theorem 4.2 are satisfied. Hence, system (2.2) has
only one disease free equilibrium Py(666.6667, 0,0, 0). Furthermore, the condition of Theorem 4.1 is
satisfied, Py(666.6667,0,0,0) is locally asymptotically stable (See Figure 3).

Case ii. Set A = 13,8 = 0.003,u = 0.006, a = 1098,k = 15,0 = 0.84,¢ = 03,y =
0.15,d = 0.009,p = 1.16,¢ = 0.32. We can get R* = —13.7347, Ry = 0.9042 and R* < Ry < 1.
The conditions of Case (iii) of Theorem 4.2 are satisfied. System (2.2) has a disease free equi-
librium P((2666.6667,0,0,0), two endemic equilibria P,(2163.778095,0.0086, 0.0156,0.0144) and
P*(395.3322,5.2981,9.5708, 8.8075). P. is unstable and P* is locally asymptotically stable (See Fig-
ure 4).

Case iii. Suppose A = 16,5 = 0.003,u = 0.006, a = 1098,k = 15,0 = 0.84,¢ = 0.3,y =
0.15,d = 0.009,p = 1.16,¢ = 0.32. We can get Ry = 1.1129 > 1. The conditions of Case (ii) of
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Figure 4. When R* < Ry < 1, the disease free equilibrium P, and endemic equilibrium P~
are locally stable.

Theorem 4.2 are satisfied. System (2.2) has a disease free equilibrium P((2666.6667,0,0,0) and an
endemic equilibrium P*(389.7962,6.8102,12.3023,11.3211). By the case (2) of Theorem 6.2, P* is
locally asymptotically stable (See Figure 5).

Caseiv. Set A = 3.2, = 0.0072,u = 0.006,k = 15,0 = 0.84,¢ = 0.3,y = 0.15,d = 0.009,p =
1.16,¢ = 0.32. From Figure 6(a), we can find that Hopf bifurcation may occur around the endemic
equilibrium when parameter a changes. Set A = 3.2, = 0.0072,u = 0.006,a = 1.2,0 = 0.84,¢ =
0.3,y = 0.15,d = 0.009,p = 1.16,¢ = 0.32. From Figure 6(b), we can find that system (2.2) ex-
ists Hopf bifurcation around the endemic equilibrium when parameter k& changes, which shows that
nonlinear innate immunity rate can cause system to produce periodic solutions.

8. Discussion

In this paper we considered an SEIQR epidemic model with nonlinear innate immunity. We found
that system (2.2) might exist backward bifurcation under some conditions. The global stability of the
disease free and endemic equilibria for system (2.2) was obtained. The global stability of the endemic
equilibrium point for a four-dimensional nonlinear ordinary differential equation model is studied by
using the method in [27,34]. At present, this approach is rarely used in studying the global stability of
the endemic equilibrium for the epidemic models. This is a good method to study the global stability
of the endemic equilibrium when the models exist backward bifurcation and the Lyapunov function is
not well constructed. We find that Hopf bifurcation might occur by numerical simulation. In theory,
we can further study the direction of bifurcation and the stability of the bifurcating periodic solutions.
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Figure 5. When R, > 1, the endemic equilibrium P* is locally stable.

We’ll leave the work for the future.
When the innate immunity is linear, i.e., kK = 0, system (2.2) reduces to the following:

BO = A - BSOIE) — puS (1) + aE(2),
‘”‘"“) = BS ()I(1) - E(1) = pE(t) — pE(1) — aE(D),
‘”") TE@) = E1(t) = yI(t) — pl (1) — d(2),
% = £1(1) — pOt) — pQ().
By calculating, we get that the basic reproduction number of (8.1) is
Rl — AoB
O pE+y+rp+rdutot+pta)

400 T T 400 T T T
upper bound of limit cycle - upper bound of limit cycle
350 - 1 350
300 - 1 300
250 E 250 f-..

s s =
150 F . oA 150 A
. o B lower bound of limit cycle

100 o 1 100
50 n L | 50 L L L
0 0.5 1 15 0 0.05 0.1 0.15 0.2
a k
(a) S(t) vs. a. (b) S(t) vs. k.

Figure 6. Hopf bifurcation diagram.

(8.1)
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Hence Ry = Ré. That is to say the parameter k does not effect the basic reproduction number. System
(8.1) always exists a disease free equilibrium Pé(%, 0,0,0). When Ry > 1, system (8.1) has a unique
endemic equilibrium P;(S7, E7, I}, O)), where
+y+u+d . A+aE]
B = R g sy = S0
o u+ao 1+ Bl

_AoB-pu+y+pt+doc+p+u+a)

BE+y+u+d(u+o+p) '
By constructing the suitable Lyapunov functions we can conclude that (i) when Ry < 1, the disease
free equilibrium Pf)(:—i, 0,0,0) of system (8.1) is globally asymptotically stable; (ii)) when Ry > 1, the
endemic equilibrium P;(S7, E}, I}, Q7) of system (8.1) is globally asymptotically stable. When the in-
nate immunity rate is linear, backward bifurcation and Hopf bifurcation cannot exist. The dynamic
properties of system (2.2) are more complex than those of system (8.1). Hence, the nonlinear innate
immunity makes more difficult to eliminate the disease. In order to take appropriate prevention and
control measures, we should pay attention to the impact of nonlinear innate immunity in disease con-
trol.

Some fascinating questions are well worth further investigation. For example, the phenomenon of
stochastic disturbances is common in nature. The transmission coefficient is often randomly perturbed
as the disease spreads. If we assume that the incidence rate in (2.1) is perturbed by white noise so that
B — B+ vB(t), where B(t) is a standard Brownian motion with intensity v. System (2.1) becomes the
following stochastic model

I

ds (t) = [A - BS(OI(t) — uS (1) + £ 1dr — vS ()I(1)dB(1),

1+kE®)

dE(1) = [BS(DI(1) — oE (1) — pE() — pE(t) — {5555 1d1 + vS ()1(1)d B(),
dI(t) = [CE(®) — EI(t) — yI(t) — ul(t) — dI(t)]dt, (8.2)

do(n) = [§1(1) = Q1) — nQ(1)]dt,
dR(t) = [pE(®) + yI(t) + Q1) — pR(n)]dt.

System (8.2) is more reasonable than model (2.1). And the dynamical behaviors of system (8.2) are
more complicated than system (2.1). We leave it in the future.
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