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Abstract: In this paper, we propose a scalable parallel algorithm for simulating the cardiac fluid-structure 

interactions (FSI) of a patient-specific human left ventricle. It provides an efficient forward solver to deal 

with the induced sub-problems in solving an inverse problem that can be used to quantify the interested 

parameters. The FSI between the blood flow and the myocardium is described in an arbitrary Lagrangian-

Eulerian (ALU) framework, in which the velocity and stress are assumed being continuous across the fluid-

structure interface. The governing equations are discretized by using a finite element method and a fully 

implicit backward Eulerian formula, and the resulting algebraic system is solved by using a parallel Newton-

Krylov-Schwarz algorithm. We numerically show that the algorithm is robust with respect to multiple model 

parameters and scales well up to 2300 processor cores. The ability of the proposed method to produce 

qualitatively true prediction is also demonstrated via comparing the simulation results with the clinic data. 
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1. Introduction  

The Biomechanics properties of the human heart have been attracting interests in both clinical and 

research communities, as they can reveal the fundamental physiological status of the heart, and are 

useful to predict and diagnose its diseases, such as myocardial ischemia and infarction, atrial and 
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ventricular arrhythmias, systolic and diastolic dysfunctions, and so on [1,2]. Numerical simulation 

provides a practical way to study the cardiac mechanics [3,4], by which the kinetical and kinematical 

behaviors of the heart muscles and the enclosed blood are depicted via a system of partial differential 

equations. Within the framework, the interested mechanical features are summarized into 

corresponding model parameters, and can be quantified by solving an inverse problem. Following this 

path, a series of induced forward sub-problems are repeatedly solved, and the values of the interested 

parameters are approximated to match the prior knowledges in an optimal sense [5–16]. 

In designing a numerical solver for such a system, a critical issue lays on the handling of the fluid-

structure interaction [17–19] between the heart muscle and the enclosed blood. One popular approach 

is the Arbitrary Lagrange-Euler (ALE) method [20,21], in which the fluid sub-system is described in 

the Euler coordinate system, the structure sub-system is described in the Lagrange coordinate systems, 

and the relevant field variables are coupled through the fluid-structure interface continuation 

conditions. Since the fluid-structure interface is explicitly treated, the ALE method can achieve a good 

accuracy to approximate the physical quantities that are defined on the surface, such as the wall shear 

stress. Another type of methods, including the immersed boundary(IB) and its variants such as the 

immersed boundary/finite element (IB/FE) method [22–27], works on a fixed mesh but requires a very 

fine mesh in the neighborhood of the interface to confine the interpolation error between the fluid mesh 

and structure mesh, which inevitably leads to a huge number of degrees of freedom. Watanabe et 

al. [28,29]. developed a program based on the finite element method in order to simulate the fluid-

structure interaction of the human left ventricle during systole and diastole. Doyle et al. [30] used an 

ideal geometry to perform a fluid-structure interaction simulation of canine left ventricular blood flow, 

and analyzed in detail the parallel scalability and stability of their method. Nordsletten et al. [31] 

reconstructed the geometry of left ventricle based on Magnetic Resonance Imaging (MRI) and 

simulated the fluid-structure interaction of the heart to investigate the blood flow pattern and the 

pressure distribution inside the left ventricle. Gao et al. [32,33] used the IB/FE method to simulate the 

dynamic process of the left ventricle from end-diastole to end-systole in a heart beat, whose results 

show a very good match to the clinical observation. 

In this paper, we propose an efficient parallel domain decomposition algorithm to solve the cardiac 

FSI system, and demonstrate the simulation results of large-scaled problems on a supercomputer. More 

specifically, we verify the computation efficiency, numerical stability and the parallel scalability of the 

proposed method, and demonstrate the fidelity of the simulated results by comparing them with clinical 

data. The rest of this paper is organized as follows: Section 2 briefly describes the reconstruction of 

the heart geometry from a medical image and the finite element mesh generation. The governing 

equations, boundary conditions, numerical solution algorithm, as well as the parameter settings are 

also introduced; in Section 3, we present the numerical experiments on the mesh size convergence, 

time step size convergence, and the parallel scalability of the solving algorithm, as well as give detailed 

analyses for a one-heart-beat simulation; the proposed method is summarized in Section 4, in which 

several possible improvements are also suggested for the future work. 

2. Model and method 

2.1. Geometry reconstruction and mesh generation 

A CT image of a 38-year-old male is adopted to construct the 3D geometry model for our numerical 
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simulations, which was taken at the end of a diastole phase with spatial resolution 0.5 mm. The axial, 

coronal and sagittal views of CT images are shown in Figure 1(a–c), respectively, in which the red 

region represents the blood contained in the left ventricle, while the myocardium is colored in cyan. 

Figure 1(d) shows the initial shape of the left ventricle obtained from the CT image reconstruction 

process, which is smoothed and repaired to get the final geometry as shown in Figure 2(a). In our tests, 

five meshes, denoted by ℒ𝑖 (𝑖 = 1,2,3,4,5), are generated for investigating the parallel efficiency and 

mesh convergence. The total number of mesh nodes and elements, the elements in the ventricle and 

cavity domains, and the element sizes are listed in Table 1. In particular, Figure 2(b) and (c) show the 

mesh structures of myocardium part and blood part of ℒ1 in separate views. 

Table 1. Number of nodes and elements of the meshes used in the simulations. 

 Element size 

(mm) 

Number of 

nodes 

Number of 

elements 

Ventricle 

elements 

Cavity elements                                      

𝓛𝟏 2.0 89679 507954 261596 246358 

𝓛𝟐 1.5 209355 1202878 612265 590613 

𝓛𝟑 1.2 405248 2348547 1197750 1150797 

𝓛𝟒 1.0 696275 4058421 2065739 1992682 

𝓛𝟓 0.8 1385804 7923279 4017108 3906171 

 

 

 

Figure 1. Original geometry of left ventricle reconstructed from CT images. (a–c) An axial, 

coronal, and sagittal plane of the CT image; (d) The reconstructed initial geometry of the 

left ventricle by using Mimics. 
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Figure 2. The smoothed geometry and a representative mesh of the left ventricle. (a) The 

smoothed geometry of left ventricle, of which the inflow and outflow tracts are marked by 

the arrows; (b) and (c) Mesh of the solid (myocardium), and fluid region (blood), 

respectively. The superscript 0 indicates they are at the initial configuration. 

2.2. Governing Equations 

Define the computational region at time t as 𝑡 = 𝑓
𝑡 ∪𝑠

𝑡   𝑅3, where 𝑓
𝑡  is fluid domain, 

𝑠
𝑡   is structure domain, and 𝑤

𝑡 = ∂𝑓
𝑡 ∩ ∂𝑠

𝑡
  is the interface between fluid and structure. In 

addition, 𝑓,𝐼
𝑡  and 𝑓,𝑂

𝑡  are the inlet and outlet boundaries of the fluid domain at time 𝑡, and 𝑠,𝐼
𝑡  and 

𝑠,𝑂
𝑡  are the inlet and outlet boundaries of the structure domain at time 𝑡. In particular, the initial 

configuration of each of the above is denoted by letting 𝑡 = 0, as shown in Figure 3. 

 

Figure 3. Initial configuration of the left ventricle domain, boundaries and interface. 

The myocardium of the left ventricle is modeled as a linear elastic material. Namely, the 

movement of each material point in the myocardium region is described by the following 

equation: 

{
𝜌𝑠

∂2𝐱𝑠

∂𝑡2
−  ∙ 𝝈𝑠 = 0                in  𝑠

0 ,              

𝐱𝑠 = 0                    on  𝑠,𝐼
0 ∪  𝑠,𝑂

0  

                (1) 
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where 𝐱𝑠 represents the displacement of a material point in 𝑠
0, 𝜌𝑠 is density of myocardium, 𝝈𝑠 =

λ𝑠( ∙ 𝐱𝑠)𝑰 + 𝜇𝑠(𝐱𝑠 + 𝐱𝑠
𝑇) is the Cauchy stress tensor in which 𝑰 denoting the rank two identity 

tensor, 𝛼  is a damping parameter, λ𝑠  and 𝜇𝑠  are two Lamé coefficients, which are generally 

calculated from provided material Young's modulus 𝐸  and Poisson's ratio 𝑣𝑠 : λ𝑠 =

𝑣𝑠𝐸 ((1 + 𝑣𝑠)(1 − 2𝑣𝑠))⁄  , 𝜇𝑠 = 𝐸 (2(1 + 𝑣𝑠 ))⁄ . 

On the other hand, we use an unsteady incompressible Navier-Stokes equation to depict the blood 

flow. Note that, because of the deformation of the myocardium, the fluid domain occupied by the blood 

changes in time. To deal with this issue, an ALE method [34] is used to describe the fluid domain 𝑓
𝑡  

at time 𝑡: 

𝐴𝑡(Y) = Y + 𝐱𝑓(Y),   ∀Y ∈ 𝑓
0, 

Where Y represents a reference point in the initial configuration of the fluid domain, and 𝐱𝑓 is its 

displacement. In practice, the reference points match the mesh vertices, and 𝐱𝑓 are assumed to satisfy 

the following Laplace equation: 

{

 𝐱𝑓 = 0         in  𝑓
0 ,                                             

𝐱𝑓 = 0           on  𝑓,𝐼
0 ∪ 𝑓,𝑂

0  ,   

 𝐱𝑓 = 𝐱𝑠         on  𝑤
0  .                                           

       (2) 

Under the above settings, the ALE form of the fluid equation reads: 

{
𝜌𝑓

∂𝐮𝑓

∂𝑡
|

𝑌
+ 𝜌𝑓[(𝐮𝑓 − 𝝎𝑔) ∙ ]𝐮𝑓 −  ∙ 𝝈𝑓 = 0       in   𝑓

𝑡  ,

 ∙ 𝐮𝑓 = 0                                   in  𝑓
𝑡  .

                      (3) 

where 𝜌𝑓  is fluid density, 𝐮𝑓  is fluid velocity, and 𝝈𝑓 = −𝑝𝑓𝑰 + 𝜇𝑓(𝐮𝑓 + 𝐮𝑓
𝑇)  is Cauchy 

stress tensor, 𝑝𝑓  is fluid pressure, 𝜇𝑓  is fluid viscosity. 𝝎𝑔 = 𝜕𝐱𝑓 ∂𝑡⁄   represents mesh moving 

velocity, and the first term in Eq (2) (∂𝐮𝑓/ ∂𝑡)|
𝑌
 denotes the time derivative of velocity is taken as 

the ALE coordinates are unchanged. 

Besides, the following conditions are satisfied at the fluid-structure interface： 

{
𝐮𝑓 =

 𝜕𝐱𝑠

∂𝑡
                        on  𝑤

𝑡  ,

𝝈𝑠 ∙ 𝐧𝑠 = −𝝈𝑓 ∙ 𝐧𝑓                  on  𝑤
𝑡  ,

                                 (4)  

where 𝐧𝑠 and 𝐧𝑓 are the unit outer normal vectors in structure and fluid domains, respectively. 

2.3. Material parameters and boundary conditions settings 

For all experiments performed in this paper, the duration of a cardiac cycle was set to 0.80 s, with 

the diastolic phase lasts for 0.48 s and the systolic phase for 0.32 s, if not mentioned otherwise. Fluid 
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density is 1.05 𝑔 𝑐𝑚3⁄ , and viscosity is 0.03 𝑔 (𝑐𝑚 ∙ 𝑠) ⁄ , structure density is 1.37 𝑔 𝑐𝑚3⁄ , Young's 

modulus is 6 × 106 𝑔 (𝑐𝑚 ∙ 𝑠2) ⁄ , and Poisson's ratio is 0.49. Each numerical simulation starts from 

a diastolic phase, during this stage, the boundary conditions are given in Eq (5). That is, the inlet of 

left ventricle, 𝑓,𝐼
0  keeps open, and the blood flow passing this boundary according to a prescribed 

rate, as the time-variant curve shown in Figure 4. Note that, this plot indicates two peaks of the inflow, 

the first is the early diastolic filling wave (E wave) and the second is the late diastolic filling wave (A 

wave). In the meantime, the outlet of left ventricle is closed, thus the blood flow rate on 𝑓,𝑂
0  keeps 

at zero. Boundary conditions of the systolic phase are prescribed by Eq (6): during this stage, the inlet 

of left ventricle is closed (no blood inflow), while its outlet is open and the contained blood flows out 

freely in a pressure-free state. 

{
𝐮𝑓 = 𝑣𝑓

𝑑         on  𝑓,𝐼
𝑡  

𝐮𝑓 = 0         on  𝑓,𝑂
𝑡                                               (5) 

{
𝐮𝑓 = 0         on  𝑓,𝐼

𝑡  

𝝈𝑓 ∙ 𝐧𝑓 = 0     on  𝑓,𝑂
𝑡                                               (6) 

 

 

Figure 4. Inlet flow rate. 

2.4. Numerical algorithms 

We used a finite element method to spatially discretize the model equations, and solve the resulting 

system in a monolithic way. More specifically, the solid equation is discretized by the conventional P1 

finite, and the fluid domain equations are discretized by a P1-P1 finite element that is enhanced with 

stabilization terms [35]. Further, a one-step backward-difference method [36] is used to get a fully 

discretized system, of which the solution vector is denoted by 𝑥 . To solve the system, an inexact 

Newton method is invoked at each time step: Denote the nonlinear algebraic system as ℱ(𝑥) = 0, and 
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given the initial value 𝑥(0), the following iterations are performed: 

𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼(𝑘)𝑠(𝑘).                                    (7) 

Here, 𝛼(𝑘) is the step size obtained by a line search step, and the search direction 𝑠(𝑘) is obtained by 

using Krylov subspace method to approximately solve the Jacobian system as follows: 

𝐽𝑘𝑀𝑘
−1𝑀𝑘𝑠(𝑘) = −ℱ(𝑥(𝑘)),                                   (8) 

‖𝐽𝑘(𝑀𝑘)−1𝑀𝑘𝑠(𝑘) + ℱ(𝑥(𝑘))‖ ≤ 𝜂𝑘‖ℱ(𝑥(𝑘))‖,                   (9) 

where 𝐽𝑘 = ℱ(𝑥(𝑘)) is the Jacobian matrix of the nonlinear function ℱ(𝑥) at point 𝑥(𝑘). Due to 

the intrinsic properties of Navier-Stokes equations, 𝐽𝑘 is non-symmetric, so the GMRES method is 

used to approximately solve the linear system (8). 𝜂𝑘  is the termination condition of the linear 

iteration, and 10−6 is chosen in this paper. 

In above, one key argument is on the construction of 𝑀𝑘, which represents a precondition operator for 

accelerating the convergence of Krylov iterations. In this paper, we use the Restricted Additive 

Schwarz (RAS) precondition method [37] to construct 𝑀𝑘. To do so, the whole mesh  is divided 

into N non-overlapping sub-domains: 

 = ⋃𝑙

𝑁

𝑙=1

 ,       𝑙 = 1,2 … 𝑁  𝑎𝑛𝑑  𝑖 ∩𝑗 = ∅, 𝑖 ≠ 𝑗 

then each sub-domain 𝑙  is extended by 𝛿  layers to obtain overlapped sub-domain 𝑙
𝛿 . The 

preconditioner 𝑀𝑘 is constructed by: 

𝑀𝑘 = ∑(𝑅𝑙
0)𝑇𝐵𝑙

−1𝑅𝑙
𝛿

𝑁

𝑙=1

 , 

where 𝑅𝑙
𝛿 and 𝑅0

𝛿 denote the restriction operators of  to  𝑙
𝛿 and 𝑙： 

𝑅𝑙
𝛿𝑣 = 𝑣|

𝑙
0     and    𝑅𝑙

𝛿𝑣 = 𝑣|
𝑙

𝛿 , 

for 𝑣 represents a vector defined on the global mesh domain. Beside, their transposes represent the 

corresponding prolongation operators, 𝐵𝑙
−1 denotes the subproblem solver defined on 𝑙

𝛿, which is 

set as an in-complete LU decomposition operator of the subproblem Jacobian matrix in this paper. 

More details on the implementation of the preconditioner can be found in [32]. 
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For clarity, we summarize Newton-Krylov-Schwarz(NKS) algorithm for solving the system of 

nonlinear algebraic equations of the FSI problem in each time step as follows. 

3. Numerical experiments 

3.1. Mesh convergence tests 

It is well-known that, when solving the above fluid-structure interaction problem, the smaller size 

of mesh element, the higher accuracy of the solution will achieve, which, however, consumes more 

computational resources and time. In this section, we discuss the mesh convergence of the proposed 

algorithm and analyze the effect of the size of the mesh element on the solution accuracy. For this 

purpose, four meshes, ℒ1 , ℒ2 , ℒ3 , ℒ4 are used to repeat a same simulation for one cardiac cycle. 

The time step is set to 0.0005 s, and 20 nodes of Tianhe-2A supercomputer (a total of 20 × 24 = 480 

processor cores) are used for each case. 

Time and memory cost by using each of the meshes are listed in Table 2, where “time” represents 

the total compute time for all time steps and “memory” is the maximum memory allocated by all 

processor cores during the simulation. Effect of the element size on the compute time and memory 

cost is given in Figure 5. As it is expected, as mesh element size decreases, both time and memory 

required for simulation get increased. 

Table 2. Time and memory used for solving with different meshes. 

 Element Size 

(mm) 

Number of 

Nodes 

Number of 

Elements 

Time  

(s) 

Memory  

(GB) 

𝓛𝟏 2.0 89679 507954 6972 96.31 

𝓛𝟐 1.5 209355 1202878 19710 110.78 

𝓛𝟑 1.2 405248 2348547 31083 133.39 

𝓛𝟒 1.0 696275 4058421 52360 162.90 

 

step1  Set 𝑥(0) according to the initial conditions or the results of previous time step 

step2  k ← 0 

do 

step3  Compute ℱ(𝑥(𝑘)) and its Jacobian matrix 𝐽𝑘 

step4  Check the stopping condition. If it is satisfied, then stop the loop and get the solution,  

otherwise go to the next step 

step5  Using Krylov subspace method to approximately solve the preconditioned Jacobian  

system (8) to get 𝑠(𝑘) 

step6  Using a line search method to obtain 𝛼(𝑘) 

step7  Let 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼(𝑘)𝑠(𝑘) 

step8   k ← k + 1 and go to step3 

end 
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Figure 5. Variation of time and memory used for simulation with mesh element size. Note 

that the mesh cell size are listed in decreasing order from left to right on the horizontal axis. 

To verify our results, the calculated left ventricular cavity volume and the blood flow rate at its 

outlet by using different meshes are compared: Let 𝑉𝑖(𝑡) be the left ventricular cavity volume at time 

𝑡 obtained by using mesh ℒ𝑖 (𝑖 = 1,2,3,4), and 𝑄𝑖(𝑡) the flow rate through the outlet. We regard 

the results of the finest mesh ℒ4 as a reference, and calculate the deviations of the cavity volume and 

outlet flow rate of other coarser meshes. Deviations at several representative moments are listed in 

Table 3 and 4, and the overall pattern are plotted in Figures 6 and 7 for the whole cardiac cycle. All of 

these clearly show that the deviation becomes smaller as the element size decreases, which indicates 

that the solution accuracy gets improved. 

Table 3. Differences of left ventricular cavity volumes obtained from simulations by using 

different meshes. 

Volume difference  

(mL) 
t = 0.16 t = 0.32 t = 0.48 t = 0.6 t = 0.7 t = 0.8 

|𝑽𝟏(𝒕) − 𝑽𝟒(𝒕)| 1.622 1.981 2.741 2.322 1.948 1.62 

|𝑽𝟐(𝒕) − 𝑽𝟒(𝒕)| 0.865 1.058 1.47 1.174 0.965 0.794 

|𝑽𝟑(𝒕) − 𝑽𝟒(𝒕)| 0.382 0.467 0.651 0.504 0.407 0.332 

 

Table 4. Difference of outlet flow rates obtained from simulations by using different 

meshes. 

Flow rate difference  

(mL/s) 
t = 0.6 t = 0.7 t = 0.8 

|𝑸𝟏(𝒕) − 𝑸𝟒(𝒕)| 2.938 3.0923 4.7726 

|𝑸𝟐(𝒕) − 𝑸𝟒(𝒕)| 1.664 1.6414 3.3274 

|𝑸𝟑(𝒕) − 𝑸𝟒(𝒕)| 0.763 0.7587 2.6136 
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Figure 6. Variation of left ventricular cavity volume with time obtained from simulations 

by using different meshes. 

 

Figure 7. Variation of outlet flow rate with time obtained from simulations by using 

different meshes. 

3.2. Time-step convergence 

In order to verify the convergence of time step size, we use ℒ1 mesh and set the size of the time 

step to be ∆𝑡1 = 0.005, ∆𝑡2 = 0.002, ∆𝑡3 = 0.001, ∆𝑡4 = 0.0005  (unit: second) to perform 

simulations, respectively. 𝑉𝑖(𝑡) denotes the volume occupied by the blood contained in left ventricle 

at time 𝑡 by using time step ∆𝑡𝑖, and 𝑄𝑖(𝑡) denotes the rate of the blood flow that passes through 

the left ventricular outlet. Taking the results computed by using the smallest  ∆𝑡4 as the reference, 

the deviations of left ventricle blood volume and outlet flow rate obtained by using other time steps at 

several representative moments are presented in Tables 5 and 6, and the overall patterns during the 

cardiac cycle are presented in Figures 8 and 9. Based on these results, it can be seen that the difference 

of different computing results becomes smaller as the time step decreases, as desired. 
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Table 5. Differences of left ventricular cavity volumes obtained from simulations by using 

different time steps. 

Volume difference (mL) t = 0.16 t = 0.32 t = 0.48 t = 0.6 t = 0.7 t = 0.8 

|𝑽𝟏(𝒕) − 𝑽𝟒(𝒕)| 0.292 0.015 0.118 0.227 0.217 0.179 

|𝑽𝟐(𝒕) − 𝑽𝟒(𝒕)| 0.097 0.005 0.039 0.075 0.072 0.06 

|𝑽𝟑(𝒕) − 𝑽𝟒(𝒕)| 0.032 0.002 0.013 0.024 0.023 0.02 

Table 6. Difference of outlet flow rates obtained from simulations by using different time steps. 

Flow rate difference (mL/s) t = 0.6 t = 0.7 t = 0.8 

|𝑸𝟏(𝒕) − 𝑸𝟒(𝒕)| 2.074 1.378 1.129 

|𝑸𝟐(𝒕) − 𝑸𝟒(𝒕)| 0.674 0.446 0.412 

|𝑸𝟑(𝒕) − 𝑸𝟒(𝒕)| 0.214 0.131 0.146 

 

 

Figure 8. Variation of left ventricular cavity volume with time obtained from simulations 

by using different time steps. 

 

Figure 9. Variation of outlet flow rate with time obtained from simulations by using 

different time steps. 
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3.3. Parallel performance 

To investigate the parallel scalability of the proposed algorithm, two computational meshes, ℒ4 

(4.06 × 106 mesh elements) and ℒ5 (7.92 × 106 mesh elements), are chosen to repeat simulations 

on the Tianhe-2A supercomputer, by using 72, 144, 288, 576, 1152, and 2304 processor cores, 

respectively. For each case, the average compute time of the first 10 time steps is counted to calculate 

the speedup. More specifically, let  𝑇𝑖𝑛𝑖 be the average computation time per time step when using 

72 processors, and 𝑇𝑝  the average computation time per time step when using 𝑝  processors, the 

speedup and parallel efficiency are defined as follows: 

Speedup =
𝑇𝑖𝑛𝑖

𝑇𝑝
, Efficiency =

Speedup

𝑝 ÷ 72
, 𝑝 = 72, 144, 288, 576, 1152, 2304. 

Table 7 , Figures 10 and 11 present the parallel scalability performance of the numerical algorithm 

for solving the left ventricle fluid-structure interaction problem, where “np” denotes the number of 

processor cores, “Newton” the average number of Newton iteration steps per time step, “GMRES” the 

average number of GMRES iteration steps in each Newton step, “Time” the average compute time per 

time step, “Speedup” the speedup of the algorithm, and “Efficiency” the parallel efficiency of the 

algorithm. It can be seen that when the number of processor cores gets increased while the problem 

size keeps unchanged, the number of Newton iteration steps remains almost the same and the number 

of GMRES iterations increases just few steps, and the total compute time decreases significantly. 

Moreover, as the number of mesh elements is increased from  4.06 × 106  to 7.92 × 106 , both 

speedup and parallel efficiency are improved, indicating that the algorithms can achieve higher parallel 

efficiency when the scale of the problem matches appropriately the number of processor cores. 

Nevertheless, it can be found that, when for case of 7.92 × 106 elements, the algorithm still has 40% 

parallel efficiency when the number of processor cores is expanded to 2304 cores. These results verify 

that the proposed algorithm has good parallel scalability for solving the left ventricle fluid-structure 

interaction problem. 

Table 7. Parallel scalability results of the algorithm. 

 np Newton GMRES Time(s) Speedup Ideal Efficiency 

 

 

𝓛𝟒 

𝟒. 𝟎𝟔 × 𝟏𝟎𝟔 

72 2 49.5 52.4 1.0 1 100 

144 2 49.3 35.1 1.5 2 75 

288 2 50.6 17.8 2.9 4 74 

576 2 54.2 9.3 5.6 8 71 

1152 2 57.1 6.8 7.7 16 48 

2304 2 59.4 5.1 10.2 32 32 

 

 

𝓛𝟓 

𝟕. 𝟗𝟐 × 𝟏𝟎𝟔 

72 2 61.6 107.5 1.0 1 100 

144 2 64.6 58.5 1.8 2 92 

288 2 66.4 32.3 3.3 4 83 

576 2 69.7 18.5 5.8 8 73 

1152 2 70.7 11.6 9.3 16 58 

2304 2 74.7 8.3 12.9 32 40 
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Figure 10. Speedup of the algorithm for using up to 2304 processor cores. The dash line 

represents the ideal speedup rate. 

 

Figure 11. The average compute time per time step of the algorithm for using up to 2304 

processor cores. 

3.4. Analysis on simulation results 

In the following, we use 480 processors on Tianhe-2A supercomputer to perform a cardiac cycle 

simulation based on ℒ4, and the time step size is set to 0.0005 s. Due to the simplification of the model, 

we mainly discuss the velocity field distribution in the blood region contained left ventricle, as well as 

the deformation and stress status of the myocardium. 

Figure 12 shows the rate of blood flow at the inlet and outlet of left ventricle as a time-dependent 

function during a cardiac cycle, and Figure 13 shows instantaneous blood flow velocity streamline in 

left ventricle at several time moments. It can be seen that the blood flow velocity increased rapidly at 

the beginning stage, and the first local maximal flow rate appears as the early diastolic filling wave (E 

wave) arrives. Besides, an obvious vortex formed at 0.08s can be observed. After that, the inlet flow 

rate drops, but the previously observed vortex area gets expanded, with some new vortexes generated. 

At 0.25 s, the inlet flow velocity drops to a low level, the velocity field also gradually gets stabilized, 

and the vortex area decrease to almost vanished. The late diastolic filling wave (A wave) arrives around 
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0.4 s, which causes the inlet flow rate increased again. It can be seen that the velocity field in the left 

ventricle fluctuated, and a vortex appears again. The diastole phase terminates at 0.48 s, and the systole 

begins right away, during which, the left ventricle inlet keeps closed and the outlet is open. The outlet 

blood flow velocity quickly reaches its peak, and then falls gradually. During the systolic phase, a 

vortex can also be observed at 0.70 s. 

 

Figure 12. Variation of flow rate at the inlet and outlet of left ventricle with time during 

one cardiac cycle. 

  

  

  

 

Figure 13. Instantaneous velocity streamline in the left ventricle. 
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In addition, Figure 14 presents the history of the cavity volume of the left ventricle during one 

cardiac cycle, and Figure 15 demonstrates the instantaneous velocity field of the blood as well as the 

displacement field of the myocardium. According to these results, it can be seen that the velocity field 

inside the left ventricle fluctuates with the inlet flow rate throughout diastole, and the volume of the 

left ventricular cavity and the displacement of the myocardium undergo two drastic changes after the 

arrival of the E and A waves, as large amount of blood rapidly flushes into the left ventricle. Besides, 

during the systolic phase, the outlet blood flow reached its peak at the beginning of contraction and 

then decrease gradually, and the velocity near the outlet region was significantly higher than elsewhere. 

As expected, after blood flowed out of left ventricle, the volume of the left ventricular cavity and the 

displacement of the myocardium around the left ventricle get decreased. 

Furthermore, we cut the left ventricle on three representative cross section along the axial axis, 

coronal axis and sagittal axis, respectively, and compare the simulation results with the CT image data 

at the end of the systole, as shown in Figure 16. It can be seen that the results obtained by simulation 

are within the normal physiological range and visually match the CT images. But at the same time, 

due to the simplicity of the underlying model and experimental settings (e.g., the left ventricle is 

linearly elastic and the active contraction is ignored), some artifacts and flaws can be found in the 

current simulation results. For example, as shown in Figure 14, the volume of the left ventricle cavity 

at the end of the drainage stage is larger than the initial one, and we found that the blood flowing into 

the left ventricle during diastole is larger than that flowing out from during the drainage stage (74 mL 

vs 56 mL), indicating an un-normal situation. In addition, backflow has already appeared at the outlet 

at the end of contraction, and the backflow speed is relatively high. At this moment, the blood flow 

rate is about 20cm/s, but the speed of backflow has reached about 80 cm/s. If the simulation continues, 

the backflow speed may reach up to 1000 cm/s, which does not lay in a physiological range. In the 

future, we will revise our model, algorithm and experimental settings, in aiming to get more realistic 

simulation results. 

 

Figure14. Change of the left ventricular cavity volume with time. The blue points 

correspond to the left ventricular cavity volumes at the time showed in Figure 15. 
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Figure 15. Instantaneous velocity distribution of blood in the left ventricle (left) and 

displacement change of myocardium (right) during a cardiac cycle. 
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Figure 16. Comparison of the simulation results with the CT images at the end of diastole. 

(a)–(c) are axial, coronal and sagittal sections of the CT images, respectively. The white 

and dark gray areas are the blood and myocardial tissue, and the red and cyan areas are the 

distribution of blood and myocardium on the cross-section obtained from the simulation. 

(d)–(f) mark the spatial locations of the three sections in (a)–(c), respectively. 

4. Conclusions 

Due to the complexity of human heart, fluid-structure interaction simulation on the hemodynamic 

is a very challenging task. In this paper, we proposed a high-performance parallel solver to perform 

efficient FSI simulations of the human heart left ventricle on Tianhe-2A supercomputer. Through 

experiments, we verify that the algorithm is highly efficient, and has good numerical stability and 

parallel scalability up to more than 2000 processor cores. By using the solver, we further provide a 

preliminary demonstration of its possible application scenarios in clinical research. 
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