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Abstract: In this work, we consider the dynamic properties of a class of hydrological model with
time delay under fire disturbance. The stability of the equilibrium for the model, and the existence of
the Hopf bifurcation are analyzed. Moreover, the direction of the Hopf bifurcation, and the stability
of these periodic solutions bifurcating are derived based on the normal form and the center manifold
theory. Then, the sensitivities of fire intensity and fire frequency to soil water, trees, and grasses are
analyzed by the Runge-Kutta method. The result is that, fire frequency has a more significant effect
on the hydrological and ecological cycle compared with fire intensity. Finally, we analyze the effect of
time delay on the hydrological model through numerical simulations.
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1. Introduction

Savanna is a mixed ecosystem consists of trees and grasses, and its vegetation dynamic change
characteristics are mainly regulated according to the time variability of resource competition, climate,
and environmental factors (such as rainfall and fire) [1]. The research shows that fire disturbance
plays an essential role in the dynamic behavior of vegetation patterns, which is reflected in that fire can
maintain the co-existence of trees and grasses and inhibit the extreme ecological phenomenon of single
grassland or single forest. Therefore, based on the tree-grass model established by Accatino Francesco
and his team, we analyzed the spatial pattern and mechanism of the tree-grass system driven by time
delay effect caused by fire and the propagation diffusion effect of vegetation [2].

When tree species coexist with grass species, considering some climatic conditions and ecological
environment factors, it becomes more difficult to predict the change of vegetation pattern. Based on
the data analysis of 854 observation points in Africa, Sankaran and other scholars concluded that, for
the Savanna with annual rainfall less than 650–700 mm, fire disturbance is the main factor affecting
the proportion of trees and grasses, and maintaining the coexistence balance of trees and grasses [3].
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In “balanced competition” models, as we know, the superior competitor limits its own abundance and
the inferior competitor can grow [4]. Although the water scarcity can limit the abundance of trees in
savanna so that grasses can grow. However, in the complex and changeable ecosystem, the
competition for limited water resource through niche separation (competitive mechanism) play a
limited role in maintaining the co-existence balance of trees and grasses, and is not a necessary
condition [4]. In addition, for the Savanna with annual rainfall more than 650–700 mm, besides the
fire factor, hydrological condition is another major determinant factor affecting on the composition,
structure and function of the ecological systems. In terms of vegetation succession stages of Savana,
water resources become more critical, especially soil water. It is the connection of hydrological cycle
and ecosystem, which has a large impact on the vegetation dynamics [5, 6]. Therefore, we should
clearly take the “soil water” as a state variable, establish a tree-grass model under the coupling of
hydrology and fire, and analyze its dynamic characteristics.

The remainder of the article is structured as follows. Section 1, considering the coupling effect
between soil water, tree species and grass species. Also the biological significance of the diffusion
coefficient among theses species is discussed, and the influence of the delay effect induced by the fire
frequency on the vegetation growth process is clarified. Section 2, studying the existence and
uniqueness of the non-negative solution and the corresponding biological significance for a class of
the hydrological model. The distribution of characteristic roots of the system and the Hopf bifurcation
caused by time delay are also discussed in detail. Section 3, takes the time delay τ as bifurcation
parameter, and discusses the direction and stability of Hopf bifurcation by using center manifold and
normal form theory [7]. Section 4, the sensitivity analysis of fire frequency and fire intensity is
obtained respectively, and the vegetation dynamic simulation are carried out based on the analysis
results. Moreover, the variation trend of soil water, trees, and grasses with time-periodic oscillation in
the process of ecosystem cycle are obtained. Finally, some conclusions and discussions are given in
Section 5.

2. The model

In the analysis of the carbon cycle in ecosystems, Accatino Francesco and his team consider not only
the coupling effect of tree species and grass species, but also the influence of soil water. Thus, they
established a dimensionless hydrological model (2.1) [8] based on the tree-grass model, in which the
dynamic analysis of the tree-grass system has been discussed in detail in [2]. The new part is that the
model (2.1) not only describes the differential sensitivity of trees and grasses to fire, but also includes
the competition of trees and grasses for water resources. The corresponding vegetation structure of the
hydrological model (2.1) is shown in Figure 1, and it shows the vegetation succession and dynamic
mechanism under the joint regulation of rainfall and fire in the Savanna [8]. The vegetation landscape
characteristics it describes are more abundant and complex.
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Figure 1. Vegetation frame diagram under the coupling of fire and soil water [9]. Ecological
process of rainfall, fire, soil water, disturbance regime (browers, grazers), trees and grasses
are depicted, in which continuous lines indicating positive feedback and dashed lines
indicating negative feedback.

Figure 1 describes the vegetation framework of the ecological cycle system under the coupling of
fire and soil water, which shows that the fire intensity depends on the biomass of grass, the moisture
content in soil, and relative humidity in the air. It verifies the different feedback of fire disturbance to
trees and grasses [9]. Among them, rainfall increases soil water content, soil water provides nutrients
for trees and grasses, and then promotes the growth of vegetation (inorganic salts, etc.). On the contrary,
trees and grasses absorb soil water and then reduce the content of soil water. Trees and grasses compete
for survival resources (soil water, inorganic salts, sunlight, and space, etc.) and inhibit each other’s
growth. Fire utilizes grasses as fuel and directly consumes grasses. Other interference items (grazers,
population mortality, etc.) reduce the biomass of grass species, which is equivalent to reducing the
accumulation of fire fuel and controlling the spread and intensity of a fire. According to the process of
vegetation growth shown in Figure 1, the novelty of the model (2.1) is that rainfall (soil water) is taken
into account in the growth function and biomass carrying capacity of trees and grasses.

dS
dt =

p
w1

(1 − S ) − εS (1 − T −G) − τT S T − τGS G,
dT
dt = γT S T (1 − T ) − δT T − δFGT f ,
dG
dt = γGS G (1 − T −G) − γT S TG − δGOG −G f .

(2.1)

where S represents the degree of saturation of the profile available water capacity, which is
dimensionless and satisfies the condition S ∈ [0, 1]. In particular, S = 0 which corresponds to
completely dry soil, and S = 1 which corresponds to saturated soil. T and G represent the fraction of
the area occupied by trees and grasses respectively, they are dimensionless and satisfy the condition
T, G ∈ [0, 1]. In particular, T = 0 (G = 0) means there are no trees (grasses) growing in the site, and
T = 1 (G = 1) means that the area is completely covered by trees (grasses). The first equation of the
hydrological model (2.1), εS (1 − T −G) represents the evaporation of exposed soil, which depends
on the proportion of exposed soil (1 − T −G) and the dirt soil moisture S . τT S T and τGS G represent
the water uptake by the trees and grasses, respectively. In addition, z is the root zone depth, n is the
porosity (fractional pore volume) and w1 = z × n is the pore space in the volume. γT and γG are the
maximum colonization rates, and p

w1
is the deep percolation. The ecological significance of the growth

term, the removal term and parameters δT , δGO, δF , f in the second equation and the third equation of
the hydrological model (2.1) are explained in detail in [2].
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For convenient of the mathematical derivation, let p
w1

= w, τT = a1, τG = a2, δT = b1, δGO = b2,
γT = c1, γG = c2, δF = δ, S = u1(t), T = u2(t) and G = u3(t). Considering the ecological significance,
the environmental parameters w- f (including w, a2, b1, b2, c1, c2, δ and f ) defined by rainfall and fire
are positive. The hydrological model (2.1) becomes

du1(t)
dt = w (1 − u1(t)) − εu1(t) (1 − u2(t) − u3(t)) − a1u1(t)u2(t) − a2u1(t)u3(t),

du2(t)
dt = c1u1(t)u2(t) (1 − u2(t)) − b1u2(t) − δ f u2(t)u3(t),

du3(t)
dt = c2u1(t)u3(t) (1 − u2(t) − u3(t)) − c1u1(t)u2(t)u3(t) − b2u3(t) − f u3(t).

(2.2)

According to the dynamic changes of grass biomass in the model (2.2), for the main fuel of fire is
grass biomass, then the frequent occurrence of the fire directly leads to the reduction of grass biomass
u3(t), which is reflected in item u3(t) f . According to the dynamic changes of tree biomass in the
model (2.2), for the combined effect of fire frequency and fire intensity, the reduction of tree biomass
u2(t) caused by fire disturbance is closely related to grass biomass u3(t), which is reflected in the item
u2(t)u3(t)δ f . It further shows that the frequency and intensity of fire are positively correlated with
grass biomass, that is, grass biomass determines the frequency and intensity of fire, which is reflected
in u3(t)δ f .

For the hydrological model (2.2) under the coupling of the fire and hydrology, tree species and
grass species may diffuse in the direction of regions rich in resources, or may diffuse in areas with few
competitors because of the asymmetric competition between species, or may diffuse with the influence
of external environmental factors such as water flow. Based on the above complex ecological process,
it isn’t easy to study the influence of diffusion on the evolution trend of vegetation pattern by using the
bifurcation theory of reaction-diffusion equation. It is worth noting that the delay effect caused by fire
frequency is one of the key parameters affecting the dynamic change of vegetation landscape pattern
in Savanna. The vegetation density distribution before the occurring time of fire directly affects the
next state of vegetation growth, that is, a series of consequences caused by the time delay “τ” of fire
frequency can not be ignored. Based on the above considerations, this paper introduces the effect of
time delay of fire frequency into the model (2.2). It discusses the potential dynamic mechanism in soil
water-tree-grass growth without considering the effects of propagation and diffusion of vegetation. It is
found that the response of grass species to fire feedback is more significant than that of tree species [1],
so it is more representative to discuss the effect of time delay τ on grass species. Next, τ is introduced
into the reduction item u3(t) f caused by fire to grass species u3(t) in the model (2.2), then we have
established a class of hydrological model with time delay as follows

du1(t)
dt = w (1 − u1(t)) − εu1(t) (1 − u2(t) − u3(t)) − a1u1(t)u2(t) − a2u1(t)u3(t),

du2(t)
dt = c1u1(t)u2(t) (1 − u2(t)) − b1u2(t) − δ f u2(t)u3(t),

du3(t)
dt = c2u1(t)u3(t) (1 − u2(t) − u3(t)) − c1u1(t)u2(t)u3(t) − b2u3(t) − f u3(t − τ).

(2.3)

As we all know, the study of dynamical systems not only includes the discussion of stability,
attractiveness and persistence, but also includes many dynamic behaviors, such as periodic
phenomena, bifurcation and chaos. Because the bifurcation phenomenon corresponding to high
codimension bifurcation is beneficial to the study of the dynamic characteristics of system, that is to
say, it is very meaningful to study the direction and stability of the Hopf bifurcation periodic orbit of
the model, but at the same time, this research is also a difficult and challenging task. In order to obtain
abundant bifurcation phenomena of the hydrological model (2.3) with time delay, the nature
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(bifurcation direction and stability) of Hopf bifurcation of the system under the framework of Faria
and Magalhaes’ norms-based method [7] will be considered in the following analysis.

3. Dynamic analysis of the hydrological model with time delay

In this section, we analyze the dynamic behavior near the non-negative solution of the hydrological
model (2.3) from two aspects: one is not considers the delay effect of fire frequency (τ = 0), and the
other is considers the delay effect of fire frequency τ , 0. For convenience, let

g1(t) = w (1 − u1(t)) − εu1(t) (1 − u2(t) − u3(t)) − a1u1(t)u2(t) − a2u1(t)u3(t),
g2(t) = c1u1(t)u2(t) (1 − u2(t)) − b1u2(t) − δ f u2(t)u3(t),
g3(t) = c2u1(t)u3(t) (1 − u2(t) − u3(t)) − c1u1(t)u2(t)u3(t) − b2u3(t) − f u3(t − τ).

When τ = 0, the internal equilibrium points of the model (2.3) are obtained by calculating equations
g1(t) = 0, g2(t) = 0, and g3(t) = 0, including E1 = (s1, 0, 0), E2 = (s2, t2, 0), E3 = (s3, 0, g3) and
E0 = (s0, t0, g0), where c = c1 + c2 and

s0 = w
R1u2+R2u3+(w+ε) , s1 = w

w+ε
, s2 = c1w+b1R1

c1(a1+w) , s3 =
R2(b2+ f )+c2w

c2(a2+w) ,

t0 = 1 − R3, t2 =
c1w−b1(w+ε)

c1w+b1R1
, g0 = 1 − R4, g3 =

c2w−(b2+ f )(w+ε)
R2(b2+ f )+c2w ,

R1 = a1 − ε, R2 = a2 − ε, R3 =
b1+ f δg0

c1u1
, R4 =

b2+ f +cs0t0
c2 s0

.

There are always three semi-trivial solutions E1 = (s1, 0, 0), E2 = (s2, t2, 0), E3 = (s3, 0, g3) and
one nontrivial solution E0 = (s0, t0, g0) in the system, and their biological significance are shown in
Table 1.

Table 1. Biological significance of equilibrium points.

Steady state E1=(s1, 0, 0) E2=(s2, t2, 0) E3=(s3, 0, g3) E0=(s0, t0, g0)
Ecological significance Unvegetated Grassland Forest Savanna

Obviously, from the perspective of environmental protection and ecological sustainable
development, people do not want to see the extreme natural phenomena represented by the
equilibrium points of E1, E2 and E3, but hope that species can coexist and grow together. Clearly
E0 = (s0, t0, g0) is feasible and has biological significance if and only if s0 > 0, t0 > 0 and g0 > 0 are
all true together. To investigate the stability of the equilibrium E0, we compute the eigenvalues of the
Jacobian matrix at this equilibrium based on the dynamic theory. In what follows, we first consider
the sufficient conditions of existence of positive equilibrium point E0, that is

(H1) {ε < max{a1, a2},R3 < 1,R4 < 1} .

When the conditions (H1) holds, the model (2.3) has a unique positive equilibrium solution E0.

3.1. Stability analysis

This section will study the dynamic properties of the hydrological model (2.3) near the coexistence
equilibrium point E0. The key of theoretical research is to calculate the distribution of eigenvalues
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λ corresponding to the Jacobian matrix of the system in the equilibrium state. Let ũ1(t) = u1(t) −
s0, ũ2(t) = u2(t)− t0, ũ3(t) = u3(t)− g0, drop out “ v ”, and the linearization equation corresponding to
the model (2.3) is 

du1(t)
dt = a11u1(t) + a12u2(t) + a13u3(t),

du2(t)
dt = a21u1(t) + a22u2(t) + a23u3(t),

du3(t)
dt = a31u1(t) + a32u2(t) + a33u3(t) + b33(t − τ).

(3.1)

where

a11 = − (n2 + n3) , a12 = −R1s0, a13 = −R2s0, a21 = α1, a22 = α3 − b1 − f δg0,

a23 = − f δt0, a31 = α2 − cg0t0, a32 = −cg0s0, b33 = − f , a33 = α4 − b2 − cs0t0,

α1 = c1t0 (1 − t0) , α2 = c2g0 (1 − g0) , α3 = c1s0 (1 − 2t0) , α4 = c2s0 (1 − 2g0) .

Next, calculate the eigenvalue of Jacobian matrix at E0. The eigenvalue satisfies the characteristic
equation

DET (λ, τ) = λ3 + q1λ
2 + q2λ + e−λτ

(
q3λ

2 + q4λ + q5

)
+ q6, (3.2)

where
n1 = f δα2 − cs0α1, n2 = g0R2+R1t0, n3 = w + ε,

q1 =b1 + b2 + cs0t0 + f δg0 + n2 + n3 − α3 − α4,

q2 =R2(s0α2 + f δg2
0) + R1(s0α1 + f δg0t0) + f δg0n3

+ cs0t0(R1t0 + n3) + (b1 − α3)(b2 + cs0t0 + n2 + n3)
+ (b2 − α4)( f δg0 + n2 + n3) + α3α4 − b1α4,

q3 = f , q4 = f (b1 − α3 + n2 + n3) + f 2δg0,

q5 = f [R1(s0α1 + f δg0t0) + f δg0(g0R2 + w + ε)]
+ f (n2 + n3)(b1 − α3),

q6 =b2[cR2
1s0t3

0α
2
3 + R1s0α1 + f δg0(n2 + n3)]

+ b1[R2s0α2 + b2(n2 + n3) + cs0t0(R1t0 + n3)]
+ c f δR1s0g0t2

0 + f 2δ2g3
0R1R2t0α

2
4 + s0n1n2.

When τ = 0, the delay effect of fire frequency on the soli water-tree-grass dynamic balance
mechanism of the model (2.3) is not considered. With the condition (H1), the model satisfies the
existence, uniqueness and continuous dependence on initial condition of solutions. Moreover, there
exists a positively invariant box B, and such that all solutions {u1(t), u2(t), u3(t)} with non-negative
initial conditions approach B as τ→ 1 (τ is the non-negative constant, and t ∈ [−τ, 0]). Namely

B =
{
(u1 (t) , u2 (t) , u3 (t)) ∈ R3

+, 0 <u1 (t) < 1, 0 < u2 (t) < 1, 0 < u3 (t) < 1
}
.

The characteristic equation of hydrological model (2.3) with τ = 0 at E0 is

DET (λ, 0) = λ3 + p1λ
2 + p2λ + p3, (3.3)

where p1 = q1 + q3, p2 = q2 + q4, p3 = q5 + q6. According to the Routh-Hurwitz stability criterion,
when p1 > 0, p2 > 0, p3 > 0 and p1 p2 − p3 > 0, all eigenvalues of the equation DET (λ, 0) = 0 have
negative real parts, that is, the system is locally asymptotically stable at E0. Let
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(H2) {p1 > 0, p2 > 0, p3 > 0, and p1 p2 − p3 > 0} .

Combined with the above analysis, the following theorem exists.

Lemma 3.1. when τ = 0, if conditions (H1) and (H2) hold, that the hydrological model (2.3) is
locally asymptotically stable at uniform state E0.

From the perspective of ecology, when conditions (H1) and (H2) hold, the value range of system
parameter and fire frequency w- f are more constrained, in which, the determined parameter range is
called threshold interval. E0 is asymptotically stable inside the threshold range, which means that the
population number of trees and grasses gradually increases to E0 over time, tending to a constant and
fixed value. E0 is unstable outside the threshold range, which means that there is a large amplitude
disturbance in the dynamic changing of population density of trees and grasses.

3.2. Hopf bifurcation

When τ , 0, the delay effect of fire frequency on the soli water-tree-grass dynamic balance
mechanism of the model (2.3) is considered. According to the stability theorem [10], the necessary
and sufficient conditions for E0 to be asymptotically stable for all τ ≥ 0 are:
1) The real parts of all the roots of the characteristic equation DET (λ, 0) = 0 are negative.
2) For all real κ and any τ > 0, DET (iκ, τ) , 0, where i2 = −1.

Lemma 3.1 obviously verifies the case 1). In the following, the condition of the case 2) will be
analyzed. When κ = 0, we have DET (0, τ) = p3 > 0. When κ > 0, let λ = γ + iκ be the characteristic
root of Eq (3.2), then after separating the real part and the imaginary part, we get a transcendental
equations as follows

κ
(
q2 + 2q1γ + 3γ2 − κ2

)
+e−γτ (q4 + 2q3γ) κCos (κτ)

−e−γτ
(
q5 + q4r + q3r2 − q3κ

2
)

Sin (κτ) = 0,

q6 + q2γ + q1γ
2 + γ3 − κ2 (q1 + 3γ) + e−γτ (q4 + 2q3r) κSin (κτ)

+e−γτ
(
q5 + q4γ + q3γ

2 − q3κ
2
)

Cos (κτ) = 0,

(3.4)

among them, the parameters γ and κ in the eigenvalue λ are functions of time delay τ. When γ = 0 and
κ , 0, the model (3.4) becomes κ

(
q2 − κ

2
)

+ q4κCos (κτ) −
(
q5 − q3κ

2
)

Sin (κτ) = 0,

q6 − q1κ
2 +

(
q5 − q3κ

2
)

Cos (κτ) + q4κSin (κτ) = 0,
(3.5)

After simplification, the characteristic equation becomes

s3 + m1s2 + m2s + m3 = 0, (3.6)

where ω2 = s, m1 = q2
1 − 2q2 − q2

3, m2 = q2
2 + 2q3q5 − q2

4 − 2q1q6, m3 = q2
6 − q2

5. By using the theory of
Veda, the roots s1, s2, s3 of the Eq (3.6) should satisfy the following requirements.

s1 + s2 + s3 = −m1, s1s2 + s2s3 + s1s3 = m2, s1s2s3 = −m3,
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combined with Routh-Hurwitz, the sufficient conditions for the non-existence of a real numbers
satisfying D (iκ, τ) = 0 can be expressed by the sufficient conditions for non-existence of a real s as

(H3) : {m1 > 0,m2 > 0,m1m2 − m3 ≥ 0} ,

then the Eq (3.6) has a unique positive real root s0 = κ2
0. Thus, we have the following conclusion:

Lemma 3.2. If the condition (H3) holds, then E0 of the hydrologic model (2.3) is asymptotically
stable for all τ > τ0.

Let the time delay τ be the bifurcation parameter, and τ̃ be the critical value for the occurrence
of Hopf bifurcation. Next, the transversality condition of Hopf bifurcation will be verified, such as
dγ/dτ|τ=τ̃ , 0. First, we are going to take derivative with respect to τ of the model (3.4), and let τ = τ̃,
γ = 0, then we have 

L
dγ
dτ

(τ̃) + M
dκ
dτ

(τ̃) = U,

M
dγ
dτ

(τ̃) − L
dκ
dτ

(τ̃) = V,
(3.7)

in which
U =

(
q3κ

3 − q5κ
)

Cos (τ̃κ) − q4κ
2Sin (τ̃κ) ,

V =
(
q3κ

3 − q5κ
)

Sin (τ̃κ) + q4κ
2Cos (τ̃κ) ,

L = 2q1κ + (2q3κ − q4τ̃κ) Cos (τ̃κ) +
(
q5τ̃ − q4 − q3τ̃κ

2
)

Sin (τ̃κ) ,

M = q2 − 3κ2 −
(
q5τ̃ − q4 − q3τ̃κ

2
)

Cos (τ̃κ) + (2q3κ − q4τ̃κ) Sin (τ̃κ) .

By solving the Eq (3.7), then have

dγ
dτ

(τ̃) =
LU + MV
L2 + M2 ,

in which, the signs of dγ/dτ is as same as LU + MV [11], and LU + MV is equivalent to the following
equation

LU + MV = − 3κ6 − κ4
(
2q2

1 − 4q2 − 2q2
3

)
− κ2

(
−2q1q6 + q2

2 + 2q3q5 − q2
4

)
.

If the conditions (H1)–(H3) hold, obviously there have LU + MV , 0, then

dReλ
dτ

(τ = τ̃) =
dγ
dτ

(τ = τ̃) =
MU + LV
L2 + M2 , 0,

therefore, the transversality condition of Hopf bifurcation holds. Suppose ±iκ0 are a pair of complex
conjugate numbers of the Eq (3.7), then the critical value τ̃ satisfies the following equation

τ̃ =
1
κ0

Arctan
(

(q4q6 − q2q5) κ0 + (q2q3 − q1q4 + q5) κ3
0 − q3κ

5
0

q5q6 + (q2q4 − q3q6 − q1q5) κ2
0 + (q1q3 − q4) κ4

0

)
+

jπ
κ0
, j = 0, 1, 2 · · · .

The minimum value of time delay is recorded as τ0, as follows

τ0 = 1
κ0

Arctan
(

(q4q6−q2q5)κ0+(q2q3−q1q4+q5)κ3
0−q3κ

5
0

q5q6+(q2q4−q3q6−q1q5)κ2
0+(q1q3−q4)κ4

0

)
. (3.8)
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Remark 3.1. For convenient to get Hopf bifurcation analysis of model (2.3), the precondition of the
main parameter selection is to guarantee that the time delay τ0 > 0.

According to the Hopf bifurcation theory [12], we have the following result on the stability of the
hydrologic model (2.3).

Theorem 3.1. If the conditions (H1)–(H3) hold, the expressions for κ0 and τ0 are (3.6) and (3.8),
respectively. Then

Case i: When τ ∈ [0, τ0), then the soil water-tree-grass coexistence equilibrium point E0 of the
hydrologic model (2.3) is asymptotically stable, while when τ > τ0, E0 is unstable.

Case ii: When τ = τ̃, j = 0, 1, 2 · · · the hydrologic model (2.3) undergoes a sequence of Hopf
bifurcations at the soil water-tree-grass coexistence equilibrium point E0.

4. Stability of Hopf bifurcation periodic solutions

In this section, the stability of Hopf bifurcation periodic solutions of the hydrologic model (2.3) will
be analyzed by using the central manifold theorem and the normal form theory proposed by Faria and
Magalhaes [7]. In addition, when τ = τ0, the characteristic equation (3.2) has a pair of pure imaginary
roots ± iκ0, and the other roots have negative real parts. By time-scaling t → t/τ, then the hydrologic
model (2.3) is rewritten as a functional differential equation in space C =

(
[−1, 0] , C2

)
.

du1 (t)
dt

=τw (1 − u1 (t)) − τεu1 (1 − u2 (t) − u3 (t)) − τa1u1 (t) u2 (t)

− τa2u1 (t) u3 (t) ,
du2 (t)

dt
=τc1u1 (t) u2 (t) (1 − u2 (t)) − τb1u2 (t) − τu2 (t) u3 (t) δ f ,

du3 (t)
dt

=τc2u1 (t) u3 (t) (1 − u2 (t) − u3 (t)) − τc1u1 (t) u2 (t) u3 (t)

− τb2u3 (t) − τu3 (t − 1) f .

(4.1)

Let µ be the bifurcation parameter and µ = τ− τ0, then the linearization equation of the model (4.1)
near the origin is

du1 (t)
dt

= (a11u1 + a12u2 + a13u3) τ0 + (−R1u1u2 − R2u1u3) τ0

+ (a11u1 + a12u2 + a13u3) µ + (−R1u1u2 − R2u1u3) µ,
du2 (t)

dt
= (a21u1 + a22u2 + f a23u3) τ0 +

(
u1u2α3/s0 − c1s0u2

2 − u2u3 f δ
)
τ0

− c1u1u2
2τ0 + (a21u1 + a22u2 + f a23u3) µ

+
(
u1u2α3/s0 − c1s0u2

2 − u2u3 f δ
)
µ,

du3 (t)
dt

= (a31u1 + a32u2 + a33u3) τ0 + (a31u1 + a32u2 + a33u3) µ

+ (u1u3α4/s0 − cg0u1u2 − cs0u2u3 − ct0u1u3) τ0 − c2s0u2
3µ

+ b33µu3 (t − 1) + (u1u3α4/s0 − cg0u1u2 − cs0u2u3 − ct0u1u3) µ
− c2s0τ0u2

3 − c2τ0u1u2
3 − cu1u2u3τ0 + b33τ0u3 (t − 1) .

(4.2)
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Let η(θ) = Aδ(θ) + Bδ(θ + 1), where

A = τ0


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,B = τ0


0 0 0
0 0 0
0 0 b33

 ,
the higher order terms of model (4.1) are

F (Ut, µ) =
(

F1 (u, µ) F2 (u, µ) F3 (u, µ)
)T
,

where
F1 (u, µ) = (−R1u1u2 − R2u1u3) (µ + τ0) + (a11u1 + a12u2 + a13u3) µ,

F2 (u, µ) =
(
u1u2α3/s0 − c1s0u2

2 − f u2u3δ
)

(µ + τ0) − c1u1u2
2τ0

+ (a21u1 + a22u2 + f a23u3) µ,
F3 (u, µ) = − c2s0u2

3 (µ+τ0) + b33µu3 (t − 1) − c2τ0u1u2
3 − cu1u2u3τ0

+ (u1u3α4/s0 − cg0u1u2 − cs0u2u3 − ct0u1u3) (τ0 + µ)

+ (a31u1 + a32u2 + a33u3) µ.

Suppose U(t) = ( u1(t), u2(t), u3(t) )T , then model (4.2) can be written as the vector form in
phase space C:

U̇ (t) = LU (t) + F (Ut, µ, ) (4.3)

where L is linear bounded operator. By the Riesz representation theorem and Riemann-Stieltjes
integral, then

Lϕ =

∫ 0

−1
dη (θ)ϕ (θ) , ∀ϕ ∈ C,

In which η(θ) (θ ∈ [−1, 0]) is 2 × 2 matrix function of bounded variation, and

η (θ) =


τ0 A, θ = 0,

0, θ ∈ (−1, 0) ,
−τ0 B, θ = −1.

According to the semigroup theory of linear operators [13], the infinitesimal generator A0 of the
solution semigroup C0 of model (4.2) is obtained, which satisfies equation A0ϕ(θ) = ϕ̇(θ) + U0[Lϕ(θ)−
ϕ̇(0)], and the domain of A0 is defined as follows

Domain
(
A0

)
=

{
ϕ ∈ C ([−1, 0] , Cn) : ϕ̇ (0) =

∫ 0

−1
dη (θ)ϕ (θ)

}
.

In addition, the bilinear form on C∗ × C (∗ represents the adjoint matrix) is

〈
ψ̄, ϕ〉 = ψ (0)ϕ (0) −

∫ 0

−1

∫ θ

0
ψ (ξ − θ) dη (θ)ψ (ξ) dξ.

From the discussions in Section 2.2, we suppose that L has a pair of simple purely imaginary
eigenvalues ± iκ (κ > 0), and all other roots have negative real parts. Let Λ = {iκ, −iκ}, and the
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two-dimensional matrix P is the generalized eigenspace associated with Λ, and note that P∗ is the space
adjoint with P. Then C can be decomposed as C = P⊕Q, where Q = {ϕ ∈ C : < ψ, ϕ > = 0, ∀ψ ∈ P∗}.
Suppose Φ and Ψ as the bases of P∗ and P respectively, and such that < Ψ, Φ > = I, Φ̇ = ΦJ, Ψ̇ = −JΨ,
where I is 2 × 2 identity matrix, J is a diagonal matrix, written as diag(iκ0τ0, −iκ0τ0). Next, we should
enlarge the phase space C to the space BC

BC =

{
ϕ : [−1, 0]→ Cn | ϕ is continuous on [−1, 0] , and ∃ lim

θ=0−
ϕ (θ) ∈ Cn

}
On the phase space BC, the model (4.3) is equivalent to the following abstract ordinary differential

system

U̇ (t) = A0Ut + X0F (Ut, µ) , (4.4)

where

X0 (θ) =

{
0, θ ∈ [−1, 0)
I, θ= 0

in the form of bilinear integral, the infinitesimal generator A0 and its adjoint operator A0
∗ satisfy

A0ϕ (θ) =

 ϕ̇, θ ∈ [−1, 0) ,∫ 0

−1
dη (t)ϕ (t) , θ = 0.

A0
∗ψ (s) =

 −ψ̇, s ∈ (0, − 1]∫ 0

−1
dη (t)ϕ (t) , s = −1.

Considering the complex coordinates, and suppose that (ϕ, ϕ̄) and
(
ψ̄, ψ

)T are the eigenvectors of
the operator A0 and A0

∗ corresponding to eigenvalues iκ0τ0,−iκ0τ0, respectively.

Lemma 4.1. Let Φ = (ϕ, ϕ̄) is a set of bases for P, Ψ =
(
ψ̄, ψ

)T is a set of bases for P∗, and such
that Φ̇ = ΦJ, Ψ̇ = −JΨ, where

ϕ = (1, η1, η2)T eiκ0τ0θ, ϕ̄ = (1, η̄1, η̄2)T e−iκ0τ0θ,

ψ = D (1 σ1 σ2) eiκ0τ0 s, ψ̄ = D̄ (1 σ̄1 σ̄2) e−iκ0τ0 s,

m1 = (a11 − iκ0)
(
a33 + b33e−iκ0τ0 − iκ0

)
− a13a31,

m2 =
(
a33 + b33e−iκ0τ0 − iκ0

)
, m3 = a11 − iκ0,

η1 = m1
a13a32−a12m2

, η2 = a12a31−a32m3
a13a32−a12m2

,

σ1 = m̄1
a23a31−a21m̄2

, σ2=
(a13a21−a23m̄3)
a23a31−a21m̄2

,

J =

(
iκ0τ0 0

0 −iκ0τ0

)
, D̄= 1

1+η1σ̄1+η2σ̄2+τ0η2σ̄2b33e−iκ0τ0
.

Proof. Suppose ϕ = (1, η1, η2)T eiκ0τ0θ is an eigenvector of A0 corresponding to iκ0τ0, and satisfy
A0ϕ (θ) = iκ0τ0ϕ (θ). From the definition of operator A0, there are

Aϕ (0) +Bϕ (−1) = iκ0τ0ϕ (0) ,
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after solving the above equation, we get

η1 =
m1

a13a32 − a12m2
, η2 =

a12a31 − a32m3

a13a32 − a12m2
,

let Φ = (ϕ, ϕ̄) such that Φ̇ = ΦJ.
Similarly, suppose ψ = D (1, σ1, σ2) eiκ0τ0 s is an eigenvector of A0

∗ corresponding to −iκ0τ0, and
satisfy A0

∗ψ (s) = −iκ0τ0ϕ (θ). From the definition of operator A0
∗, there are

ψ (0)A + ψ (1)B = −iκ0τ0ψ (0) ,

after solving the above equation, we get

σ1 =
m̄1

a23a31 − a21m̄2
, σ2=

(a13a21 − a23m̄3)
a23a31 − a21m̄2

,

let Ψ =
(
ψ̄, ψ

)T such that Ψ̇ = −JΨ.
From 〈Ψ Φ〉 = I2×2, it is easy to check

〈
ψ̄, ϕ〉 = 〈ψ, ϕ̄〉 = 1, 〈ψ, ϕ〉 =

〈
ψ̄, ϕ̄〉 = 0. To ensure〈

ψ̄, ϕ〉 = 1 holds, we first calculate the coefficient D, D̄. Since

〈
ψ̄, ϕ〉 = D̄

(
ψ (0)ϕ (0) +

∫ 0

−1
ψ (ξ + 1)Bϕ (ξ)

)
= D̄

(
1 + η1σ̄1 + η2σ̄2 + τ0η2σ̄2b33e−iκ0τ0

)
=1,

then get D̄=1
/(

1 + η1σ̄1 + η2σ̄2 + τ0η2σ̄2b33e−iκ0τ0
)
, the Lemma 4.1 has been proved.

Define U (t) = Φx+y, x ∈ C2, y ∈ Q1= {ϕ ∈ Q : ϕ̇ ∈ C}, then there is the following decomposition
formula 

u1 (θ) = eiθκ0τ0 x1 + e−iθκ0τ0 x2 + y1 (θ) ,
u2 (θ) = eiθκ0τ0 x1η1 + e−iθκ0τ0 x2η̄1 + y2 (θ) ,
u3 (θ) = eiθκ0τ0 x1η2 + e−iθκ0τ0 x2η̄2 + y3 (θ) .

Let

Ψ (0) =

(
ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

)
=

(
D̄ D̄σ̄1 D̄σ̄2

D Dσ1 Dσ2

)
,

then the model (4.4) is decomposed into{
ẋ = Jx + Ψ (0) F (Φx + y, µ) ,
ẏ = AQ1y + (I − π) X0F (Φx + y, µ) ,

(4.5)

it can also be written as follows{
ẋ = Jx + 1

2! f 1
2 (x, y, µ) + 1

3! f 1
3 (x, y, µ) + h.o.t.,

ẏ = AQ1y + 1
2! f 2

2 (x, y, µ) + 1
3! f 2

3 (x, y, µ) + h.o.t.,
(4.6)
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where

f 1
2 (x, y, µ) =

(
ψ11F1

2 (x, y, µ) + ψ12F2
2 (x, y, µ) + ψ13F3

2 (x, y, µ)
ψ21F1

2 (x, y, µ) + ψ22F2
2 (x, y, µ) + ψ23F3

2 (x, y, µ)

)
,

f 1
3 (x, y, µ) =

(
ψ11F1

3 (x, y, µ) + ψ12F2
3 (x, y, µ) + ψ13F3

3 (x, y, µ)
ψ21F1

3 (x, y, µ) + ψ22F2
3 (x, y, µ) + ψ23F3

3 (x, y, µ)

)
,

f 2
3 (x, y, µ) = (I − π) X0


F1

3 (x, y, µ)
F2

3 (x, y, µ)
F3

3 (x, y, µ)

 , f 2
2 (x, y, µ) = (I − π) X0


F1

2 (x, y, µ)
F2

2 (x, y, µ)
F3

2 (x, y, µ)

 ,
and

1
2!

F1
2 (x, y, µ) = τ0 (x1 + x2 + y1 (0))

[
−R1 (x1η1 + x2η̄1 + y2 (0)) − R2 (x1η2 + x2η̄2 + y3 (0))

]
+µ

[
a11 (x1 + x2 + y1 (0)) + a12 (x1η1 + x2η̄1 + y2 (0)) + a13 (x1η2 + x2η̄2 + y3 (0))

]
,

1
3!

F1
3 (x, y, µ) = µ (x1 + x2 + y1 (0))

[
−R1 (x1η1 + x2η̄1 + y2 (0)) − R2 (x1η2 + x2η̄2 + y3 (0))

]
,

1
2!

F2
2 (x, y, µ) = µ

[
a21 (x1 + x2 + y1 (0)) + a22 (x1η1 + x2η̄1 + y2 (0)) + a23 (x1η2 + x2η̄2 + y3 (0))

]
+τ0α3/s0 (x1 + x2 + y1 (0)) (x1η1 + x2η̄1 + y2 (0)) − τ0c1s0(x1η1 + x2η̄1 + y2 (0))2

−τ0 f δ (x1η1 + x2η̄1 + y2 (0)) (x1η2 + x2η̄2 + y3 (0)) ,
1
3!

F2
3 (x, y, µ) = µα3/s0 (x1 + x2 + y1 (0)) (x1η1 + x2η̄1 + y2 (0)) − µc1s0(x1η1 + x2η̄1 + y2 (0))2

−µ f δ (x1η1 + x2η̄1 + y2 (0)) (x1η2 + x2η̄2 + y3 (0))

−c1τ0 (x1 + x2 + y1 (0)) (x1η1 + x2η̄1 + y2 (0))2,

1
2!

F3
2 (x, y, µ) = τ0 (x1 + x2 + y1(0)) (x1η2 + x2η̄2 + y3(0)) (α4/s0 − ct0)

−τ0c (x1η1 + x2η̄1 + y2(0)) (g0 (x1 + x2 + y1(0)) + s0 (x1η2 + x2η̄2 + y3(0)))

+µ
[
a31 (x1 + x2 + y1(0)) + a32 (x1η1 + x2η̄1 + y2(0)) + a33 (x1η2 + x2η̄2 + y3(0))

]
+µb33

(
e−iκ0τ0 x1η2 + eiκ0τ0 x2η̄2 + y3(−1)

)
,

1
3

F3
3 (x, y, µ) = µ (x1 + x2 + y1(0)) (x1η2 + x2η̄2 + y3(0)) (α4/s0 − ct0)

−µc (x1η1 + x2η̄1 + y2(0)) (g0 (x1 + x2 + y1(0)) +s0 (x1η2 + x2η̄2 + y3(0)))

−µc2s0(x1η2 + x2η̄2 + y3(0))2
− τ0c2 (x1 + x2 + y1(0)) (x1η2 + x2η̄2 + y3(0))2

−τ0c (x1 + x2 + y1(0)) (x1η1 + x2η̄1 + y2(0)) (x1η2 + x2η̄2 + y3(0)) .

The model (4.6) can be transformed as the following normal form

ẋ = Jx +
1
2!

g1
2 (x, 0, µ) +

1
3!

g1
3 (x, 0, µ) + h.o.t., (4.7)

in order to obtain the specific expression of normal form Eq (4.7), g1
2 (x, 0, µ) and g1

3 (x, 0, µ) need to be
calculated, in which, g1

j (x, 0, µ) is a j-order ( j = 2, 3 · · ·) homogeneous polynomial about (x, µ).
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Define operator M1
j

M1
j
(
p
)

(x, µ) =M1
j

(
p1

p2

)
= iκ0

 x1
∂p1
∂x1
− x2

∂p1
∂x2
− p1

x1
∂p2
∂x1
− x2

∂p2
∂x2

+p1

 , j ≥ 2,

in addition, define{
M1

j

(
µlxpek

)
∆
= k = 1, 2, ∈ N0, p =

(
p1, p2

)
∈ N2

0, and k + l + p = j
}
,

and e1 = (1, 0)T , e2 = (0, 1)T . Then

Ker
(
M1

2

)
= {µx1e1, µx2e2} ,

Ker
(
M1

3

)
=

{
x2

1x2e1, µ
2x1e2, x1x2

2e1, µ
2x2e2

}
.

First, we should calculate g1
2 (x, 0, µ). From the Eq (4.5), we have

f 1
2 (x, 0, µ) =

(
2A1x1µ + 2A2x2µ + b20x2

1 + 2b11x1x2 + b02x2
2

2Ā1x2µ + 2Ā2x1µ + b̄02x2
1 + 2b̄11x1x2 + b̄20x2

2

)
, (4.8)

where

A1 =D̄
[
v1 + η1v2 + η2 (v3 + v4σ̄2)

]
, A2 = D̄

[
v1 + η̄1v2 + η̄2 (v3 + v̄4σ̄2)

]
,

b20 =2τ0D̄ (v5 + σ̄1v6 + σ̄2v7) , b02 = 2τ0D̄ (v̄5 + σ̄1v̄6 + σ̄2v̄7) ,

b11 =2τ0D̄
[(
−R1Re

[
η1

]
− R2Re

[
η2

])
+ σ̄1

(
Re

[
η1

]
α3/s0 − f δRe

[
η2η̄1

]
− s0c1|η1|

2
)]

+ 2τ0D̄σ̄2

(
−cg0Re

[
η1

]
− cs0Re

[
η2η̄1

]
+ Re

[
η2

]
(α4/s0 − ct0) − s0c2|η2|

2
)
,

v1 =a11 + a21σ̄1 + a31σ̄2, v2 = a12 + a22σ̄1 + a32σ̄2, v3 = a13 + a23σ̄1,

v4 =a33 + b33e−iκ0τ0 , v5 = −R1η1 − R2η2, v6 = α3η1/s0 − c1s0η
2
1 − f δη1η2,

v7 =cη1 (−g0 − s0η2) + (α4/s0 − ct0) η2 − c2s0η
2
2.

Since the second-order terms of (x, µ) on the central manifold can be obtained by

1
2!

g1
2 (x, 0, µ) =

1
2

ProjKer(M1
2) f 1

2 (x, 0, µ) =

(
A1x1µ

Ā1x2µ

)
. (4.9)

Second, we should calculate g1
3 (x, 0, µ), and g1

3 (x, 0, µ) ∈ Ker
(
M1

3

)
. The higher-order terms

o (|x| , µ) of parameter µ is independent of the general Hopf bifurcation. Therefore, only the
coefficients of the term without parameter µ in space Ker

(
M1

3

)
need to be calculated, and simplified

as S p =
{
x2

1x2e1, x1x2
2e1

}
, then

1
3!

g1
3 (x, 0, µ) =

1
3!

ProjKer(M1
3) f̃ 1

3 (x, 0, µ) =
1
3!

ProjS p f̃ 1
3 (x, 0, 0) + o

(
|x| µ2

)
,

where f̃ 1
3 (x, 0, 0) represents the third-order term of the system, which is obtained by calculating the

second-order term of the normal form. The results are as follows

f̃ 1
3 (x, 0, 0) = f 1

3 (x, 0, 0) +
3
2

[(
Dx f 1

2

)
U1

2 −
(
DxU1

2

)
g1

2

]
(x,0,0)

+
3
2

[(
Dy f 1

2

)
U2

2

]
(x,0,0)

,
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in which, U1
2 (x, µ) is a solution of M1

2U1
2 (x, µ) = f 1

2 (x, 0, 0), and h = h (x) (θ) = U2
2 (x, 0) is the

coefficient of the second-order homogeneous polynomial with respect to (x1, x2, µ).
According to (4.1)–(4.5), then

f 1
3 (x, 0, 0) = − τ0


D̄σ̄2c (x1 + x2) (x1η1 + x2η̄1) (x1η2 + x2η̄2)
+D̄σ̄2c2 (x1 + x2) (x1η2 + x2η̄2)2+D̄σ̄1c1 (x1 + x2) (x1η1 + x2η̄1)2

Dσ2c (x1 + x2) (x1η1 + x2η̄1) (x1η2 + x2η̄2)
+Dσ2c2 (x1 + x2) (x1η2 + x2η̄2)2+Dσ1c1 (x1 + x2) (x1η1 + x2η̄1)2

 ,
then

1
6

ProjS p f 1
3 (x, 0, 0) =

(
A3x2

1x2

Ā3x1x2
2

)
, (4.10)

where A3= − τ0D̄
[
c1η

2
1σ̄1 + c2η

2
2σ̄2 + (cη̄1 + 2c2η̄2) η2σ̄2 + 2c1|η1|

2σ̄1 + 2cRe
[
η2

]
η1σ̄2

]
. It is easy to

get g1
2 (x, 0, 0) =0, then

(
DxU1

2

)
g1

2 (x, 0, 0) =0.
Third, we should calculate U1

2 (x, 0) and U2
2 (x, 0) to get the normal form. From (4.8), we have

f 1
2 (x, y, 0) =

(
b20x2

1 + 2b11x1x2 + b02x2
2

b̄02x2
1 + 2b̄11x1x2 + b̄20x2

2

)
,

according to the definition of M1
2 , then M1

2U1
2 (x, 0) is written as the following partial differential

equation  x1
∂u1
∂x1
− x2

∂u1
∂x2
− u1 = 1

iκ0

(
b20x2

1 + 2b11x1x2 + b02x2
2

)
,

x1
∂u2
∂x1
− x2

∂u2
∂x2

+ u2 = 1
iκ0

(
b̄02x2

1 + 2b̄11x1x2 + b̄20x2
2

)
,

(4.11)

From (4.11), we get

U1
2 (x, 0) =

(
M1

2

)−1
Pr ojIm(M1

2) f 1
2 (x, 0, 0) =

1
iκ0

 b20x2
1 − 2b11x1x2 − x2

2b02

/
3

x2
1b̄02

/
3 + 2b̄11x1x2 − b̄20x2

2

 ,
then

1
4

ProjS p

[(
Dx f 1

2(x,0,0)

)
U1

2 (x, 0)
]

=

(
A4x2

1x2

Ā4x1x2
2

)
, (4.12)

where A4 = i
2κ0

(
b11b20 −

1
3 |b02|

2
− 2|b11|

2
)
.

Finally, we should calculate
[
Dy f 1

2 (x, 0, 0)
]

U2
2 (x, 0). Define h = h (x) (θ) = U2

2 (x, 0), and h is a
second-order homogeneous polynomial of (x1, x2, µ), let

h (θ) =


h1 (θ)
h2 (θ)
h3 (θ)

 =


h1

11 (θ) x1x2 + h1
20 (θ) x2

1 + h1
02 (θ) x2

2
h2

11 (θ) x1x2 + h2
20 (θ) x2

1 + h2
02 (θ) x2

2
h3

11 (θ) x1x2 + h3
20 (θ) x2

1 + h3
02 (θ) x2

2

 ,
where {h11 (θ) , h20 (θ) , h02 (θ)} ∈ Q1. From (4.5), we have

f 1
2 (x, y, 0) =Ψ (0) F (Φx + y, 0)

=


2τ0D

[
(−R1t1t2 − R2t1t3) + σ̄1t2 (t1α3/s0 − c1s0t2 − f δt3)

]
+2τ0Dσ̄2

[
−cg0t1t2 + t1t3 (α4/s0 − ct0) − cs0t2t3 − c2s0t2

3

]
2τ0D

[
(−R1t1t2 − R2t1t3) + σ1t2 (t1α3/s0 − c1s0t2 − f δt3)

]
+2τ0Dσ2

[
−cg0t1t2 + t1t3 (α4/s0 − ct0) − cs0t2t3 − c2s0t2

3

]
 ,
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then [(
Dy f 1

2

)
h (θ)

]
(x,0,0)

=

(
D11h1 (0) + D12h2 (0) + D13h3 (0)
D̄11h1 (0) + D̄12h2 (0) + D̄13h3 (0)

)
,

where
t1 = x1 + x2 + y1(0), t2 = x1η1 + x2η̄1 + y2(0), t3 = x1η2 + x2η̄2 + y3(0),
D11=2τ0D̄

[
(−R1t2 − R2t3) + σ̄1α3t2/s0 + (t3α4/s0 − cg0t2 − t3ct0) σ̄2

]
,

D12=2τ0D̄
[
−R1t1 + (t1α3/s0 − 2c1s0t2 − f δt3) σ̄1 + (−cg0t1 − cs0t3) σ̄2

]
,

D13 = 2τ0D̄
[
−R2t1 − f δt2σ̄1 + (t1α4/s0 − ct0t1 − cs0t2 − 2c2s0t3) σ̄2

]
.

Since
1
4

ProjS p

[(
Dy f 1

2

)
h (θ)

]
(x,0,0)

=

(
A5x2

1x2

Ā5x1x2
2

)
(4.13)

where

A5 =
τ0D̄

2

{
h3

11 (0)
[
−R2 − f δη1σ̄1 − (ct0 + cs0η1 + 2c2s0η2 − α4/s0) σ̄2

]
+ h2

11 (0)
[
−R1 − (2c1s0η1 + f δη2 − α3/s0) σ̄1 − (cg0 + cs0η2) σ̄2

]
+ h1

11 (0)
[
− (R1η1 + R2η2) + η1σ̄1α3/s0 + η2σ̄2α4/s0 − (cg0η1 + ct0η2) σ̄2

]
+ h3

20 (0)
[
−R2 − f δη̄1σ̄1 − (ct0 + cs0η̄1 + 2c2s0η̄2 − α4/s0) σ̄2

]
+ h2

20 (0)
[
−R1 − (2c1s0η̄1 + f δη̄2 − α3/s0) σ̄1 − (cg0 + cs0η̄2) σ̄2

]
+ h1

20 (0)
[
− (R1η̄1 + R2η̄2) + η̄1σ̄1α3/s0 + η̄2σ̄2α4/s0 − (cg0η̄1 + ct0η̄2) σ̄2

]}
.

Combine with the Eqs (4.10), (4.12) and (4.13), we have

1
3!

g1
3 (x, 0, µ) =

(
B1x2

1x2

B̄1x1x2
2

)
, (4.14)

where B1 = A3 + A4 + A5.
In the following, we should calculate the unknown term h11 (θ) , h20 (θ) (θ ∈ [−1, 0]) of the coefficient

A5. According to [7], h is uniquely determined by
(
M2

2h
)

(x, µ) = f 2
2 (x, 0, 0), and is equivalent to

DxhJx − AQ1 (h) = (I − π) X0F2 (Φx, 0)

from the definition of AQ1 and π, we get{
ḣ − DxhJx = Φ (θ) Ψ (0) F2 (Φx, 0) ,
ḣ (0) − Lh = F2 (Φx, 0) ,

(4.15)

in which, ḣ is the derivative of function h (θ) with respect to θ. Let A11 =
(

A1
11, A2

11, A3
11

)T
and

A20 =
(

A1
20, A2

20, A3
20

)T
, then

A1
20 =2τ0 (−R1η1 − R2η2) , A1

11 = 4τ0
(
−R1Re

[
η1

]
− R2Re

[
η2

])
,

A2
20 =2τ0

(
η1α3/s0 − c1s0η

2
1 − f δη1η2

)
,

A2
11 =4τ0

(
Re

[
η1

]
α3/s0 − 2c1s0|η1|

2
− f δRe

[
η1η̄2

])
,

A3
20 =2τ0

[
−cg0η1 + (α4/s0 − ct0) η2 − cs0η1η2 − c2s0η

2
2

]
,

A3
11 =2τ0

(
−cg0Re

[
η1

]
+ (α4/s0 − ct0) Re

[
η2

]
− cs0Re

[
η1η̄2

]
− 2c2s0|η2|

2
)
,
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and Ai j ∈ C
3, 0 ≤ i, j ≤ 2. Comparing the coefficients of x2

1, x
2
2 and x1x2 , there is h̄20 = h02, and h20, h11

satisfy the following differential equations, respectively.

{
ḣ20 (θ) − 2iκ0τ̃h20 = Φ (θ) Ψ (0) A22,

ḣ20 (0) − L (h20) = A22,
(4.16)

{
ḣ11 (θ) = Φ (θ) Ψ (0) A11,

ḣ11 (0) − L (h11) = A11,
(4.17)

solve Eqs (4.16) and (4.17) respectively, and finally get

h11 (θ) =
∫ θ

0
Φ (t) Ψ (0) A11dt + c1,

h20 (θ) = e2iκ0τ0θ
∫ θ

0
e−2iκ0τ0tΦ (t) Ψ (0) A20dt + c2e2iκ0τ0θ,

(4.18)

then

ḣ11 (0) = Φ (0) Ψ (0) A22,

ḣ20 (0) = 2iκ0τ0h20 (0) + Φ (0) Ψ (0) A22,
(4.19)

where c1, c2 ∈ C3, and satisfy the following equations

(h11) = B
∫ −1

0
Φ (t) Ψ (0) A11dt + L (1) c1,

(h20) = Be2iκ0τ0θ
∫ −1

0
e−2iκ0τ0tΦ (t) Ψ (0) A20dt + L

(
e2iκ0τ0θ

)
c2,

(4.20)

then we have

c1=L(1)−1
[
(Φ (θ) Ψ (0) − I) A11 + B

∫ 0

−1
Φ (t) Ψ (0) A11dt

]
,

c2=
(
2iκ0τ0 − L

(
e2iκ0τ0θ

))−1
[
(I − Φ (θ) Ψ (0)) A20 + B

∫ 0

−1
e−2iκ0τ0tΦ (t) Ψ (0) A20dt

]
,

for the detailed derivation of Eqs (4.18)–(4.20), refer to [14], and coefficients are obtained after easy
but long computation as follows

h1
11 (0) =

[
ε3

(
2Re [ε4] − A1

11

)
+ ε2

(
2Re

[
η̄1ε4

]
− A2

11

)
+ ε1

(
2Re

[
η̄2ε4

]
− A3

11 − ε11

)]
/∆1,

h2
11 (0) =

[
ε5

(
2Re [ε4] − A1

11

)
+ ε6

(
2Re

[
η̄1ε4

]
− A2

11

)
+ ε7

(
2Re

[
η̄2ε4

]
− A3

11 − ε11

)]
/∆2,

h3
11 (0) =

[
ε8

(
2Re [ε4] − A1

11

)
+ ε9

(
2Re

[
η̄1ε4

]
− A2

11

)
+ ε10

(
2Re

[
η̄2ε4

]
− A3

11 − ε11

)]
/∆3,

h1
20 (0) =

[
ζ1

(
2Re

[
ζ4

]
− A1

20

)
+ ζ1

(
2Re

[
η̄1ζ4

]
− A2

20

)
+ ζ3

(
2Re

[
η̄2ζ4

]
− A3

20

)
+ ζ3ζ11

]
/∆,

h2
20 (0) =

[
ζ5

(
2Re

[
ζ4

]
− A1

20

)
+ ζ6

(
2Re

[
η̄1ζ4

]
− A2

20

)
+ ζ7

(
2Re

[
η̄2ζ4

]
− A3

20

)
+ ζ7ζ11

]
/∆,

h3
20 (0) =

[
ζ8

(
2Re

[
ζ4

]
− A1

20

)
+ ζ9

(
2Re

[
η̄1ζ4

]
− A2

20

)
+ ζ10

(
2Re

[
η̄2ζ4

]
− A3

20

)
+ ζ10ζ11

]
/∆,
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in which

∆ = τ0 (a31ζ3 + a21ζ2 + a11ζ1 − 2iκ0ζ1) , ∆1 = τ0 (ε1a31 + ε2a21 + ε3a11) ,
∆2 = τ0 (ε5a12 + ε6a22 + ε7a32) , ∆3 = τ0 (a13ε8 + a23ε9 + (a33 + b33) ε10) ,

ζ1 = a23a32 − (a22 − 2iκ0)
(
a33 − 2iκ0 + e−2iκ0τ0b33

)
,

ζ6 = a13a31 − (a11 − 2iκ0)
(
a33 − 2iκ0 + e−2iκ0τ0b33

)
,

ζ2 = a12

(
a33 − 2iκ0 + e−2iκ0τ0b33

)
− a13a32, ζ3 = a13 (a22 − 2iκ0) − a12a23,

ζ5 = a21

(
a33 − 2iκ0 + e−2iκ0τ0b33

)
− a23a31, ζ8 = a31 (a22 − 2iκ0) − a21a32,

ζ4 = D
(
A1

20 + A2
20σ1 + A3

20σ2

)
, ζ9 = a32 (a11 − 2iκ0) − a12a31,

ε4 = D
(
A1

11 + A2
11σ1 + A3

11σ2

)
, ζ7 = a23 (a11 − 2iκ0) − a13a21,

ε2 = a13a32 − a12 (a33 + b33) , ε3 = a22 (a33 + b33) − a23a32, ε5 = a23a31 − a21 (a33 + b33) ,
ε6 = a11 (a33 + b33) − a13a31, ε1 = a12a23 − a13a22, ε7 = a13a21 − a11a23,

ε8 = a21a32 − a22a31, ε9 = a12a31 − a11a32, ε10 = a11a22 − a12a21,

ζ10 = a12a21 + (ia11 + 2κ0) (ia22 + 2κ0) , ε11 = 2ib33Re
[
η2ε̄4

(
1 + eiκ0τ0

)]
/κ0,

ζ11 = ib33

(
eiκ0τ0 − 1

)
η2ζ̄4/κ0 + ib33

(
e3iκ0τ0 − 1

)
ζ4η̄4/3κ0.

Combine (4.9) and (4.14), the model (4.7) can be reduced to the following form(
ẋ1

ẋ2

)
=

(
iκ0τ0x1

−iκ0τ0x2

)
+

(
A1x2

1x2

Ā1x1x2
2

)
+

(
B1x2

1x2

B̄1x1x2
2

)
+ o

(
|x| µ2 + |x|4

)
, (4.21)

since x̄1 = x2. Through the change of x1 = w1 − iw2, x2 = w1 + iw2, and let w1 = νCosς, w2 = νSinς,
then (4.21) becomes  ν = χ1µν + χ2ν

3 + o
(
νµ2 + |(ν, µ)|4

)
,

ς = − (κ0τ0+χ3µ) + o
(
|(ν, µ)|2

)
,

(4.22)

where χ1 = Re[A1], χ2 = Re[B1], χ3 = Im[A1]. Following the conclusion of Hale [15], the sign of
χ1χ2 determines the direction of the Hopf bifurcation. And the sign of χ2 determines the stability of
the nontrivial periodic solution generated by Hopf bifurcation. When χ1χ2 < 0 , Hopf bifurcation is
supercritical, and when χ1χ2 > 0 , Hopf bifurcation is subcritical. In addition, the bifurcation periodic
solution on the central manifold is stable when χ2 < 0 and unstable when χ2 > 0. The central manifold
theory shows that the stability of the periodic solution of the model (2.3) in the whole phase space is
consistent with the normal form projected on the central manifold. Therefore, the following theorem
exists.

Theorem 4.1. When µ = 0, the stability of the bifurcation periodic solution of the model (2.3) at E0

is as follows

Case i: If χ1 < 0, χ2 < 0, the Hopf bifurcation of the model (2.3) is subcritical, and the bifurcation
periodic orbit is asymptotically stable.

Case ii: If χ1 < 0, χ2 > 0, the Hopf bifurcation of the model (2.3) is supercritical, and the bifurcation
periodic orbit is unstable.

Electronic Research Archive Volume 30, Issue 9, 3290–3319.



3308

Case iii: If χ1 > 0, χ2 < 0 the Hopf bifurcation of the model (2.3) is supercritical, and the bifurcation
periodic orbit is asymptotically stable.

Case iv: If χ1 > 0, χ2 > 0 the Hopf bifurcation of the model (2.3) is subcritical, and the bifurcation
periodic orbit is unstable.

5. Dynamic experimental and simulation

This section mainly analyzes two problems. One is to discuss the effect of fire frequency and
fire intensity on each variable in a hydrological model (2.3) without time delay, including soil water,
tree species, and grass species. After that, we conclude different feedback effects of fire frequency
and fire intensity on the ecological balance of vegetation through sensitivity analysis. The other is to
analyze the corresponding numerical simulation experiments on the potential ecological processes in
the hydrological model (2.3) with time delay, and verify the accuracy of the theoretical analysis.

5.1. Sensitivity analysis

The model (2.3) contains many parameters, among which the fire frequency f and fire intensity
δ have a great effect on the soil water-tree-grass co-existence mechanism. In this section, without
considering the time delay, the sensitivity of fire frequency and fire intensity to soil water, tree species,
and grass species is carried out by using the Runge-Kutta method (RK-4) [16]. Assuming ui (t) = ui,
S j (t) = S j (i = 1, 2, 3, j = 1, 2, · · · , 6), and the sensitivity equation of the model (2.3) includes 9
equations, as follows

u̇1 =w (1 − u1) − εu1 (1 − u2 − u3) − a1u1u2 − a2u1u3,

u̇2 =c1u1u2 (1 − u2) − b1u2 − δ f u2u3,

u̇3 =c2u1u2 (1 − u2 − u3) − c1u1u2u3 − b2u3 − f u3

Ṡ 1 =S 1 [−w − a1u2 − a2u3 − ε (1 − u2 − u3)] + S 2u1 (ε − a1)

+ S 3u1 (ε − a2) ,
Ṡ 2 =S 1c1u2 (1 − u2) + S 2 (c1u1 − 2c1u1u2 − f δu3 − b1) − S 3 f δu2 − δu2u3,

Ṡ 3 =S 1 [c2u3 (1 − u2 − u3) − c1u2u3] − S 2cu1u3 − u3

+ S 3
[
c2u1 (1 − u2 − u3) − b2 − f − c1u1u2 − c2u1u3

]
,

Ṡ 4 =S 4 [−w − a1u2 − a2u3 − ε (1 − u2 − u3)] + S 5u1 (ε − a1)

+ S 6u1 (ε − a2) ,
Ṡ 5 =S 4c1u2 (1 − u2) + S 5 (c1u1 − 2c1u1u2 − f δu3 − b1) − S 6 f δu2 − f u2u3,

Ṡ 6 =S 4 [c2u3 (1 − u2 − u3) − c1u2u3] − S 5cu1u3

+ S 6
[
c2u1 (1 − u2 − u3) − b2 − f − c1u1u2 − c2u1u3

]
,

(5.1)

where
S 1=

∂u1

∂ f
, S 2=

∂u2

∂ f
, S 3=

∂u3

∂ f
, S 4=

∂u1

∂δ
, S 5=

∂u2

∂δ
, S 6=

∂u3

∂δ
.
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Table 2. The values of parameters in model (2.3) with τ = 0.

Variable Value Reference
p 560 mm · y [17]
w1 16 mm [18]
ε 8 y−1 [1]
τT (a1) 30 y−1 [8]
τG (a2) 10 y−1 [8]
δT (b1) 0.04 y−1 [8]
δG (b2) 2.8 y−1 [8]
γT (c1) 0.2 y−1 [1]
γG (c2) 20 y−1 [1]
δF (δ) 0.35 y−1 [8]

Let the time step ∆t = 2000, fire frequency f = 1.35, the values of other parameters are shown in
Table 2, and the co-existence equilibrium point E0 = (0.6114, 0.6467, 0.0067). Carry out simulation
experiment on the model (5.1) by using the RK-4 method, then the sensitivity and relative sensitivity
analysis for fire frequency f and fire intensity δ to soil water u1, trees u2 and grasses u3 are obtained.
After that, the conclusion can reflect the effect of fire frequency and fire intensity on each variable (soil
water, trees and grasses) in the hydrological model (2.3) without time delay, as shown in Figures 2–5.

(a) (b) (c)

Figure 2. The sensitivity of fire frequency f to soil water u1(t), trees u2(t) and grasses u3(t),
where (a) the sensitivity S 1(t) of f to u1(t), (b) the sensitivity S 2(t) of f to u2(t), (c) the
sensitivity S 3(t) of f to u3(t).

In Figures 2(a), 3(a), 4(a) and 5(a), the sensitivity S 1, S 4 and relative sensitivity f S 1/u1, δ S 4/u1

of f and δ to soil water u1 are all greater than zero, which indicates that the soil water storage would
increase with the increasing of f and δ. When t = 5, we have S 1 = 0.04808 > 0, f S 1/u1 = 0.09661 >

Electronic Research Archive Volume 30, Issue 9, 3290–3319.



3310

0 and S 4 = 0.07455 > 0, δ S 4/u1 = 0.03858 > 0. In other words, when f increases by 10%, the
soil water storage u1 will increase by 0.9661%, and when δ increases by 10%, the soil water storage
u1 will increase by 0.3858%. At the same time, the increase of soil water storage promoted by fire
frequency f is greater than that promoted by fire intensity δ (0.9661% > 0.3858%), indicating that in
the hydrological model (2.3), f has more significant effect on the dynamic change of soil water than δ.
From a biological viewpoint, compared with grass species, tree species have a greater demand for soil
water, and the competition for nutrients is in an advantageous position. In addition, frequent fires will
eventually lead to the extinction of trees. Therefore, soil water will increase steadily due to the decline
of supply-demand, and the continuous supply of rainfall.

(a) (b) (c)

Figure 3. The sensitivity of fire intensity δ to soil water u1, trees u2 and grasses u3, where (a)
the sensitivity S 4 of δ to u1, (b) the sensitivity S 5 of δ to u2, (c) the sensitivity S 6 of δ to u3.

In Figures 2(b), 3(b), 4(b) and 5(b), the sensitivity S 2, S 5 and relative sensitivity f S 2/u2, δS 5/u2

of f and δ to trees u2 are all less than zero, which indicates that the tree species would decrease with
the increasing of f and δ. When t = 5, we have S 2 = −0.1778 < 0, f S 2/u2 = −0.66 < 0 and
S 5 = −0.09075 < 0, δ S 5/u2 = −0.08677 < 0. In other words, when f increases by 10%, the trees
u2 will decrease by 6.6%, and when δ increases by 10%, the trees u2 will decrease by 0.8677%. At
the same time, the decrease of tree species caused by fire frequency f is more significant than that
caused by fire intensity δ (6.6% > 0.8677%), indicating that in the hydrological model (2.3), f has
a greater effect on the dynamic change of trees than δ. From a biological viewpoint, the increase of
fire frequency and fire intensity are all bad for the growth of trees and grasses. But the growth cycle
and population recovery process of tree species take longer than that of grasses, resulting in the slow
succession of tree species. Therefore, the increase of fire frequency will destroy the growth of trees
and then lead to the extinction of trees finally.
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(a) (b) (c)

Figure 4. The relative sensitivity of fire frequency f to soil water u1, trees u2 and grasses u3,
where (a) the relative sensitivity f S 1/u1 of f to u1, (b) the relative sensitivity f S 2/u2 of f
to u2, (c) the relative sensitivity f S 3/u3 of f to u3.

In Figures 2(c) and 4(c), the sensitivity S 3 and relative sensitivity f S 3/u3 of f to grasses u3 show
a change trend of less than zero at first and then greater than zero. The above parametric change
interval can be divided into two regions: there were S 3 ≤ 0 and f S 3/u3 ≤ 0 for t ∈ [0, 2.12], and
there were S 3 > 0 and f S 3/u3 > 0 for t > 2.12. Taken t = 2 in the first region, then the relative
sensitivity f S 3/u3 = −0.0156, which shows that when f increases by 10%, u3 decreases by 0.156.
And taken t = 2.5 in the second region, then the relative sensitivity f S 3/u3 = 0.05142, which shows
that when f increases by 10%, u3 increases by 0.5142. From a biological viewpoint, under mild and
moderate interference of fire disturbance, the density distribution of dead trees is less than 70%, the
density distribution of living trees is more than 30%, and the consumption of fuel composed of shrub
layer, herb layer and litter layer is less than 50% [19]. The live trees have a wide distribution in this
time and is in a dominant position to compete with grass species for nutrient resources. Therefore,
when grass species cannot obtain sufficient nutrition, the density distribution of grass biomass will
show a decreasing trend, which corresponds to the theoretical analysis in the case where the values of
sensitivity and relative sensitivity of fire frequency f to grasses u3 is less than zero. In addition, under
severe interference of fire disturbance, the density distribution of dead trees is greater than 70% or
more, the density distribution of live trees is less than 30%, and the consumption of fuel composed of
shrub layer, herb layer and litter layer is almost burned and depleted [19]. The distribution of live trees
is very scattered, so the tree species no longer have an advantage in competing with grass species for
nutrient resources. And because of the slow growth cycle of trees, the frequent occurrence of fire will
bring the growth of new trees to a near standstill, which provides vitality for grass recovery quickly
and stably. Then the above conclusions are consistent with the theoretical analysis in the case where
the values of sensitivity and relative sensitivity of fire frequency f to grasses u3 are greater than zero.
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(a) (b) (c)

Figure 5. The relative sensitivity of fire intensity δ to soil water u1, trees u2 and grasses u3,
where (a) the relative sensitivity δ S 4/u1 of δ to u1, (b) the relative sensitivity δ S 5/u2 of δ to
u2, (c) the relative sensitivity δ S 6/u3 of δ to u3.

In Figures 3(c) and 5(c), the sensitivity S 6 and relative sensitivity δS 6/u3 of δ to grasses u3 show
a change trend of greater than zero, which indicates that the tree species would increase with the
increasing of δ. When t = 5, we have δS 6/u3 = 0.08665, that is, when δ increases by 10%, the
grasses u3 will increase by 0.8665, which seems to be contrary to our common sense. However, from
a biological viewpoint, the herbaceous plants are mostly 1–3 years old and complete their full life
span in nearly one growing season. Under the disturbance of proper fire intensity, burning weeds and
dead leaves will give vegetation better space to grow. And then, herbs contain inorganic salts and
other nutrients absorbed from the soil. Burned herbs turn into ash and return to the soil, which can
bring sufficient fertilizer to the soil, replenish the inorganic content of the soil, and loosen the soil. In
addition, the proper intensity of fire disturbance can also burn the overwintering eggs in dead grasses
and increase fertilizer for new grasses’ growth. Therefore, the theoretical analysis of the sensitivity
and relative sensitivity of fire intensity to grasses are consistent with the growth pattern of vegetation
under the actual background.

In summary, the effect of fire frequency on vegetation ecological balance in the hydrological model
(2.3) is more extensive relative to fire intensity. When the time delay effect of fire frequency is not
considered, model (2.3) can reasonably reflect the feedback effects of fire frequency and intensity on
soil water-tree-grass growth trends.

5.2. Numerical simulation

In this section, the dynamic properties of the hydrological model under fire disturbance are verified
on the basis of sensitivity analysis, and the corresponding numerical simulations are carried out by
using MATLAB for the model (2.3) with τ , 0. The values of the parameters see Table 2, take f = 1.35
and then we have w = p/w1 = 35, the unique positive equilibrium is E0 = (0.6114, 0.6467, 0.0067).

Electronic Research Archive Volume 30, Issue 9, 3290–3319.



3313

In addition, we have p1 = 160.3177, p2 = 2220.2434, p1 p2 − p3 = 355944 and m1m2 = −1968073,
that is, the conditions (H2) and (H3) are satisfied, and then the Theorems 3.1, 4.1 hold. Moreover, the
cross section condition (LU + MV)/(M2 + L2) = 0.9737 > 0, the time delay τ0 = 0.8064, and then
the unique positive root κ0 =

√
s0 = 0.4178 is obtained by solving the characteristic Eq (3.6), and the

other two roots are −3165.2 and −0.0067.
According to Theorem 4.1, main conclusions are described as follows

Case i: When τ ∈ [0, 0.8064], the hydrological model (2.3) is asymptotically stable near E0, as shown
in Figure 6. When τ > 0.8064, the model (2.3) is unstable near E0.

Case ii: When τ = 0.8064, the Hopf bifurcation of the hydrological model (2.3) occurs near E0, as
shown in Figure 9.

In addition, it is also obtained that Re[A1] = 1.0727 > 0 and Re[B1] = −866336 < 0, the model
(2.3) has a supercritical nontrivial periodic solution in 0 < τ − 0.8064 � 1, and the periodic solution
is asymptotically stable on the central manifold. In the savanna, the biological community under the
joint action of fire disturbance and groundwater circulation is a transition zone composed of tree layer
and grass layer. According to the analysis results of dynamic bifurcation theory, the soil water, the
frequency, and the intensity of fire, as well as the resulting distribution trend and growth law of tree
and grass species density are simulated with the help of software MATLAB.
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Figure 6. The density distribution of trees u2(t) and grasses u3(t) is asymptotically stable
near the equilibrium E0 with τ = 0.1, 0.3, 0.5, 0.7 and τ = 0.76 respectively. Where Figure
6(b) is the enlarged view of the Figure 6(a) in t ∈ [40, 120].

Figure 6 shows that in t ∈ [0, 150], the time delay τ caused by fire frequency has a significant
impact on the ecological coexistence balance of vegetation. We simulated the growth trend of trees
and grasses of the model (2.3) in τ ∈ [0, 0.8064], and eventually tends to be steady, see Figure 6. In
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which, Figure 6(b) is the enlarged area of the Figure 6(a) in t ∈ [40, 120]. In order to further observe
the steady state, the density distribution solution curves of trees u2(t) and grasses u3(t) are described
with the time delay τ = 0.1, 0.3, 0.5, 0.7, 0.76 respectively, as shown in Figure 7. It is found that
as the value of τ approaches the critical value τ0, the stable state of the solution gradually changes
from the stationary state to periodic state, and finally convergence to the equilibrium point E0. In
addition, Figure 8 shows the phase diagram of u2(t) and grasses u3(t) changing with time. The closer to
the critical value τ0, the more obvious the periodic orbit of vegetation ecosystem, which is consistent
with the theoretical analysis. Its biological significance is that the delay τ of fire frequency disturbs in
stable region, which will not affect the stable growth of the standing vegetation density in both trees
and grasses. As τ approaches the critical value and disturbs near it, the ecological cycle of trees and
grasses under the coupling of fire and hydrology will show an obvious periodic oscillation.
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Figure 7. The time-dependent curves of trees u2(t) and grasses u3(t) of the hydrological
model (2.3) with τ = 0.1, 0.3, 0.5, 0.7 and τ = 0.76 respectively.
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Figure 8. The phase diagram of trees u2(t) and grasses u3(t) of the hydrological model (2.3)
with τ = 0.1, 0.3, 0.5, 0.7 and τ = 0.76 respectively.
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Figure 9. The hydrological model (2.3) occurs Hopf bifurcation near the equilibrium E0

when τ = τ0 ≈ 0.806, and is periodic asymptotically stable with an oscillation frequency
κ0. Where Figure 9(b) is the enlarged view of u1(t), u2(t) and u3(t) of the Figure 9(a) in
t ∈ [6, 16].

Figure 9 shows that in t ∈ [0, 200], the change trend of the co-existence equilibrium of soil water,
trees and grasses when τ ≈ 0.806. The figure shows that the solution curve of soil water u1(t) shows
an increasing tendency, and eventually tends to be stable. This is because water resources are mainly
supplemented by precipitation such as rainstorms and floods, which are introduced into the system
as a gradient function [1]. Moreover, fire has fewer effects on soil water, so that it can be ignored.
After a period of stable growth, the density distribution rate of trees u2(t) (grasses u3(t)) will eventually
remain close to the initial value E0 and coexist in perfect harmony after a short period of fall (rise),
as shown in Figure 9(a). From the perspective of hydrological effect, in the process of simulation,
the annual precipitation p = 560 mm is taken, which corresponds to the ecosystem in arid and semi-
arid areas. At this time, the limited water resources restrict the density of dominant competitors (tree
species) and are not conducive to the stable growth of trees. From the perspective of fire disturbance,
the impact of fire on trees is fatal, and the delay effect τ of fire frequency still oscillates around the
critical value τ0 of Hopf bifurcation, that is, the potential dynamic balance among tree species under
fire disturbance is about to lose stability, which is not conducive to the stable growth of trees. To
sum up, the biomass of tree will gradually decrease, while the biomass of grass will increase with the
decrease of competitors (tree species). In addition, compared with grass species, tree species have a
greater demand for water resources. Therefore, when the biomass of tree decreases, the storage of
soil water will increase gradiently along with the decreasing demand for water resources. Under the
background of fire disturbance and hydrological effect, the co-existence mode of trees and grasses of
the model (2.3) is simulated, which shows the form of periodic oscillation, as shown in Figure 9(b).
However, the periodic states is a “transient state”. If the time delay τ caused by fire frequency exceeds
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the critical value, the distribution, existence and succession of trees and grasses will be unstable and
the coexistence balance of biological communities will be destroyed.
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Figure 10. The time-dependent periodic solution curves of the groundwater u1(t) of the
hydrological model (2.3) with τ = 0.78, 0.79 and τ = 0.806 respectively, and oscillation
frequency is κ0.
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Figure 11. The time-dependent periodic solution curves of trees u2(t) of the hydrological
model (2.3) with τ = 0.78, 0.79 and τ = 0.806 respectively, and oscillation frequency is κ0.

In Figures 10–12, the solution curve of soil water u1(t), trees u2(t) and grasses u3(t) along with time
are simulated respectively. When τ is disturbed near the critical value τ0, the structure of the solution
shows the obvious periodical change characteristics. In particular, the periodic characteristic of u1(t)
is more significant than u2(t) and u3(t) at the same time. This is because water resources are recorded
in the form of precipitation and are always “increasing”. Trees and grasses not only compete for water
resources, but also are affected by fire, so the periodic amplitude of density distribution rate is slightly
different. When bifurcation conditions are satisfied, and the selection of environmental parameters has
certain practical significance, Hopf bifurcation will lead to the ecological mode of the hydrologic model
(2.3) exhibiting periodic oscillation features. That is to say, as the delay τ approaches the threshold,
the soil water, trees and grasses present an obvious form of periodic oscillation, and the numerical
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simulation results are consistent with the theoretical analysis.
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Figure 12. The time-dependent periodic solution curves of grasses u3(t) of the hydrological
model (2.3) with τ = 0.78, 0.79 and τ = 0.806 respectively, and oscillation frequency is κ0.

6. Conclusions

Considering a series of conditions caused by the delay effect of fire frequency, we have established
a hydrological model (2.3) with delay effect (time delay) in this paper. We obtain sufficient conditions
for local stability of positive equilibrium point E0, and the existence condition for Hopf bifurcation.
The study found that, when τ > τ0, a coexistence mechanism of tree species and grass species will
lose stability at E0, while on one side of the τ0, the soil water, trees and grasses would change to the
periodic oscillation ecological-pattern by Hopf bifurcation. Then the stability of the Hopf bifurcation
periodic solution is given by using the center manifold theorem and the normal form theorem. Finally,
the paper provides sensitivity analysis for uncertain factors, such as the frequency and intensity of fire
in the model (2.3) without τ. The analysis showed that the effect of fire frequency on hydrological
effect, and the density distribution of trees and grasses was more significant relative to fire intensity
under the same conditions. All of the above further verified that fire is a key control parameter of
vegetation coexistence equilibrium mechanism.

To analyze the issue of the time delay driven by fire frequency, we also investigate the potential
dynamic properties of soil water, trees and grasses in the model (2.3) under the coupling effect of fire
disturbance and hydrological effects are studied in the time domain by using bifurcation theory and
sensitivity analysis methods. Dynamic theoretical analysis demonstrated the existence of an ecological
phenomenon periodic oscillations of soil water-tree-grass under the fire disturbance and hydrological
effect, which is not directly observable in nature.
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