
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(9): 3320–3336.
DOI: 10.3934/era.2022168
Received: 26 May 2022
Revised: 28 June 2022
Accepted: 01 July 2022
Published: 11 July 2022

Research article

Simplification of logical functions with application to circuits

Jun-e Feng1, Rong Zhao1,*and Yanjun Cui2

1 School of Mathematics, Shandong University, Jinan 250100, China
2 College of Science and Engineering, University of Minnesota Twin Cities, Minneapolis 55455,

USA

* Correspondence: Email: zhaorongjy1126@163.com.

Abstract: The simplification problem of logical functions is investigated via the matrix method.
First, necessary and sufficient conditions are put forward for the decomposition of logical matrices.
Based on this, several criteria are proposed for the simplification of logical functions. Furthermore, an
algorithm, which can derive simpler logical forms, is developed, and illustrative examples are given
to verify the effectiveness. Finally, the obtained theoretical results are applied to the simplification of
electric circuits.

Keywords: circuits; logical functions; simplification; semi-tensor product

1. Introduction

Logic algebra was first given by George Boole in 1854 to describe the laws of human thought [1],
and that is why we call it Boolean algebra. Then, Boolean logic was used to design circuits by Claude
Shannon in 1938 [2]. The functions used in circuits of computers and other electronic devices (e.g.,
switch devices and optical devices) are all logical (Boolean) ones, in which the input and output vari-
ables all belong to {0, 1} with 0 and 1 representing “off” and “on”, respectively. In all Boolean op-
erations, there are three important ones, which are negation (complementation), disjunction (Boolean
sum) and conjunction (Boolean product). Other operations in Boolean algebra can be expressed by
these three ones, so the set of these three operations is called an adequate set [3]. Although there are
some smaller adequate sets, the adequate set with these three operations is most commonly used. In
practical circuits of a computer, these three operations are implemented by the Invertor logic gate, OR
logic gate and AND logic gate, the number of which directly affects the efficiency of a combinational
circuit. The circuits are usually implemented by the disjunctive normal form (also called the sum-of-
products expansion) [2, 5, 6]. There are often some terms unnecessary in the disjunctive normal form.
For example, (x∧y∧ z)∨ (x∧ ȳ∧ z) can be simplified to x∧ z. Here, x, y, z ∈ {0, 1} are logical variables,

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022168

3321

ȳ represents the complementation of logical variable y, and ∨,∧ are the operations disjunction and
conjunction, respectively. It is obvious that the later one implemented by only one logic gate is simpler
than the former one, which requires four logic gates, as shown in Figure 1. Therefore, the minimization
or simplification of the disjunctive normal form is very important both to the cost and the efficiency of
computers and other electronic devises.

Figure 1. Two circuits with the same output.

Simplification of the disjunctive normal form means not only reduction of the number of the disjunc-
tion terms, but also reduction of the number of conjunctions in every disjunction term. The following is
a review of the research status of minimizing logical functions. In 1953, Maurice Karnaugh proposed
the Karnaugh map method to minimize the disjunctive normal form by hand [4]. However, the Kar-
naugh map method can simplify circuits with up to six variables. In fact, the method becomes rather
complex even for five or six variables. Then, in the 1960s, the Quine-McCluskey method was invented
to minimize circuits, which can be automatically done by a computer. Circuits with ten variables can
be simplified via the Quine-McCluskey method. Since then, newer algorithms have been devised for
minimizing circuits ([5] and [6]), and some of them can handle circuits with up to 25 variables. Some
other new methods, such as by binary decision diagrams [7] and cube algebra [8], for the simplifica-
tion of logical functions have also been proposed, but they are all graph-based approaches. It has been
proved that the problem of minimizing circuits is an NP-complete problem [4]. In practice, it is enough
to simplify circuits with a larger number of literals, and not necessary to minimize them.

On the other hand, Boolean functions can be expressed in algebraic forms via the semi-tensor prod-
uct of matrices, which was first proposed by Prof. Cheng and his colleagues [9]. Based on the algebraic
forms, investigations of Boolean networks have arrived at a new level. The earliest analysis and control
on Boolean networks can be found in the literature [10]. Since then, a variety of research results on
Boolean networks have been obtained. Here, we give some recent ones. Pinning controllability and set
controllability of BNs were considered in [11] and [12], respectively. Via matrix equations, necessary
and sufficient conditions for observability [13] were given, and then the minimum-time control for ob-
servability of BNs was studied in [14]. Note that observability aims to determine the initial state by the
knowledge of input-output data. Correspondingly, detectability or reconstructibility of BNs, aiming
to determine the current state by the knowledge of input-output data, was also discussed in [15, 16].
Furthermore, state feedback control [17, 18], output feedback control [19] and aperiodic sampled-data
control [20] for stabilization of BNs were taken into consideration. In addition, the optimal control
problem [21–23], the disturbance decoupling problem [24, 25] and other control problems [26–30]
have also achieved important research results one after another.

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3322

Since the Boolean network is studied via its algebraic form, the corresponding controllers or realiza-
tions are all obtained in terms of algebraic expressions. The algebraic expression should be transformed
into its logical form, which only can be implemented in practice. [31] proposed a general method for
the transformation from the algebraic form to the logical one. If the algebraic expression has some
special structure, then its logical form often is complex only using the general transformation method
of [31]. As analysis above, it is difficult to implement the complex logical function in practice, and
it will take more cost. Therefore, in the process of transformation, we should simply the algebraic
expressions if they have some special forms.

In this paper, we propose a matrix-based method to simplify logical functions. The main contribu-
tions of the paper are summarized as follows.

1) The decomposition conditions of a logical matrix into the Kronecker product of some (logical)
matrices are first proposed.

2) Several criteria under which the algebraic expressions of logical functions can be simplified are
presented. Combining with the method of [31], an algorithm is devised for the simplification of
logical functions.

3) Moreover, the results of this paper are applicable to the design and simplification of circuits.

The rest of this paper is organized as follows: Some notations and necessary preliminaries are given
in Section 2. In Section 3, the decomposition of logical matrices is addressed. Section 4 discusses the
simplification of logical functions, and at the same time, several criteria and corresponding algorithm
are presented. In Section 5, the results of this paper are applied to the design of circuits. Finally,
Section 6 makes the conclusion to this paper.

2. Preliminaries

In this section, we will introduce some notations and some necessary preliminaries, which will be
used throughout this paper. First, we list the notations, most of which are from the literature [10].

• Mm×n: the set of m × n real matrices. DenoteMm =Mm×1.
• D := {0, 1}, where 1 ∼ T means “true” and 0 ∼ F means “false”. A logical variable A takes value

fromD, expressed as A ∈ D. Identify T = 1 ∼ δ1
2, F = 0 ∼ δ2

2.

• δi
n: the i-th column of the identity matrix In. Denote ∆n := {δi

n|i = 1, · · · , n} and ∆ := ∆2.
• 1n := δ1

n + δ
2
n + · · · + δ

n
n.

• For a matrix L ∈ Mm×n, denote by Coli(L) and Col(L) the i-th column of L and the set of all
columns of L, respectively.
• Matrix L ∈ Mm×n is called a logical matrix if Col(L) ⊂ ∆n. In particular, L is called a logical

vector when n = 1. Denote by Lm×n the set of m × n logical matrices.
• If L ∈ Ln×r, by definition it can be expressed as L = [δi1

n , δ
i2
n , · · · , δ

ir
n]. For the sake of compactness,

it is briefly denoted by L = δn[i1, i2, · · · , ir].
• For A = (ai j) ∈ Mm×n, B = (bi j) ∈ Mp×q, the Kronecker product of matrices A and B is defined as

A ⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB

 ∈ Mmp×nq.

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3323

• Let A ∈ Mm×n, B ∈ Mp×q, t = lcm(n, p). Then, the semi-tensor product (STP) of A and B is

A ⋉ B := (A ⊗ It/n)(B ⊗ It/p),

where lcm(n, p) represents the least common multiple of n and p.

When n = p, A ⋉ B is the traditional matrix product, which means that STP is a generalization of
the traditional matrix product. It is easy to check that STP keeps all the properties of hte traditional
matrix product available.

Moreover, STP satisfies a pseudo commutative law. For any column vector x ∈ Mt and any matrix
A ∈ Mm×n, we have

x ⋉ A = (It ⊗ A) ⋉ x. (2.1)

In this paper, the symbol “⋉” represents the semi-tensor product of matrices, which is often omitted
in most places. We refer to [9] for the details.

Definition 1. Define a swap matrix as

W[m,n] =
[
Im ⊗ δ

1
n, Im ⊗ δ

2
n, · · · , Im ⊗ δ

n
n

]
.

The following properties are fundamental for swap matrices.

Lemma 1. Given two column vectors x ∈ Mn, y ∈ Mm,

W[m,n] ⋉ x ⋉ y = y ⋉ x.

Definition 2. A power-reducing matrix is defined as

Pr
k = diag{δ1

k , δ
2
k , · · · , δ

k
k}.

Then, we have the following lemma.

Lemma 2. Given any column vector x ∈ ∆k,

x2 = Pr
kx.

Using STP and vector expression of logical variables, any logical function can be equivalently
converted into its algebraic form [9].

Lemma 3. If y = f (x1, x2, . . . , xn) : Dn → D is a Boolean function, then there exists a unique matrix
M f ∈ L2×2n , called the structure matrix of f , such that in vector form y = M f ⋉

n
i=1 xi, with y = δ2−y

2 ∈ ∆2

and xi = δ
2−xi
2 ∈ ∆2.

To illustrate the lemma above, we give the structure matrices of the three commonly used logical
operators.

Example 1. (i) Complementation:

X̄ := 1 − X, X ∈ D. (2.2)

Its structure matrix is

Mn = δ2[2, 1].

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3324

(ii) Conjunction:

X ∧ Y := min(X,Y), X,Y ∈ D. (2.3)

Its structure matrix is

Mc = δ2[1, 2, 2, 2].

(iii) Disjunction:

X ∨ Y := max(X,Y), X,Y ∈ D. (2.4)

Its structure matrix is

Md = δ2[1, 1, 1, 2].

Remark 1. It is obvious that M0 = δ2[2, 2] and M0 = δ2[1, 1] are the structure matrices of constants
0 and 1, respectively.

Example 2. Given two logical functions F(X,Y) = (X∧Y)∨(X̄∧Y)∨(X∧Ȳ) and G(X,Y) = X∨(X̄∧Y),
compute their structure matrices.

Denote by x, y ∈ ∆ and f , g : ∆2 → ∆ the vector forms of logical variables X,Y and logical functions
F,G. Then, we have

f = M2
d McxyMcMnxyMcxMny

= M2
d Mc(I4 ⊗ McMn)Pr

4(I4 ⊗ Mc)xyxMny
= M2

d Mc(I4 ⊗ McMn)Pr
4(I4 ⊗ Mc)(I8 ⊗ Mn)Pr

4xy
= δ2[1, 1, 1, 2]xy,

g = Md xMcMnxy
= Md(I2 ⊗ McMn)x2y
= Md(I2 ⊗ McMn)Pr

2xy
= δ2[1, 1, 1, 2]xy.

It is noticed that these three logical functions F, G and W = X∨Y do have the same structure matrix.
In fact, they are different expressions of the same logical function. In the three logical functions, the
simplest one is W = X ∨ Y , and the most complex one is F. The simpler one is easier to implement in
practical circuits. However, it is often difficult to find the simplest one, since the computation complex.
Hence, we hope to propose a general method to simplify logical functions.

On the other hand, from a given algebraic form of a logical function, we can get the corresponding
logical form by the following lemma [31], which comes from Shannon’s decomposition [32].

Lemma 4. Let M f ∈ L2×2n be the structure matrix of logical function y = f (x1, x2, . . . , xn). Then,

y = [x1 ∧ f1(x2, . . . , xn)] ∨ [x̄1 ∧ f2(x2, . . . , xn)], (2.5)

where the structure matrix of fi(·) is M fδ
i
2.

Finally, to simplify the logical function, we also need the following lemma, which will be used in
the decomposition of logical matrices.

Lemma 5.
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3325

3. Decomposition of logical matrices

In this section, we will propose some decomposition results of logical matrices using Lemma 5.

Proposition 1. Consider logical matrix L = [L1 L2 . . . Lk] with Li ∈ Lm×l.

1) L = L̄ ⊗ 1T
l with L̄ ∈ Lm×k if and only if

Col1(Li) = Col2(Li) = . . . = Coll(Li), i = 1, 2, . . . , k. (3.1)

Furthermore, if L = L̄ ⊗ 1T
l then Coli(L̄) = Col ji(Li) for every 1 ≤ ji ≤ l and i = 1, 2, . . . , k.

2) L = 1T
k ⊗ L̄ with L̄ ∈ Lm×l if and only if

L1 = L2 = . . . = Lk. (3.2)

Furthermore, if L = 1T
k ⊗ L̄ then L̄ = Li for every i = 1, 2, . . . , k.

Proof. We only prove the first item, and the other one can be proven via a similar method.
(Necessity) Since Li ∈ Lm×l and L = [L1 L2 . . . Lk], we have L ∈ Lm×kl. If L = L̄ ⊗ 1T

l then L̄ has k
columns. Denote L̄ ⊗ 1T

l = [L̄1 L̄2 . . . L̄k], where

L̄i = Coli(L̄) ⊗ 1T
l , i = 1, 2, . . . , k.

From L = L̄ ⊗ 1T
l , we derive Li = L̄i, which means that all columns of Li are equal for every i =

1, 2, . . . , k.
(Sufficiency) If L = [L1 L2 . . . Lk] satisfying

Col1(Li) = Col2(Li) = . . . = Coll(Li), i = 1, 2, . . . , k,

then
L = [Col j1(L1) ⊗ 1T

l Col j2(L2) ⊗ 1T
l . . . Col jk(Lk) ⊗ 1T

l], 1 ≤ ji ≤ l, i = 1, 2, . . . , k,

which means that L has the form L = L̄ ⊗ 1T
l with

L̄ = [Col j1(L1) Col j2(L2) . . . Col jk(Lk)],

with 1 ≤ ji ≤ l, i = 1, 2, . . . , k. The proof is completed.

Example 3. i) Consider a logical matrix

L =
[

0 0 1 1
1 1 0 0

]
.

Take m = k = l = 2. It is easy to see L = [L1 L2] and Col1(Li) = Col2(Li), i = 1, 2. Thus, from
item 1) of Proposition 1, we have L = L̄ ⊗ 1T

2 with

L̄ =
[

0 1
1 0

]
.

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3326

ii) Consider a logical matrix

L =
[

0 1 1 0 1 1
1 0 0 1 0 0

]
.

Take m = k and l = 3. It is easy to see L = [L1 L2] and L1 = L2. Thus, from item 2) of Proposition
1, we have L = 1T

2 ⊗ L̄ with

L̄ =
[

0 1 1
1 0 0

]
.

Combining the two items of Proposition 1, we have the following corollary easily.

Corollary 1. Consider logical matrix L = [L1 L2 . . . Lk] with Li ∈ Lm×lh. Then, L = 1T
k ⊗ L̄ ⊗ 1T

h with
L̄ ∈ Lm×l if and only if

L1 = L2 = . . . = Lk,

and
Colαh+1(Li) = Colαh+2(Li) = . . . = Colαh+h(Li), (3.3)

where α = 0, 1 . . . , l − 1 and i = 1, 2, . . . , k. Furthermore, if L = 1T
k ⊗ L̄ ⊗ 1T

h then

L̄ = [Col1(Li),Colh+1(Li), · · · ,Colh(l−1)+1(Li)]

for every i = 1, 2, . . . , k.

Proposition 1 and Corollary 1 decompose a logic matrix into the Kronecker product of one logic
matrix and row vector 1T

k . 1T
k can be seen as a special logical matrix which belongs to L1×k. Next, one

more general decomposition case is proposed using a similar idea.

Proposition 2. Assume logical matrix L = [L1 L2 . . . Lk] with Li ∈ Lm×hl, and Li = [Li
1 Li

2 . . . Li
h]

with Li
j ∈ Lm×l, j = 1, 2, . . . , h i = 1, 2, . . . , k. Then, L = L̄(Ik ⊗ 1T

h ⊗ Il) with L̄ ∈ Lm×kl if and only if

Li
1 = Li

2 = . . . = Li
h, i = 1, 2, . . . , k. (3.4)

Furthermore, if L = L̄(Ik ⊗ 1T
h ⊗ Il), then

L̄ = [L1
j1 L2

j2 . . . Lk
jk], 1 ≤ ji ≤ h, i = 1, 2, . . . , k. (3.5)

Proof. Via computation, we have

Ik ⊗ 1T
h ⊗ Il = diag{

k︷ ︸︸ ︷
N N · · · N} ∈ Lkl×khl

with N = [
h︷ ︸︸ ︷

Il Il · · · Il]. Then, it follows that

L̄(Ik ⊗ 1T
h ⊗ Il) = [L̄1 L̄2 . . . L̄k]

where L̄i = [L̄i
1 L̄i

2 . . . L̄i
h], i = 1, 2, . . . , k, and

L̄i
1 = L̄i

2 = . . . = L̄i
h = [Colī+1(L̄) Colī+2(L̄) · · · Colī+l(L̄)]

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3327

with ī = (i − 1) · l, i = 1, 2, . . . , k.
Hence, it is obvious that L = L̄(Ik ⊗ 1T

h ⊗ Il) with L̄ ∈ Lm×kl if and only if

Li
1 = Li

2 = . . . = Li
h, i = 1, 2, . . . , k.

Furthermore, it is easy to have L̄ = [L1
j1 L2

j2 . . . Lk
jk
]. The proof is completed.

Example 4. Consider the logical matrix

L =
[

1 0 1 0 0 0 0 0
0 1 0 1 1 1 1 1

]
.

Take m = k = h = l = 2. It is easy to see L = [L1 L2], L1 = [L1
1 L1

2], L2 = [L2
1 L2

2], and

L1
1 = L1

2 =

[
1 0
0 1

]
, L2

1 = L2
2 =

[
0 0
1 1

]
.

It is obvious that L satisfies that condition of Proposition 2. Thus, we have L = L̄(I2 ⊗ 1T
2 ⊗ I2) with

L̄ =
[

1 0 0 0
0 1 1 1

]
.

Propositions 1 and 2 will take a key role in the simplification of logical functions.

4. Simplification of logical functions

From Lemma 5 of Section 3, it is easy to get the following results, which will be useful to the
subsequent simplification.

Proposition 3. For x ∈ ∆n1 , y ∈ ∆n2 , z ∈ ∆n3 , L1 ∈ Lm×n1 , L2 ∈ Lm×n2 and L3 ∈ Lm×n1n3 , we have the
following

1)
L1x = (L1 ⊗ 1T

n2
)xy.

2)
L2y = (1T

n1
⊗ L2)xy.

3)
L2yz = (1T

n1
⊗ L2 ⊗ In3)xyz.

4)
L3xz = L3(In1 ⊗ 1T

n2
⊗ In3)xyz.

Combining Lemma 5 with xy = x ⊗ y and xyz = x ⊗ y ⊗ z, the results will be obtained, so it is
omitted here for the brevity.

The function of Proposition 3 is to delete the redundant variables in a logic function. For a given
algebraic form y = L ⋉n

i=1 xi with xi ∈ ∆ and L ∈ L2×2n , we could get its corresponding logical function

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3328

using Lemma 4 repeatedly. However, we hope to get a simpler form of it. In order to derive a simpler
logical function, we simplify the algebraic form in the process of using Lemma 4. The following
corollary is obtained directly from Propositions 1 to 3 and Corollary 1.

Corollary 2. Considering a given algebraic form y = L ⋉n
i=1 xi with xi ∈ ∆ and L ∈ L2×2n , we have the

following results.

1) If there exists positive integer l < n, satisfying L = L̄ ⊗ 1T
2l , then

y = L̄ ⋉n−l
i=1 xi.

2) If there exist. positive integer k < n, satisfying L = 1T
2k ⊗ L̄, then

y = L̄ ⋉n
i=k+1 xi.

3) If there exist positive integers k and l with k + l < n, satisfying L = 1T
2k ⊗ L̄ ⊗ 1T

2l , then

y = L̄ ⋉n−l
i=k+1 xi.

4) If there exist positive integers k, h, l with k + h + l = n, satisfying L = L̄(I2k ⊗ 1T
2h ⊗ I2l), then

y = L̄ ⋉k
i=1 xi ⋉

n
i=k+h+1 xi.

Based on the analysis above, we could derive a simpler logical form if we use repeatedly Lemma
4 together with Corollary 2. Next, we give the simplification algorithm of a given logical function
y = f (x1, x2, . . . , xn).

Algorithm 1 Simplification of Logical Functions
Input: A logical function f .
Output: The simplified logical function f .

Step 1: According to Lemma 3, write the structure matrix of logical function f .
Step 2: Check whether L satisfies the conditions of Propositions 1–2 and Corollary 1. If yes,
then simplify the algebraic form y = L ⋉n

i=1 xi according to Corollary 2, and delete the redundant
variables. If not, then go to the next step.
Step 3: Use Lemma 4 to have

y = [x1 ∧ f1(x2, . . . , xn)] ∨ [x̄1 ∧ f2(x2, . . . , xn)],

where Li := Lδi
2 is the structure matrix fi(·), i = 1, 2.

Step 4: If Li ∈ L2×2, end the algorithm. Otherwise, for i = 1, 2, taking L = Li with logical
functions fi, return to Step 2.

Remark 2. In Algorithm 1, the time complexity of Step 1 is O(2n). The number of iterations of Steps 2–
4 is n−1. Then, the time complexity of Steps 2–4 is O(2n)+O(2n−1)+· · ·+O(22) = O(2n). Consequently,
the time complexity of Algorithm 1 is O(2n) + O(2n) = O(2n).

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3329

Remark 3. 1) In [33], two methods, including the K-maps and the Quine-McCluskey method, are
introduced. However, K-maps are awkward to use when there are more than four variables. On the
other hand, the K-maps is a graphical method, and the Quine-McCluskey method is based on tabular
representation.

2) In this paper, a matrix-based method is proposed to simplify logical functions. It provides a new
point of view for simplifying logical functions and is more convenient for programming by computers.
On the other hand, our method is not limited to the number of variables and is only subject to the
computer configuration. These are the main differences and innovations of this paper, compared with
the K-maps and the Quine-McCluskey method.

The following example used to interpret the simplification of a logical function is from [33] (see
Example 10, Chapter 12.4).

Example 5. Simplify the following logical function:

f = (w ∧ x ∧ y ∧ z̄) ∨ (w ∧ x̄ ∧ y ∧ z) ∨ (w ∧ x̄ ∧ y ∧ z̄) ∨ (w̄ ∧ x ∧ y ∧ z)
∨(w̄ ∧ x ∧ ȳ ∧ z) ∨ (w̄ ∧ x̄ ∧ y ∧ z) ∨ (w̄ ∧ x̄ ∧ ȳ ∧ z).

(4.1)

Take the variable order w, x, y and z. Denote by F,W, X,Y and Z the corresponding vectors of
f ,w, x, y and z, respectively. Then, we have the algebraic form F = LWXYZ of logical function f with

L = δ2 [2 1 2 2 1 1 2 2 1 2 1 2 1 2 1 2] .

Using Lemma 4, we have

f = (w ∧ f1(x, y, z)) ∨ (w̄ ∧ f2(x, y, z)) (4.2)

with L1 = δ2 [2 1 2 2 1 1 2 2] and L2 = δ2 [1 2 1 2 1 2 1 2] being structure matrices of logical functions
f1 and f2, respectively.

Using Lemma 4 again, it follows that

f1 = (x ∧ f11(y, z)) ∨ (x̄ ∧ f12(y, z)) (4.3)

with L11 = δ2 [2 1 2 2] and L12 = δ2 [1 1 2 2] being structure matrices of logical functions f11 and f12,
respectively. Then,

f11 = (y ∧ f111(z)) ∨ (ȳ ∧ f112(z)) (4.4)

where the structure matrices of f111 and f112 are L111 = δ2 [2 1] and L112 = δ2 [2 2]. From L111 and
L112, we have f111 = z̄ and f112 ≡ 0, which implies that f11 = y ∧ z̄.

Notice L12 = I2 ⊗ 1T
2 and f12 = y. Thus, we derive that

f1 = (x ∧ y ∧ z̄)) ∨ (x̄ ∧ y). (4.5)

On the other hand, since L2 = 1T
4 ⊗ I2, we have L2XYZ = Z, which implies that f2 = z.

Therefore, we obtain that

f = (w ∧ x ∧ y ∧ z̄)) ∨ (w ∧ x̄ ∧ y) ∨ (w̄ ∧ z). (4.6)

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3330

Using the Quine-McCluskey method, [33] derived that simplified functions are

f = (w ∧ y ∧ z̄) ∨ (w ∧ x̄ ∧ y) ∨ (w̄ ∧ z)

and
f = (w ∧ y ∧ z̄) ∨ (x̄ ∧ y ∧ z) ∨ (w̄ ∧ z).

It is easy to see that both (4.6) and [33] require seven logical gates to implement the logical function.
Furthermore, our method is simpler than [33].

Remark 4. It should be noticed that the order of variables often affects the simplification of logical
functions. Different orders often result in different forms, since different algebraic forms correspond to
different orders.

We present a simple example to depict this point.

Example 6. Consider the following logical function:

f = (x ∧ y ∨ z) ∨ (x ∧ y ∧ z). (4.7)

Denote by F, X, Y and Z the corresponding vectors of f , x, y and z, respectively.
If we take the variable order x, y, z, then we can get the algebraic form F = L1XYZ of logical

function f with
L1 = δ2[1 1 2 1 2 1 2 1].

Using Algorithm 1, it is easy to simplify the logical function f as

f = (x ∧ y) ∨ (x ∧ y ∧ z) ∨ (x ∧ z). (4.8)

meanwhile, if we take the variable order y, z, x, then the algebraic form of f is F = L2YZX with

L2 = δ2[1 2 2 2 1 1 1 1].

Using Algorithm 1, we obtain that
f = (y ∧ z ∧ x) ∨ y. (4.9)

It is clear that both (4.7) and (4.8) require six logic gates, while (4.9) requires three logic gates.

On the other hand, the method for simplifying logical functions is useful for constructing the logic
forms of state feedback controllers. The following example is employed to give an explanation.

Example 7. Consider the example in [34], where three state feedback controllers were designed to
make set stabilization for Markovian jump Boolean control networks. However, [34] only gave the
algebraic forms of the controllers: ui(t) = Kix(t), i = 0, 1, 2 with

K0 = K1 = δ2[1 1 1 1 1 1 1 1],

K2 = δ2[1 1 2 2 1 1 2 2].

It is easy to see that u0 = u1 = 1 is the logical form of the former two. As for the third one u2, in light
of Algorithm 1, its logical form is derived as u2 = x2.

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3331

5. Application to design and simplification of circuits

The efficiency and the cost of designing a combinational circuit depend on the number and arrange-
ment of its logic gates. A circuit in computers or other electric devices is often implemented by three
logic gates: “OR” logic gate, “And” logic gate and “Inverter” logic gate. The process of designing a
combinational circuit requires the table specifying the output for the combination of inputs. In com-
puters, we always use binary expansions to code decimal expansions. For instance, decimal number 7
is represented by 0111, and 256 is encoded as 100, 000, 000.

To illustrate the applications of our method on the design of circuits, we build a circuit about decimal
numbers, and the following example is from [33] (Example 8 in Chapter 12.4).

Example 8. Using OR logic gates, AND logic gates and Inverter logic gates, build a circuit that
produces an output 1 if the decimal digit is 5 or greater than 5 and an output 0 if the decimal digit is
less than 5.

Table 1. The values of f corresponding to different digits.
Digit w x y z f

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1

Since there are 16 combinations of four bits and only 10 decimal digits, there are 6 ones that are
not used to encode digits. This gives us freedom in producing a simpler circuit with the desired output
because the output values for all those combinations that never occur can be arbitrarily chosen.

Let f (w, x, y, z) denote the output of the circuit, where wxyz is a binary expansion of a decimal digit.
The values of f are shown in Table 1. Take the variable order w, x, y and z. Denote by F,W, X,Y and Z
the corresponding vectors of f ,w, x, y and z, respectively. From TABLE 1, we have the algebraic form
F = LWXYZ of logical function f with

L = δ2 [∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 2 2 2 2 2] ,

where ∗ is freedom, which can either take 1 or 2.
We take all ∗ by 1, and then

f = (w ∧ f1(x, y, z)) ∨ (w̄ ∧ f2(x, y, z))

with L1 = δ2 [1 1 1 1 1 1 1 1] and L2 = δ2 [1 1 1 2 2 2 2 2] being structure matrices of logical functions
f1 and f2, respectively.

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3332

It is obvious that f1 ≡ 1 since L1 = δ2 [1 1 1 1 1 1 1 1]. Using Lemma 4 again, it follows that

f2 = (x ∧ f21(y, z)) ∨ (x̄ ∧ f22(y, z))

with L21 = δ2 [1 1 1 2] and L22 = δ2 [2 2 2 2] being structure matrices of logical functions f21 and f22,
respectively. Then, f22 ≡ 0, and

f21 = (y ∧ f211(z)) ∨ (ȳ ∧ f212(z)).

where the structure matrices of f211 and f212 are L211 = δ2 [1 1] and L212 = δ2 [1 2]. From L211 and
L212, we have f211 ≡ 1 and f212 = z. Thus, we derive that

f2 = (x ∧ y) ∨ (x ∧ ȳ ∧ z).

Hence, we derive that f = w ∨ (w̄ ∧ x ∧ y) ∨ (w̄ ∧ x ∧ ȳ ∧ z), which can be used to implement the
circuit using 5 logic gates.

In fact, noticing the detailed form of logical function f , we can still simplify it slightly. If w = 1,
then f = w∨ (x∧y)∨ (x∧ ȳ∧z) = w = 1; if w = 0, then f = w∨ (x∧y)∨ (x∧ ȳ∧z) = (x∧y)∨ (x∧ ȳ∧z),
which derives the simpler form

f = w ∨ (x ∧ y) ∨ (x ∧ ȳ ∧ z). (5.1)

Then, logical function (5.1) can be implemented by a circuit using only 4 logic gates, which is shown
in Figure 2.

Figure 2. The circuit with output f = w ∨ (x ∧ y) ∨ (x ∧ ȳ ∧ z).

In [33], using the freedom of 6 combinations of four bits, [33] obtained three implementations.
Two of them require 7 logic gates, and one needs 3 logic gates. Compared to the K-map method, our
method could be more systematic. On the other hand, if we take other orders of variables w, x, y, z, or
take value 2 for some ∗ in the structure matrix L, we can get other implementations.

Example 9. Consider a circuit which was given in [33] (see Example 4, Chapter 12), and the diagram
of this circuit is shown in Figure 3. As we can see from Figure 3, to implement this circuit, 26 logic
gates are needed. Next, we use Algorithm 1 to simplify this circuit.

First, we can convert f = (w∧ x∧ ȳ∧ z̄)∨ (w∧ x̄∧ y∧ z)∨ (w∧ x̄∧ y∧ z̄)∨ (w∧ x̄∧ ȳ∧ z̄)∨ (w̄∧
x ∧ ȳ ∧ z̄) ∨ (w̄ ∧ x̄ ∧ y ∧ z̄) ∨ (w̄ ∧ x̄ ∧ ȳ ∧ z̄) into its algebraic form:

F = LWXYZ

= δ2[2 2 2 1 1 1 2 1 2 2 2 1 2 1 2 1]WXYZ, (5.2)

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3333

where L = δ2[2 2 2 1 1 1 2 1 2 2 2 1 2 1 2 1].

Similar to the iteration in Example 5 or 8, it follows from Algorithm 1 that the simplified logical
function f is

f = (x ∧ ȳ ∧ z̄) ∨ (w ∧ x̄ ∧ y) ∨ (x̄ ∧ z̄). (5.3)

Thus, the circuit can be simplified as Figure 4, which only needs 10 logic gates. In [33], using the
K-maps method, f was simplified as f = (ȳ∧ z̄)∨ (w∧ x̄∧ y)∨ (x̄∧ z̄), which also needs 10 logic gates.
This shows that our method is effective for the simplification of circuits. Compared with the K-maps
that is a graphical method, our method is matrix-based, which provides a new perspective to simplify
logical functions.

Figure 3. The circuit with output f = (w ∧ x ∧ ȳ ∧ z) ∨ (w ∧ x̄ ∧ y ∧ z) ∨ (w ∧ x̄ ∧ y ∧ z̄) ∨
(w ∧ x̄ ∧ ȳ ∧ z̄) ∨ (w̄ ∧ x ∧ ȳ ∧ z̄) ∨ (w̄ ∧ x̄ ∧ y ∧ z̄) ∨ (w̄ ∧ x̄ ∧ ȳ ∧ z̄).

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3334

Figure 4. The circuit with output f = (x ∧ ȳ ∧ z̄) ∨ (w ∧ x̄ ∧ y) ∨ (x̄ ∧ z̄).

6. Conclusions

In this paper, the simplification problem of logical functions has been addressed. First, the decom-
position conditions for logical matrices have been derived. Based on this, the simplification of logical
functions has been investigated. Several criteria and an algorithm for simplifying logical functions have
been proposed. Furthermore, the method in this paper has been applied to the design and simplification
of circuits.

It has been mentioned in Remark 4 that the order of variables often affects the simplification of
logical functions, which has been shown via Example 6. Therefore, in order to get a simpler form of a
given logic function, we should try more different variable orders, even try all different orders to get the
simplest one. However, it may lead to more computation complexity. Thus, how to get a simpler form
with less computation complexity is of great significance in practice and worthy of further investigation
in the future works.

Acknowledgments

This work was supported by the National Natural Science Foundation (NNSF) of China under Grant
61877036.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. K. Hilary, The laws of thought, Philoso. Phenomen. Res., 52 (1992), 895–911.
https://doi.org/10.2307/2107916

2. C. E. Shannon, A symbolic analysis of relay and switching circuits, Trans. Am. Inst. Electr. Eng.,
57 (1938), 713–723. https://doi.org/10.1109/t-aiee.1938.5057767

3. D. Cheng, J. Feng, J. Zhao, S. Fu, On adequate sets of multi-valued logic, J. Franklin Inst.,
358 (2021), 6705–6722. https://doi.org/10.1016/j.jfranklin.2021.07.003

4. M. Karnaugh, The map method for synthesis of combinational logic circuits, Trans. Am. Inst.
Electr. Eng., 72 (1953), 593–599. https://doi.org/10.1109/TCE.1953.6371932

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3335

5. J. P. Hayes, Introduction to digital logic design, Prent. Hall, 1993. https://doi.org/978-0-201-
15461-0

6. R. H. Katz, G. Borriello, Contemporary logic design, Prent. Hall, 2004.
https://doi.org/10.1016/0026-2692(95)90052-7

7. X. L. Wang, X. Y. Zhang, W. L. Wang, A new representation and simplification method of
logic function, in International Conference on Computer & Automation Engineering, 2010.
https://doi.org/10.1109/ICCAE.2010.5451556

8. S. Kahramanli, S. Guenes, S. Sahan, F. Basciftci, A new method based on cube al-
gebra for the simplification of logic functions, Arab. J. Sci. Eng., 32 (2007), 101–114.
https://doi.org/10.1016/j.agee.2006.06.020

9. D. Cheng, Semi-tensor product of matrices and its applications-a survey, Methods Appl. Anal., 3
(2007), 641–668. https://doi.org/10.1007/10984413 5

10. D. Cheng, H. Qi, Z. Li, Analysis and control of boolean networks: A semi-tensor product ap-
proach, London: Springer-Verlag, 2011. https://doi.org/10.3724/SP.J.1004.2011.00529

11. F. Li, Y. Tang, Pinning controllability for a Boolean network with arbitrary disturbance inputs,
IEEE Trans. Cybern., 51 (2019), 3338–3347. https://doi.org/10.1109/TCYB.2019.2930734

12. Y. Li, H. Li, G. Xiao, Set controllability of Markov jump switching Boolean
control networks and its applications, Nonlinear Anal. Hybri., 45 (2022), 101179.
https://doi.org/10.1016/j.nahs.2022.101179

13. Y. Yu, M. Meng, J. Feng, Observability of Boolean networks via matrix equations, Automatica,
111 (2020), 108621. https://doi.org/10.1016/j.automatica.2019.108621

14. S. Zhu, J. Lu, L. Lin, Y. Liu, Minimum-time and minimum-triggering control for the observ-
ability of stochastic Boolean networks, IEEE Trans. Autom. Control, 67 (2022), 1558–1565.
https://doi.org/10.1109/TAC.2021.3069739

15. B. Wang, J. Feng, H. Li, Y. Yu, On detectability of Boolean control networks, Nonlinear Anal.
Hybri., 36 (2020), 100859. https://doi.org/10.1016/j.nahs.2020.100859

16. Z. Gao, B. Wang, J. Feng, T. Li, Finite automata approach to reconstructibil-
ity of switched Boolean control networks, Neurocomputing, 454 (2021), 34–44.
https://doi.org/10.1016/j.neucom.2021.05.019

17. C. V. A. Yerudkar, L. Glielmo, Feedback stabilization control design
for switched Boolean control networks, Automatica, 115 (2020), 108934.
https://doi.org/10.1016/j.automatica.2020.108934

18. M. Meng, J. Lam, J. Feng, K. Cheung, Stability and stabilization of Boolean net-
works with stochastic delays, IEEE Trans. Autom. Control, 64 (2019), 790–796.
https://doi.org/10.1109/TAC.2018.2835366

19. N. Bof, E. Fornasini, M. Valcher, Output feedback stabilization of Boolean control networks,
Automatica, 57 (2015), 21–28. https://doi.org/10.1016/j.automatica.2015.03.032

20. J. Lu, L. Sun, D. W. C. Liu, Y. Ho, J. Cao, Stabilization of Boolean control networks
under aperiodic sampled-data control, SIAM J. Control Optim., 56 (2018), 4385–4404.
https://doi.org/10.1137/18M1169308

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

3336

21. Y. Wu, T. Shen, A finite convergence criterion for the discounted optimal con-
trol of stochastic logical networks, IEEE Trans. Autom. Control, 63 (2018), 262–268.
https://doi.org/10.1109/TAC.2017.2720730

22. Y. Wu, X. Sun, X. Zhao, T. Shen, Optimal control of Boolean control networks
with average cost: a policy iteration approach, Automatica, 100 (2019), 378–387.
https://doi.org/10.1016/j.automatica.2018.11.036

23. Y. Wu, Y. Guo, M. Toyoda, Policy iteration approach to the infinite horizon average optimal
control of probabilistic Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021),
2910–2924. https://doi.org/10.1109/TNNLS.2020.3008960

24. S. Wang, H. Li, New results on the disturbance decoupling of Boolean control networks, IEEE
Control Syst. Lett., 5 (2021), 1157–1162. https://doi.org/10.1109/LCSYS.2020.3017645

25. Y. Li, J. Zhu, B. Li, Y. Liu, J. Lu, A necessary and sufficient graphic condition for the original
disturbance decoupling of Boolean networks, IEEE Trans. Autom. Control, 66 (2021), 3765–
3772. https://doi.org/10.1109/TAC.2020.3025507

26. J. Zhang, J. Sun, Exponential synchronization of complex networks with contin-
uous dynamics and Boolean mechanism, Neurocomputing, 307 (2018), 146–152.
https://doi.org/10.1016/j.neucom.2018.03.061

27. R. Li, T. Chu, X. Wang, Bisimulations of Boolean control networks, SIAM J. Control Optim., 56
(2018), 388–416. https://doi.org/10.1137/17M1117331

28. Q. Zhang, J. Feng, The solution and stability of continuous-time cross-dimensional linear sys-
tems, Front. Inf. Tech. El., 22 (2021), 210-221. https://doi.org/10.1631/FITEE.1900504

29. Y. Zheng, J. Feng, Output tracking of delayed logical control networks with multi-constraints,
Front. Inf. Tech. El., 21 (2020), 316–323. https://doi.org/10.1631/FITEE.1900376

30. J. Yue, Y. Yan, Z. Chen, X. Jin, Identification of predictors of Boolean networks
from observed attractor states, Math. Methods Appl. Sci., 42 (2019), 3848–3864.
https://doi.org/10.1002/mma.5616

31. D. Cheng, H. Qi, Controllability and observability of Boolean control networks, Automatica, 45
(2009), 1659–1667. https://doi.org/10.1007/s00034-014-9900-8

32. M. D. Ciletti, Advanced digital design with the verilog HDL, Prent. Hall Upper Saddle River,
2003. https://doi.org/978-0-13-089161-7

33. K. H. Rosen, Discrete mathematics and its applications, New York: McGraw-Hill, 2002.
https://doi.org/978-0-07-242434-8

34. S. Zhu, J. Feng, The set stabilization problem for Markovian jump Boolean control net-
works: An average optimal control approach, Appl. Math. Comput., 402 (2021), 126133.
https://doi.org/10.1016/j.amc.2021.126133

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 9, 3320–3336.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Decomposition of logical matrices
	Simplification of logical functions
	Application to design and simplification of circuits
	Conclusions

