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Abstract: In this paper, the finite-time stability (FTS) of switched Boolean networks (SBNs) with
Markov jump disturbances under the conditions of arbitrary switching signals is studied. By using the
tool of the semi-tensor product, the equivalent linear-like form of SBNs with Markov jump disturbances
is first established. Next, to facilitate investigation, we convert the addressed system into an augmented
Markov jump Boolean network (MJBN), and propose the definition of the switching set reachability
of MJBNs. A necessary and sufficient criterion is developed for the FTS of SBNs with Markov jump
disturbances under the conditions of arbitrary switching signals. Finally, we give two examples to
illustrate the effectiveness of our work.
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1. Introduction

Boolean networks (BNs) have been a common model to describe a number of complex systems
such as gene networks [1–3], social neural networks [4] and others [5, 6]. Unfortunately, due to the
lack of suitable mathematical tools, the previous research on BNs has limitations. Now, according to
the semi-tensor product (STP) of the matrix proposed by Cheng [7, 8], a BN can be transformed into
its quasi-linear form, which promotes the research of BNs. At present, a series of breakthrough results
on BNs have been obtained.

Recently, switched BNs(SBNs) have become more important and attracted many researchers’ atten-
tion. It is a powerful model to describe the hybrid phenomena in gene regulatory networks [1,2,9,10].
Many fundamental and critical problems regardig SBNs have been studied in recent years, including
point controllability [11–14], set controllability [15–19], reachability [20, 21], point stability [22–24],
set stability [25–27], observability [18,28,29] and robustness [15,30]. However, in the process of sys-
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tem modeling, some random factors, including random external interference and internal uncertainty,
often exists. These factors often have some random properties, such as the Markov property, which will
increase the difficulty of the research on original systems to some extent. As we all know, some excel-
lent results have been obtained on BNs with Markov jump disturbances [14,21,31,32]. Unfortunately,
there are few results on SBNs with Markov jump disturbances.

An SBN with Markov jump disturbances is not a typical SBN. Generally, an SBN with Markov
jump disturbances contains both a switching signal and disturbances with the Markov property, making
it more complex and more difficult to analyze than BNs with Markov jump disturbances. Stability
analysis is one of the most important issues in gene regulatory networks since it can effectively explain
some living phenomena and offer good theoretical basis to treat various human cancers. There are
some excellent results on the stability of Markovian jump Boolean networks (MJBNs) [14, 21] and
SBNs [22–25]. For an MJBN, its stability, including point stability and set stability, represents the
ability of the initial state to reach a given target state. More specifically, [21] focused on the point
stability of MJBNs while it also illustrated the application of it. In [14], the author studied the set
stability by performing induction, and by dividing the state space into several pieces, they consequently
proposed some necessary and sufficient conditions.

As for SBNs, [12] introduced the basic concept of switched systems. The study in [22] concentrated
on the stability of switched linear systems. The studies in [23,25] expanded it to normal SBNs. By the
way, [24] proposed a new concept named switching point reachability. Based on it, [24] discussed the
pointwise stabilizability and global stability of SBNs. The authors of [23] developed an algorithm to
calculate the largest invariant subset (LIS) of a given subset for SBNs. By using this tool, a criterion
for the set stability of SBNs was established and the application of robustness was also mentioned.

According to the references listed above, many good results have been achieved in these areas.
However, the stability of SBNs with Markov jump disturbances is rarely studied, even though it is
more common and useful in practice. This problem needs to be solved and new theories are required
urgently.

In this paper, our purpose is to discuss the finite-time stability (FTS) of SBNs with Markov jump
disturbances. The main contributions are two-fold. On the one hand, the SBN with Markov jump
disturbances is converted into a typical SBN. On the other hand, on the basis of the switching set
reachability, an easily verifiable criterion for the stability of SBNs with Markov jump disturbances is
proposed.

After that, the next three sections are as follows. Several essential notations and the problem con-
sidered in this paper are cited in Section 2; Section 3 contains the main results; In Section 4, two
easily verifiable examples are proposed to illustrate the obtained results, and this is followed by a brief
conclusion.

2. Preliminaries

2.1. Notations

• D = {0, 1}.
• Dn = D × D × · · · × D︸              ︷︷              ︸

n

.

• In represents the n × n identity matrix.
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• Lm×n represents the set of all m × n logical matrices.
• Rowi(A) (Coli(A)) denotes the i-th row (column) of the matrix A.
• ∆n =

{
δk

n | 1 ≤ k ≤ n
}
, and δk

n = Colk(In).
• |M| represents the cardinal number of the set M.
• ⊗ represents the Kronecker product.
• δn

[
j1, · · · , jm

]
=

[
δ

j1
n , · · · , δ

jm
n

]
.

• The power-reducing matrix Mr,n is defined as δn2

[
1, n + 2, 2n + 3, · · · , n2

]
.

• A p × q stochastic matrix is denoted as:

Υp×q =

Q ∈ Rp×q | Qa,b ≥ 0,
p∑

a=1

Qa,b = 1,∀b = 1, 2, · · · , q

 .
• A vector π is said to be π > 0 if every element of π is more than 0.

2.2. Properties of STP and structure matrices

Definition 1. [8] The STP of two matrices A ∈ Rm×n and B ∈ Rp×q is

A n B =
(
A ⊗ I α

n

) (
B ⊗ I α

p

)
where α = lcm(n, p) is the least common multiple of n and p.

The following lemmas are the properties of the STP.

Lemma 1. [8] (Pseudo-Commutativity) Given U ∈ Rt and C ∈ Rm×n, then

UC = (It ⊗C)U.

Lemma 2. [8] For any logical function f : Dn 7→ D, there exists a unique structure matrix M f ∈ L2×2n

of f satisfying f (X(t)) ∼ M f x(t), where x(t) ∈ ∆2n is the vector form of X(t) ∈ Dn.

2.3. Problem setting

Consider an SBN with n nodes and ω models:
X1(t + 1) = f σ(t)

1 (X(t), τ(t));
X2(t + 1) = f σ(t)

2 (X(t), τ(t));
...

Xn(t + 1) = f σ(t)
n (X(t), τ(t)),

(2.1)

where X(t) = (X1(t), ..., Xn(t)) ∈ Dn and Xi ∈ D is the state of the node i ∈ {1, 2, · · · , n}; σ : N 7→ A =

{1, 2, · · · , ω} is the switching signal; f j
i : Dq+n 7→ D, i = 1, · · · , n, j = 1 · · · , ω are logical functions;

τ(t) = (ε1(t), · · · , εq(t)) ∈ Dq represents the disturbances.
In this paper, we consider the external disturbances εi(t), i = 1, 2, · · · , q with the Markov property.

Specifically, {εi(t) : t ∈ Z≥0} is the homogeneous Markov chain and it satisfies

P {εi(t + 1) = bi | εi(t) = ai} = Pbi,ai ∈ (0, 1) (2.2)
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bi, ai ∈ D and
∑1

bi=0 Pbi,ai = 1.
To promote the investigation, based on the STP and the vector forms of X(t) and ε(t), we further

convert the system (2.1) into the following algebraic form:

x(t + 1) = Fσ(t)ε(t)x(t) (2.3)

where x(t) ∈ ∆2n , σ(t) ∈ ∆ω, ε(t) ∈ ∆2q and F ∈ L2n×ω·2n+q

For (2.2), we identify εi(t + 1) = bi and εi(t) = ai as the vector forms δ2−bi
2 and δ2−ai

2 , respectively.
Setting ε(t) = n

q
i=1εi(t) = δa

2q and ε(t + 1) = n
q
i=1εi(t + 1) = δb

2q , from the unique factorization of ε(t) and
ε(t + 1), we have

P
{
ε(t + 1) = δb

2q | ε(t) = δa
2q

}
=

q∏
i=1

P
{
εi(t + 1) = δ2−bi

2 | εi(t) = δ2−ai
2

}
=

q∏
i=1

Pbi,ai

:=Pb,a ∈ (0, 1),

(2.4)

where a, b ∈ {1, · · · , 2q} , ai, bi ∈ D,
∑2q

b=1 Pb,a = 1, and the discrete time homogeneous Markov chain
{ε(t) : t ∈ Z≥0} is ergodic. From [33], the Markov chain {ε(t) : t ∈ Z≥0} has a unique stationary distri-
bution, denoted as π.

According to (2.4), we have
ε(t + 1) = Pε(t), (2.5)

and
π = Pπ,

where P ∈ Υ2q×2q
with (P)b,a = Pb,a is the transition probability matrix.

For convenience, we abbreviate finite-time stable with probability one as FTSPO, and the following
assumption is necessary.

Assumption 1. The Markov chain {ε(t) : t ∈ Z≥0} can realize the stationary distribution π in finite time,
which means that ∃T ∈ Z≥0, when t ≥ T, P(t) = π.

Definition 2. The system given by (2.3) is said to be finite-time stable at xe ∈ ∆2n with probability
one (xe-FTSPO), if for ∀σ(0) ∈ ∆ω, x(0) ∈ ∆2n and ε(0) ∈ ∆2q , there exists T ∈ Z+ such that for
∀t ≥ T, t ∈ Z+

P [x(t; x(0), σ(0), ε(0)) = xe] = 1. (2.6)

holds, where x(t; x(0), σ(0), ε(0) denotes the trajectory of the system (2.3) from x(0), σ(0) and ε(0).

3. Main results

3.1. System’s transformation

In this part, we transform the system (2.3) to make analyzing more convenient.
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First, we divide F into several parts:

F =
[
F1, F2, · · · , Fω

]
,

where F i ∈ L2n×2n+q , and when σ(t) = δi
ω, Fσ(t) = F i, i = 1, 2, · · · , ω. At this moment, x(t + 1) =

F iε(t)x(t).
Next, we set δ(t) = ε(t) n x(t).
Then, according to (2.5) and Lemma 1, we have

δ(t + 1) = ε(t + 1)x(t + 1)
=Pε(t)F iε(t)x(t)

=
(
I2q ⊗ F i

)
PMr,2qε(t)x(t)

=Qiδ(t)

where Qi =
(
I2q ⊗ F i

)
PMr,2q ∈ R2n+q×2n+q

, i = 1, 2, · · · , ω. Although Q is not a logical matrix, this
system can still be regarded as an SBN, because every subsystem of it is a probabilistic BN(PBN),
which makes Q a random matrix instead of a logical matrix.

What we want to research is the point stability of x(t); from Lemma 3, it is easy to know that when
x(t) is stable, which means that x(t) is fixed, δ(t) may have different values because δ(t) may have
different values. So the point stability problem is transformed into the set stability problem.

Now, the system given by (2.3) has been transformed into a new SBN:

δ(t + 1) = Qσ(t)δ(t), (3.1)

where Q =
[

Q1 Q2 · · · Qω
]
∈ Υ2n+q×ω2n+q

.
It is easy to find that when x(t) = xe, the value of δ(t) can be determined by ε(t).
To find out the relationship between δ(t) and ε(t), the following lemma is necessary.

Lemma 3.
δi

2m n δ
j
2n = δ

(i−1)2n+ j
2m+n .

Proof. From Definition 1, we have

δi
2m n δ

j
2n =

(
δi

2m ⊗ I2n

)
δ

j
2n .

Set

A =
(
δi

2m ⊗ I2n

)
=



02n×2n

...

02n×2n

I2n

02n×2n

...

02n×2n


where 02n×2n denotes a 2n × 2n null matrix. And we set B = δ

j
2n .

Then we set C = δi
2m n δ

j
2n = AB ∈ L2n+m×1, and for any element of C, Cp =

∑2n

a=1 Ap,aBa, p =

1, 2, · · · , 2m+n. So Cp = 1 if and only if (iff) p = (i − 1)2n + j, which corresponds the j-th row of I2n in
A. The proof is completed.
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Now we set xe = δe
2n . Based on lemma 3, defining M =

{
δ(i−1)2n+e

2n+q | i ∈ [1 : 2q]
}
, the equivalent

definition of Definition 2 is obtained.

Definition 3. Consider a subset M ⊆ ∆2n+q . The system given by (3.1) is said to be M-FTSPO, if for
∀σ(0) ∈ ∆ω, δ(0) ∈ ∆2n+q ,∃T ∈ Z+ such that

P[δ(t, σ(0), δ(0)) ∈ M] = 1

holds for ∀t ≥ T, t ∈ Z+.

Remark 1. The authors of [34] have shown that the system (2.3) is M-FTSPO iff the system is IM-
stable, where IM is the LIS of M. However, since the Markov chain {ε(t) : t ∈ Z≥0} is ergodic, the
stationary distribution π is greater than 0. In other words, for ∀i, j ∈ [1 : 2q], t ∈ N and

[
P(t)

]
i j
> 0.

From the definition of LIS, we have IM = M.

3.2. Switching set reachability

In this part, we first introduce the switching set reachability of the SBN (3.1).

Definition 4. (Switching set reachability) Consider the system (3.1) for (no punctuation) a given initial
state δ(0) ∈ ∆2n+q and set M ⊆ ∆2n+q . The system given by (3.1) is said to be switching reachable to M
from δ(0), if ∃ t > 0 with t ∈ N, ∃σ such that P(δ(t;σ, δ(0)) ∈ M) > 0.

Set M =
{
δαi

2n+q | i ∈ [1 : 2q]
}

and S =
∑ω

i=1 Qi, where (S )i, j denotes that the one-step transition
probability from δ

α j

2n+q to δαi
2n+q of the system (3.1). The following result can be derived.

Theorem 1. Let δ(0) = δ
β
2n+q . The system (3.1) is switching reachable to M from δ(0) at time Z, iff

2q∑
i=1

(
S Z

)
αi,β

> 0 (3.2)

Proof. We can use induction to prove the results for Z ≥ 1.
When Z = 1, M is switching reachable from δ(0) = δ

β
2n+q , iff ∃ θ ∈ [1 : ω] such that P(δ(1;σ =

θ, δ(0)) ∈ M) > 0, that is
2q∑
i=1

(Qθ)αi,β > 0.

Then, we have

2q∑
i=1

(S )αi,β =

2q∑
i=1

[
ω∑

j=1

(
Q j

)
]αi,β =

2q∑
i=1

 ω∑
j=1, j,θ

Q j + Qθ


αi,β

> 0

which can conclude that (3.2) holds for Z = 1.
Theorem 1 holds for Z = s, i.e.

∑2q

i=1 (S s)αi,β > 0 is assumed.

Electronic Research Archive Volume 30, Issue 9, 3422–3434.



3428

We consider that Z = s + 1 and M is switching reachable from δ(0) = δ
β
2n+q at time s + 1 iff

∃σ ∈ {σ(t) ∈ [1 : ω] : t ∈ [0 : s]} such that

P(δ(s + 1;σ, δ(0)) ∈ M)

=

2n+q∑
c=1

P
(
δ(s + 1;σ, δ(0)) ∈ M | δ(s) = δc

2n+q

)
× P

(
δ(s;σ, δ(0)) = δc

2n+q | δ(0) = δ
β
2n+q

)
> 0,

which implies that
2n+q∑
c=1

2q∑
i=1

(S )αi,c(S
s)c,β =

2q∑
i=1

S s+1
αi,β > 0.

Additionally, (3.2) is true for Z = s + 1.
In conclusion, Theorem 1 holds for ∀Z ∈ N. The proof is completed.

3.3. FTS under an arbitrary switching signal

Lemma 4. For ∀y = 1, 2 · · · , 2n+q, k ∈ Z+, we have

2n+q∑
υ=1

(
S k

)
υ,y

= ωk (3.3)

Proof. It can be proven by induction.
When k = 1, for ∀y = 1, 2 · · · , 2n+q, since P is a stochastic matrix,

(
I2q

⊗
Fυ

)
and Mr,2q are logical

matrices, for ∀s = 1, 2, · · · , ω, we have
∑2n+q

υ=1 (Qs)υ,y = 1. Thus

2n+q∑
υ=1

(S )υ,y =

2n+q∑
υ=1

ω∑
s=1

(Qs)υ,y =

ω∑
s=1

2n+q∑
υ=1

(Qs)υ,y = ω,

which implies that (3.3) holds for k = 1.
Assume that for ∀ j = 1, 2 · · · , 2n+q, (3.3) is true for k = t. When k = t + 1, for ∀ j = 1, 2 · · · , 2n+q, it

can be concluded that
2n+q∑
υ=1

(S t+1)υ,y

=

2n+q∑
υ=1

2n+q∑
c=1

(S t)υ,c(S )c,y

=

2n+q∑
υ=1

(S t)υ,c
2n+q∑
c=1

(S )c,y

=ωt
2n+q∑
c=1

(S )c,y = ωt+1.

So, (3.3) holds for t + 1.
By induction, for ∀ j = 1, 2 · · · , 2n+q, (3.3) holds for ∀k ∈ N. The proof is completed.
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In fact, denoting the set consisting of all admissible switching signals during [0, k] as Ωk
a := {σ(t) ∈

A, t ∈ [0, k]}, gives
∣∣∣Ωk

a

∣∣∣ = ωk.
Then, based on Lemma 4, the following result can be derived.

Theorem 2. The system given by (3.1) is M-FTSPO under the conditions of arbitrary switching signals
iff ∃T < 2n+q − 2q with T ∈ N such that

2q∑
i=1

Rowai

(
S T

)
= [ωT · · ·ωT︸     ︷︷     ︸

2n+q

] (3.4)

holds.

Proof. (Necessity) Assume that the system (3.1) is M-FTSPO under the conditions of any switching
signal above. Then, according to Definition 3, we conclude that for ∀σ(0) ∈ ∆ω, δ(0) ∈ ∆2n+q ,∃T ∈ Z+

such that

P[δ(t, σ(0), δ(0)) ∈ M] =

2q∑
i=1

P
[
δ(t, σ(0), δ(0)) = δai

2n+q

]
= 1

holds for ∀t ≥ T, t ∈ Z+.
By Theorem 1 and Lemma 4, one can see that for any integer t ≥ T,

(
S t)

a,b = 0,∀a < {a1, · · · , a2q},
and

∑q
i=1

(
S t)

ai,b = ωt; it implies that (3.4) holds.
Next, we prove by contradiction that T < 2n+q − 2q when (3.4) holds. If T ≥ 2n+q − 2q, then ∃ µ,

ϑ ∈ [1, 2n+q] with µ < {a1, · · · , a2q} such that
(
S T

)
µ,ϑ

> 0. Then, ∃σ = {σ(0), · · · , σ (2n+q − 2q −1)}
such that P(δ(2n+q − 2q;σ, δ(0)) = δ

µ
2n+q) > 0. Since the number of elements in ∆2n+q\M is 2n+q − 2q, we

can find t1, t2 ∈ N with 0 ≤ t1 < t2 ≤ 2n+q − 2q − 1 such that δ (t1) = δ (t2).
Now, for δ̄(0) = δ (t1), we set σ̄(t) = σ (t1 + t) , t = 0, 1, · · · , t2 − t1 − 1. Then, given σ̄(t), it is easy

to see that P(δ(t2 − t1; σ̄(t), δ(0) = δ(t1)) = δ(t1)) > 0. Generally, for s ∈ Z+, we construct the following
signal:

σ̄(t) =


σ (t1) , t = s (t2 − t1)
σ (t1 + 1) , t = s (t2 − t1) + 1
...

σ (t2 − 1) , t = (s + 1) (t2 − t1) − 1

which is a periodic switching signal. Then, given σ̄(t), P(δ(2n+q − 2q + s(t2 − t1); σ̄(t), δ(0)) = δ
µ
2n+q > 0

which contradicts the minimality of T . Hence, T < 2n+q − 2q.
(Sufficiency) Assuming that (3.4) holds, we show that the system (3.1) is M-FTSPO under the

conditions of an arbitrary switching signal.
Actually, according to (3.4), we can see that for any ∀ j ∈ [1 : 2q],(

S T
)

a, j
= 0,∀a < {a1, · · · , a2q} ,

and (
S T

)
a, j

= ωt, a ∈ {a1, · · · , a2q} .

Thus, for any t ≥ T , we have (
S t)

a, j = 0,∀a < {a1, · · · , a2q}
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and (
S t)

a, j = ωt, a ∈ {a1, · · · , a2q} .

Hence, by Theorem 1 and Lemma 4, it can be concluded that for ∀δ(0) = δ
j
2n+q , P(δ(T ;σ(t), δ(0)) ∈

M) = 1 at time T ≤ 2n+q under the conditions of an arbitrary switching signal. Therefore, system (3.1)
is M-FTSPO under the conditions of arbitrary switching signaling.

4. Illustrate examples

Example 1. The reduced model of an apoptosis network is described [4]:
x1(t + 1) = ¬x2(t) ∧ (u(t) ∧ ε(t)),
x2(t + 1) = −x1(t) ∧ (x3(t) ∧ ε(t)) ,
x3(t + 1) = x2(t) ∨ (u(t) ∧ ε(t)),

(4.1)

where the biological meaning of each varible can be found in [28]. ε(t) is a Markov process, which
has the following transition probability matrix:

P =

[
0.5 0.5
0.5 0.5

]
.

We need to verify whether the system given by (4.1) is finite-time stable at (1, 0, 1) (cell survival)
with probability one for any switching signal.

It is easy to know that P has invariant measure:

P =

[
0.5 0.5
0.5 0.5

]
.

The algebraic form of (4.1) can be derived:

x(t + 1) = Fσ(t)ε(t)x(t)

where F1 = δ8[7 7 3 3 5 7 1 3 7 7 8 8 7 7 8 8],
F2 = δ8[7 7 8 8 5 7 6 8 7 7 8 8 7 7 8 8]. Moreover, xe = δ3

8 and M =
{
δ3

16, δ
11
16

}
.

By calculation, we find that Row3

(
S 14

)
+Row11

(
S 14

)
, 214. So as stated by Theorem 2, this system

is not finite-time stable at (1, 0, 1) with probability one.

Example 2. We consider the SBN (2.1) with n = 2, q = 1 and σ = 2, where we have the following: f 1
1 =

(¬x1 ∧ x2) ∧ ε(t), f 1
2 = 0; f 2

1 = (x1∨̄x2) ∧ ε(t), f 2
2 = [¬ (x1 ↔ x2)] ∧ ε(t); f 3

1 = (x1∨̄x2) ∧ ε(t), f 3
2 =

(x1∨̄x2) ∧ ε(t). ε(t) is a Markov process with

P =

[
0.5 0.5
0.5 0.5

]
.

Given the desired state xe = (0, 0) ∼ δ4
4 := xe, we need to check whether this system is xe-FTSPO

under the conditions of arbitrary switching signaling.
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Then, (2.3) can be obtained with L1 = δ4[4 4 2 4 4 4 4 4], L2 = δ4[4 1 2 4 4 4 4 4] and
L3 = δ4[4 1 1 4 4 4 4 4]. Moreover, xe = δ4

4 and M =
{
δ4

8, δ
8
8

}
.

S = Q1 + Q2 + Q3 =



0 1 0.5 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

1.5 0.5 0 1.5 1.5 1.5 1.5 1.5
0 1 0.5 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

1.5 0.5 0 1.5 1.5 1.5 1.5 1.5


By calculation,

S 3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5


Row4

(
S 3

)
+ Row8

(
S 3

)
= [27 27 27 27 27 27 27 27]. From Theorem 2, this system is δ4

4-FTSPO under
the conditions of arbitrary switching signaling.

5. Conclusions

In this paper, we investigated the FTSPO of SBNs with Markov jump disturbances under the con-
ditions of arbitrary switching signaling. First, the target system was an SBN with Markov jump dis-
turbances, which means that we cannot handle it like a typical SBN. We transformed it into SBN-form
so that we can handle it in the manner of an SBN. We transformed the algebraic expression using the
STP. Next, we proposed an easily verifiable, necessary and sufficient criterion for the FTSPO of SBNs
under the conditions of arbitrary switching signaling. Finally, we illustrated the obtained results by
two examples.
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