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Abstract: In this paper, three nonlinear finite difference schemes are proposed for solving a gen-
eralized nonlinear derivative Schrödinger equation which exposits the propagation of ultrashort pulse
through optical fiber and has been illustrated to admit exact soliton-solutions. Two of the three schemes
are two-level ones and the third scheme is a three-level one. It is proved that the two-level schemes only
preserve the total mass or the total energy in the discrete sense and the three-level scheme preserves
both the total mass and total energy. Furthermore, many numerical results are presented to test the
conservative properties and convergence rates of the proposed schemes. Several dynamical behaviors
including solitary-wave collisions and the first-order rogue wave solution are also simulated, which
further illustrates the effectiveness of the proposed method for the generalized nonlinear derivative
Schrödinger equation.
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1. Introduction

In this paper, we consider a generalized nonlinear derivative Schrödinger (GNLDS) equation [1–3]
as follows

iut + uxx + 2|u|2u + γ1(uxxxx + 6u2
xu + 4u|ux|

2 + 8|u|2uxx

+ 2u2uxx + 6|u|4u) = 0, x ∈ [a, b), t ∈ (0,T ], (1.1)
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with periodic boundary condition

∂mu
∂xm (a, t) =

∂mu
∂xm (b, t), m = 0, 1, 2, 3, t ∈ (0,T ], (1.2)

and initial condition

u(x, 0) = ϕ(x), x ∈ [a, b], (1.3)

where u = u(x, t) is a complex-valued function, γ1 denotes the strength of higher-order linear and
nonlinear effects, and u means taking the conjugate of u.

The GNLDS equation is a integrable system which can be viewed as a particular case of a spin
system derived in [1], which advanced the fourth order generalized nonlinear Schrödinger equation
for the isotropic Heisenberg ferromagnetic spin chain in the next order of lattice parameter through
identifying the underlying geometry of the system, and demonstrated that the spin system with the
lattice parameter β = −5

2v (v is equivalent to γ1 in this paper) is equivalent to the higher order integrable
generalized nonlinear Schrödinger evolution equation, that is, (1.1). In 2013, Wang, Porsezian and
He [2] obtained the first-order rogue wave solution and higher-order rogue waves from the GNLDS
evolution equation by using Darboux transformation and Taylor expansion, moreover the compressed
effects of parameter γ1 was talked over. Zhang and Chen [3] studied the robust inverse scattering
transformation transformation to construct the high-order rogue wave based on the GNLDS equation
in 2019. For the rogue waves and solitary waves, we refer to [4–6] and references therein.

The famous mathematical model nonlinear Schrödinger equation [7, 8] has been widely used in the
study of quantum physics and theoretical chemistry, so various highly accurate and effective numer-
ical methods are required and have been developed for the NLS equation, for instance [9–16], finite
difference method [17–23], finite element method [24–26], discontinuous Galerkin method [27, 28],
meshless method [29,30], and Runge-Kutta or Crank-Nicolson pseudo-spectral method [31–33], time-
splitting pseudo-spectral method [34–38], the spectral and pseudo-spectral method [39–41], split step
spectral method [42], structure-preserving algorithms [43–45], and other methods [46–51]. These dif-
ferent numerical methods have their own advantages and disadvantages. For the comparison between
them, we refer to [52–54] and references therein. Although above numerical methods have been re-
searched for NLS, as far as we know, there are no corresponding literatures which focused on aspects
of numerical simulation of (1.1). Thus, to construct respectively numerical methods is our main work
in this paper.

After simple observation and analysis of the equation, we find that

6u2
xu + 4u|ux|

2 + 8|u|2uxx + 2u2uxx

=6(u2
x + uuxx)u + 2(uxxu + 2uxux + uuxx)u

=3(u2)xxu + 2(uu)xxu,

(1.4)

so we simplify the Eq (1.1), then the original question becomes

iut + uxx + 2|u|2u + γ1(uxxxx + 3(u2)xxu + 2(uu)xxu + 6|u|4u) = 0, x ∈ [a, b), t ∈ (0,T ], (1.5)
u(x, 0) = ϕ(x), x ∈ [a, b], (1.6)
∂mu
∂xm (a, t) =

∂mu
∂xm (b, t), m = 0, 1, 2, 3, t ∈ (0,T ]. (1.7)
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Lemma 1.1. The initial-boundary value problem (1.5)–(1.7) preserves the total mass

Q(t) :=
1
2

∫ b

a
|u|2dx ≡ Q(0), t > 0, (1.8)

and energy

E(t) := −
1
2

∫ b

a
|ux|

2dx +
1
2

∫ b

a
|u|4dx +

γ1

2

∫ b

a
|uxx|

2dx

− 3γ1

∫ b

a
|ux|

2|u|2dx −
γ1

2
((|u|2)x)2dx + γ1

∫ b

a
|u|6dx ≡ E(0), t > 0. (1.9)

Remark 1.1. Q(t) and E(t) are the so-called mass (or charge) and energy, the process of certification
is in Appendix A.

Hence, to construct an accurate and stable numerical method preserving the total mass and energy is
an interesting and challenging issue. However, it is difficult and challenging for us to construct a finite
difference scheme which preserves the total mass and energy because of the higher order linear terms
and some higher order nonlinear terms with derivatives. For this reason, we first propose two nonlinear
two-level schemes, one is mass-preserving and the other is energy-preserving. In further study, we
finally construct a three-level mass-preserving and energy-preserving scheme, the three schemes will
be shown in the second part. Therefore, it is an exciting problem to explore what will happen to
simulate the first-order rogue wave solution and other physical phenomena through our numerical
simulation. It is our prime purpose to reply this question in this paper.

The remaining sections of this paper are arranged as follows. Finite difference schemes are con-
structed and the corresponding discrete conservation laws are proposed in Section 2; Section 3 is
devoted to showing the conclusion of our numerical experiments which illustrate the effectiveness of
the proposed methods; Finally, Section 4 contains the conclusion of this paper and the researches that
need to be progressed in the future.

2. Finite difference schemes and their conservative properties

In order to solve the problem (1.5)–(1.7) with the difference scheme, the solution area Ω = {(x, t)|a ≤
x ≤ b, 0 ≤ t ≤ T} will be divided. Take two positive integers N and J, let h =

(b−a)
J , τ = T

N , and denote
Ωh = {x j = a + jh| j = 0, 1, ...J}, Ωτ = {tn = nτ|n = 0, 1, ...N}.

Assuming that ω = {ωn
j |(x j, tn) ∈ Ωh × Ωτ} is a grid function. We introduce the following standard

difference operators:

ω
n+ 1

2
j =

ωn+1
j + ωn

j

2
, δ+

t ω
n
j =

ωn+1
j − ωn

j

τ
, δ+

xω
n
j =

ωn
j+1 − ω

n
j

h
,

δ2
xω

n
j =

ωn
j−1 − 2ωn

j + ωn
j+1

h2 , δt̂ω
n
j =

ωn+1
j − ωn−1

j

2τ
.

We denote by Vh = {v|v = (v0, v1, ..., vJ), v0 = vJ} a space of complex-valued grid functions defined
on Ωh, we always use vn

−1 = vn
J−1 and vn

1 = vn
J+1 if they are involved. For any complex-valued grid
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functions u, v ∈ Vh, we denote the discrete inner product as (u, v) = h
J−1∑
j=0

u jv j, where v j is the conjugate

of v j. The discrete Lp norm || · ||p, the H1 semi-norm | · |1, the H2 semi-norm | · |2 and the maximum
norm || · ||∞ over Vh are defined by

||v||p =
p

√√√
h

J−1∑
j=0

|v j|
p, |v|1 =

√√√
h

J−1∑
j=0

|δ+
x v j|

2, |v|2 =

√√√
h

J−1∑
j=0

|δ2
xv j|

2, ||v||∞ = max
0≤ j≤J−1

|v j|,

respectively. For simplicity, we use ||v|| to denote ||v||2.

2.1. The three Crank-Nicolson-type finite difference schemes

In this section, we present three Crank-Nicolson-type finite difference schemes. Two of them are
the two-level mass-preserving scheme or the two-level energy-preserving scheme and the third is a
three-level mass-preserving and energy-preserving scheme. We denote the three schemes by CNFD-
A, CNFD-B and CNFD-C as follows:

CNFD − A

iδ+
t un

j + δ2
xu

n+ 1
2

j + 2|un+ 1
2

j |
2un+ 1

2
j + γ1[δ2

xδ
2
xu

n+ 1
2

j + 3δ2
x(u

n+ 1
2

j )2un+ 1
2

j

+ 2δ2
x(u

n+ 1
2

j un+ 1
2

j )un+ 1
2

j + 6|un+ 1
2

j |
4un+ 1

2
j ] = 0, 0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1, (2.1)

u0
j = ϕ(x j), 0 ≤ j ≤ J, (2.2)

un
0−m = un

J−m, m = 0, 1, 2, 3, 0 ≤ n ≤ N. (2.3)
CNFD − B

iδ+
t un

j + δ2
xu

n+ 1
2

j + (|un
j |

2 + |un+1
j |

2)un+ 1
2

j + γ1[δ2
xδ

2
xu

n+ 1
2

j +
3
2
δ2

x((u
n+1
j )2 + (un

j)
2)un+ 1

2
j

+ δ2
x(|u

n
j |

2 + |un+1
j |

2)un+ 1
2

j + 2(|un
j |

4 + |un
j |

2|un+1
j |

2 + |un+1
j |

4)un+ 1
2

j ] = 0, (2.4)

0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1,
u0

j = ϕ(x j), 0 ≤ j ≤ J, (2.5)

un
0−m = un

J−m, m = 0, 1, 2, 3, 0 ≤ n ≤ N. (2.6)
CNFD − C

iδt̂un
j +

1
2
δ2

x(u
n+1
j + un−1

j ) + |un
j |

2(un+1
j + un−1

j ) + γ1[
1
2
δ2

xδ
2
x(u

n+1
j + un−1

j )

+
3
2
δ2

x(u
n
j(u

n+1
j + un−1

j ))un
j +

1
2
δ2

x(|u
n+1
j |

2 + |un−1
j |

2)(un+1
j + un−1

j )

+ (|un+1
j |

4 + |un+1
j |

2|un−1
j |

2 + |un−1
j |

4)(un+1
j + un−1

j )] = 0, (2.7)

0 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1,
u0

j = ϕ(x j), 0 ≤ j ≤ J, (2.8)

un
0−m = un

J−m, m = 0, 1, 2, 3, 0 ≤ n ≤ N. (2.9)

Electronic Research Archive Volume 30, Issue 8, 3130–3152.



3134

2.2. Conservative properties

Corresponding to the conservation laws (1.8) and (1.9) preserved by the continuous problem (1.5)–
(1.7), the scheme CNFD-C conserves the similar total mass and energy in the discrete level, the scheme
CNFD-B conserves the corresponding total energy in the discrete level, the scheme CNFD-A conserves
the corresponding total mass in the discrete level.

Theorem 2.1. Suppose {un
j |0 ≤ j ≤ J, 0 ≤ n ≤ N} is the solution of CNFD-A scheme, then CNFD-A

scheme has a conservation law of the following form with respect to discrete mass:

Qn ≡ Q0, 0 ≤ n ≤ N, (2.10)

where
Qn :=

1
2
||un||2. (2.11)

Theorem 2.2. Suppose {un
j |0 ≤ j ≤ J, 0 ≤ n ≤ N} is the solution of CNFD-B scheme, then CNFD-B

scheme has a conservation law of the following form with respect to discrete energy:

En ≡ E0, 0 ≤ n ≤ N, (2.12)

where

En := −
1
2
|un|21 +

1
2
||un||44 +

γ1

2
|un|22 −

3hγ1

4

J−1∑
j=0

δ+
x (un

j)
2δ+

x (un
j)

2 −
hγ1

2

J−1∑
j=0

(δ+
x |u

n
j |

2)2 + γ1||un||66. (2.13)

Theorem 2.3. Suppose {un
j |0 ≤ j ≤ J, 0 ≤ n ≤ N} is the solution of CNFD-C scheme, then CNFD-C

scheme has conservation laws of the following forms with respect to discrete mass and discrete energy:

Qn ≡ Q0, 0 ≤ n ≤ N − 1, (2.14)
En ≡ E0, 0 ≤ n ≤ N − 1, (2.15)

where

Qn :=
1
2

(||un+1||2 + ||un||2), (2.16)

En := −
1
4

(|un+1|21 + |un|21) +
1
2
||un+1un||2 +

γ1

4
(|un+1|22 + |un|22) (2.17)

−
3γ1

4
|un+1un|21 −

hγ1

4
(

J−1∑
j=0

(δ+
x |u

n+1
j |

2)2 +

J−1∑
j=0

(δ+
x |u

n
j |

2)2) +
γ1

2
(||un+1||66 + ||un||66).

Remark 2.1. Qn and En are the so-called discrete mass (or charge) and energy respectively. The
proofs of the three theorems are given in Appendix B.

3. Numerical examples

In this section, we construct several typical numerical examples to verify conservation laws and
convergence rates, and simulate some phenomena of the solitary-wave collisions and the first-order
rogue wave solution described by GNLDS equation.

Electronic Research Archive Volume 30, Issue 8, 3130–3152.



3135

Example 3.1. Mass and energy conservations laws: We give several numerical results out to validate
the mass and energy conservations of the three schemes given in Theorems 2.1–2.3. Specifically, we
take the initial condition and boundary condition as ϕ(x) = sech(x)exp(2ix), the periodic boundary
condition ∂mu

∂xm (a, t) = ∂mu
∂xm (b, t), m = 0, 1, 2, 3, and we consider the case γ1 = 0.5. Figures 1–4 reveal

the development of the mass and energy values of the corresponding numerical solutions for the three
schemes. We can observe that, for CNFD-A scheme and CNFD-B scheme

Qn − Q0

Q0 = O(10−13),
En − E0

E0 = O(10−13), 1 ≤ n ≤ N, (3.1)

for CNFD-C scheme,

Qn − Q0

Q0 = O(10−14),
En − E0

E0 = O(10−13), 1 ≤ n ≤ N − 1, (3.2)

which illustrates that the CNFD-A scheme preserves total mass conservation, the CNFD-B scheme
preserves total energy conservation, and the CNFD-C scheme preserves both total energy and mass
conservation in discrete sense.
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Figure 1. Discrete mass computed by CNFD-A.
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Figure 2. Discrete energy computed by CNFD-B.
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Figure 3. Discrete mass computed by CNFD-C.
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Figure 4. Discrete energy computed by CNFD-C.

Example 3.2. Convergence rates: In this example, we take the initial condition and the periodic bound-
ary condition as ϕ(x) = sech(x)exp(2ix), ∂mu

∂xm (a, t) = ∂mu
∂xm (b, t), m = 0, 1, 2, 3 to verify the convergence

rates. We consider the case γ1 = 0.5, then we compute the L∞ and L2 error norms of the solution at
T = 1 and use the same spacing h in each spatial direction. For convenience, we denote the L∞ and L2

error norms as

E∞(h, τ) = ||en||∞ = max
1≤ j≤J−1

|en
j |, E2(h, τ) = ||en|| =

√√√ J−1∑
j=1

|en
j |

2, (3.3)

and assume E∞(h, τ) = O(τp + hq), then if τ is small enough, E∞(h, τ) = O(τp + hq) ≈ O(hq), so
E∞(h1, τ)/E∞(h2, τ) ≈ (h1/h2)q, and hence q ≈ ln(E∞(h1,τ)/E∞(h2,τ))

ln(h1/h2) is the convergence order with respect
to the spatial step size. Likewise, if h is small enough, p ≈ ln(E∞(h,τ1)/E∞(h,τ2))

ln(τ1/τ2) is the convergence order
with respect to the temporal step size. The algorithm of L2 error norm is consistent with L∞ error norm.

Firstly, we measure the temporal errors and convergence orders. Fix the spatial step size h = 0.005
sufficiently small such that the spatial error is negligible as compared with the temporal error. Tables
1, 3 and 5 show that the convergence order of the three schemes with respect to temporal variable are
all about 2 when h = 0.005, τ = 1/70, τ = 1/80, τ = 1/90, and τ = 1/100.

Through varying h and fixing τ = 1/8000 small enough to avoid contamination of the temporal, we
further measure the spatial errors and convergence orders. It can be seen from Tables 2, 4 and 6 show
that the convergence order of three schemes are all about 2 with respect to the spatial step size.
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Table 1. Rates of temporal convergence for CNFD-A.

τ E∞ order E2 order
1/70 7.61E-01 — 1.12E-01 —
1/80 5.85E-02 1.97 8.58E-02 1.97
1/90 4.63E-02 1.98 6.79E-02 1.98
1/100 3.76E-02 1.98 5.51E-02 1.98

Table 2. Rates of spatial convergence orders for CNFD-A.

h E∞ order E2 order
1/10 1.46E-01 — 2.09E-01 —
2/25 9.38E-02 1.99 1.34E-01 1.99
1/20 3.65E-02 2.01 5.22E-02 2.01
1/25 2.33E-02 2.02 3.33E-02 2.02

Table 3. Rates of temporal convergence for CNFD-B.

τ E∞ order E2 order
1/70 9.83E-02 — 1.40E-01 —
1/80 7.60E-02 1.93 1.08E-01 1.93
1/90 6.05E-02 1.94 8.58E-02 1.95
1/100 4.92E-02 1.95 6.99E-02 1.95

Table 4. Rates of spatial convergence orders for CNFD-B.

h E∞ order E2 order
1/5 5.63E-01 — 8.10E-01 —
1/10 1.46E-01 1.95 2.09E-01 1.95
2/25 9.38E-02 1.99 1.34E-01 1.99
1/20 3.65E-02 2.01 5.22E-02 2.01

Table 5. Rates of temporal convergence for CNFD-C.

τ E∞ order E2 order
1/70 1.46E-02 — 2.33E-02 —
1/80 1.13E-02 1.87 1.82E-02 1.86
1/90 9.05E-03 1.92 1.45E-02 1.90
1/100 7.39E-03 1.92 1.19E-02 1.93

Electronic Research Archive Volume 30, Issue 8, 3130–3152.



3139

Table 6. Rates of spatial convergence orders for CNFD-C.

h E∞ order E2 order
1/5 5.63E-01 — 8.10E-01 —
2/15 2.58E-01 1.93 3.70E-01 1.93
1/15 6.84E-02 1.92 9.32E-02 1.99
1/20 3.65E-02 2.18 5.22E-02 2.01

Example 3.3. The influence of γ1 on the motion of two solitary waves: In this section, we apply CNFD-
C scheme to research the interaction between two solitary waves through changing the value of γ1. The
initial condition is chosen as

ϕ(x) = sech(x − 10)exp(2ix − 10) + sech(x + 10)exp(2ix + 10), (3.4)

which illustrates two solitary waves are initially located at x = 10 and x = −10 and the periodic
boundary condition ∂mu

∂xm (a, t) = ∂mu
∂xm (b, t), m = 0, 1, 2, 3. We consider the following cases:

(1) γ1 = −0.5, (2) γ1 = 0, (3) γ1 = 0.5, (4) γ1 = 1. (3.5)

Figures 5 and 6 display the interaction of two solitary waves under different values of γ1 for GNLDS
equation under cases (1)–(4). It can be vividly seen that two initially well-separated solitons move
towards each only on the cases γ1 > 0, with the motion of the waves, they will produce a peak when
they collide, after separation, they will continue to move in the original direction. When γ1 ≤ 0,
compared with γ1 > 0, the two solitons move in the opposite direction at the beginning and there are
no collisions. In addition, we find that the velocity of the waves is proportional to the absolute value of
γ1.

(a) (b)

Figure 5. Simulation results of the two solitons computed by CNFD-C under case (1)–(2),
Figure (a) presents γ1 = −0.5 and Figure (b) presents γ1 = 0.
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(a) (b)

Figure 6. Simulation of the interaction for the two solitons computed by CNFD-C under
case (3)–(4), Figure (a) presents γ1 = 0.5 and Figure (b) presents γ1 = 1.

Example 3.4. The first-order rogue wave: We apply the numerical solution obtained by the CNFD-
C scheme to simulate the first-order rogue wave (the limit of the breather solution) [2] in {(x, t) ∈
(a, b) × (0,T )| − 8 ≤ x ≤ 8,−4 ≤ t ≤ 4}. And we also increase the value of γ1 to observe and compare
the dynamical evolution of the analytic solutions and the numerical solutions. We take the initial value
of the analytic solution by

ϕ(x) =
−x2 + 3
2x2 + 2

, (3.6)

take the periodic boundary values of the analytic solution by

u(a, t) = u(b, t) =
1
2

(
4 + i(4 + 6γ1)t

64 + (1 + 3
2γ1)2t2 + 1

− 1)exp(i(
3
8
γ1 +

1
2

)t), (3.7)

uxx(a, t) = uxx(b, t) =
(4 + i(4 + 6γ1)t)(192 − (1 + 3

2γ1)2t2 − 1)

(64 + (1 + 3
2γ1)2t2 + 1)3

exp(i(
3
8
γ1 +

1
2

)t), (3.8)

and consider the following cases:

(1) γ1 = −1, (2) γ1 = −0.5, (3) γ1 = 0, (4) γ1 = 0.5, (5) γ1 = 1.

We show Figures 7–16 as follows, it can be seen that the numerical solutions agree well with the
analytic solutions and they have approximately equal amplitudes under cases (1)–(5) which illustrates
the effectiveness of CNFD-C.
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Figure 7. Comparison of dynamics evolution between the analytic solution (left) and the
numerical solution (right) for the first-order rogue wave solution under case (1) γ1 = −1.

Figure 8. The planform between the analytic solution (left) and the numerical solution (right)
of the first-order rogue wave solution under case (1) γ1 = −1.
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Figure 9. Comparison of dynamics evolution between the analytic solution (left) and the
numerical solution (right) for the first-order rogue wave solution under case (2) γ1 = −0.5.

Figure 10. The planform between the analytic solution (left) and the numerical solution
(right) of the first-order rogue wave solution under case (2) γ1 = −0.5.
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Figure 11. Comparison of dynamics evolution between the analytic solution (left) and the
numerical solution (right) for the first-order rogue wave solution under case (3) γ1 = 0.

Figure 12. The planform between the analytic solution (left) and the numerical solution
(right) of the first-order rogue wave solution under case (3) γ1 = 0.
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Figure 13. Comparison of dynamics evolution between the analytic solution (left) and the
numerical solution (right) for the first-order rogue wave solution under case (4) γ1 = 0.5.

Figure 14. The planform between the analytic solution (left) and the numerical solution
(right) of the first-order rogue wave solution under case (4) γ1 = 0.5.
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Figure 15. Comparison of dynamics evolution between the analytic solution (left) and the
numerical solution (right) for the first-order rogue wave solution under case (5) γ1 = 1.

Figure 16. The planform between the analytic solution (left) and the numerical solution
(right) of the first-order rogue wave solution under case (5) γ1 = 1.

4. Conclusions and further questions

In conclusion, we have proposed three different finite difference schemes for GNLDS equation and
we proved the conservation properties of the equation with periodic boundary condition. Moreover,
the corresponding discrete conservation laws of the three schemes were advanced in discrete level.
Among them, obviously CNFD-C scheme had better conservation properties. Furthermore, we gave
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several typical numerical examples to confirm the corresponding convergence rates and conservation
laws for the three schemes in discrete sense. In examples 3 and 4, we used CNFD-C scheme to simulate
the collision of solitary waves and the first-order rogue wave solution. These numerical experiments
verified the effectiveness of the proposed schemes.

However, the theoretical analysis of the schemes is a greater difficulty and challenge for us, which
will be our further exploration direction in the future research process. We will also consider perfecting
some work on the time fractional order of the generalized nonlinear Schrödinger equation, which is
also a challenge for us in the future. In addition, it can be seen from the energy expression that the
coefficient in front of the H1 semi-norm of the solution of the original equation is negative, then in the
case of energy conservation, the H1 semi-norm cannot be controlled, and it may tend to infinity and the
blow-up phenomenon may occur, and this article has not been optimized for this situation. Therefore,
in the following work, readers can specifically optimize a format for blow-up phenomena.

Appendix A: The proof of conservation laws for problem (1.5)–(1.7).

Here, we give a brief proof of Lemma 1.1.

Proof. Make inner product of both sides of (1.5) with u(x, t) at the same time, that is, multiply both
sides of the equation by u(x, t), and integrate x from a to b. Then take the imaginary part of it, we get

1
2

Re
∫ b

a
(uu)tdx − Im

∫ b

a
|ux|

2dx + 2Im
∫ b

a
|u|4dx + γ1Im

∫ b

a
|uxx|

2dx − 3γ1Im
∫ b

a
|(u2)x|

2dx

− 2γ1Im
∫ b

a
((|u|2)x)2dx + 6γ1Im

∫ b

a
|u|6dx = 0,

(4.1)

Re(v) and Im(v) mean taking the real part and imaginary part of v respectively, we can get d
dt Q(t) = 0,

where

Q(t) =
1
2

∫ b

a
|u|2dx. (4.2)

Then (1.8) holds. Likewise, make inner product of both sides of (1.5) with ut(x, t) at the same time,
and then take the real part of both sides of (1.5), we can get

Im
∫ b

a
|ut|

2dx − Re
∫ b

a
utuxxdx + 2Re

∫ b

a
ut|u|2udx + γ1Re

∫ b

a
utuxxxxdx

− 3γ1Re
∫ b

a
ut(u2)xxudx + 2γ1Re

∫ b

a
ut(uu)xxudx + 6γ1Re

∫ b

a
ut|u|4udx = 0.

(4.3)

Due to the periodic boundary conditions, we get

Re
∫ b

a
utuxxdx = Re(utux|

b
a −

∫ b

a
utxuxdx) = −

1
2

(
∫ b

a
utxux + utxuxdx) = −

1
2

∫ b

a

∂

∂t
(uxux)dx,
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the last five items of (4.3) are calculated similarly, so we obtain

Im
∫ b

a
|ut|

2dx −
1
2

∫ b

a

∂

∂t
(uxux)dx +

∫ b

a
|u|2

∂

∂t
|u|2dx +

γ1

2

∫ b

a
(uxxutxx + utxxuxx)dx

− 3γ1

∫ b

a
|ux|

2(|u|2)t + |u|2(|ux|
2)tdx − γ1

∫ b

a
(|u|2)x(uut + utu)xdx + 3γ1

∫ b

a
|u|4(uut + utu)dx

= −
1
2

d
dt

∫ b

a
|ux|

2dx +
1
2

d
dt

∫ b

a
(|u|2)2dx +

γ1

2
d
dt

∫ b

a
|uxx|

2dx − 3γ1
d
dt

∫ b

a
|ux|

2|u|2dx

−
γ1

2
d
dt

∫ b

a
((|u|2)x)2dx + γ1

d
dt

∫ b

a
|u|6dx

=0,

we can get d
dt E(t) = 0, where

E(t) = −
1
2

∫ b

a
|ux|

2dx +
1
2

∫ b

a
|u|4dx +

γ1

2

∫ b

a
|uxx|

2dx (4.4)

− 3γ1

∫ b

a
|ux|

2|u|2dx −
γ1

2
((|u|2)x)2dx + γ1

∫ b

a
|u|6dx.

This implies (1.9) holds. Therefore we complete the proof of Lemma 1.1.

Appendix B: The proof of conservation laws for three schemes in discrete sense.

Here, we give the proof of Theorem 2.3 because the proof processes of Theorems 2.1–2.2 are similar
to Theorem 2.3, so we only give the proof ideas for Theorems 2.1–2.2 and omit the processes of them.

Proof. Make the inner product of (2.7) and (un+1 + un−1) and take the imaginary part of the equation to
get

h
2τ

J−1∑
j=0

(|un+1
j |

2 − |un−1
j |

2) −
1
2

Im
J−1∑
j=0

|δ+
x (un+1

j + un−1
j )|2 + hIm

J−1∑
j=0

|un
j |

2|un+1
j + un−1

j |
2

+
hγ1

2
Im

J−1∑
j=0

|δ2
x(u

n+1
j + un−1

j )|2 −
3hγ1

2
Im

J−1∑
j=0

|δ+
x (un

j(u
n+1
j + un−1

j ))|2

−
hγ1

2
Im

J−1∑
j=0

(δ+
x (|un+1

j |
2 + |un−1

j |
2))2 + hγ1Im

J−1∑
j=0

(|un+1
j |

6 + 2|un+1
j |

4|un−1
j |

2 + 2|un−1
j |

4|un+1
j |

2 + |un−1
j |

6)

=
h
2τ

J−1∑
j=0

(|un+1
j |

2 − |un−1
j |

2)

=0,

we can get Qn = Qn−1 = · · · = Q0, where

Qn =
h
2

J−1∑
j=0

(|un+1
j |

2 + |un
j |

2). (4.1)
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Next, make the discrete inner product of (2.7) and δt̂un, and then take the real part, we obtain

hIm
J−1∑
j=0

|δt̂un
j |

2 −
h
4τ

J−1∑
j=0

(|δ+
x un+1

j |
2 − |δ+

x un−1
j |

2) +
h
2τ

J−1∑
j=0

(|un
j |

2(|un+1
j |

2 − |un−1
j |

2))

+
hγ1

4τ

J−1∑
j=0

(|δ2
xu

n+1
j |

2 − |δ2
xu

n−1
j |

2) −
3hγ1

4τ

J−1∑
j=0

(|δ+
x (un

ju
n+1
j )|2 − |δ+

x (un
ju

n−1
j )|2)

−
hγ1

4τ

J−1∑
j=0

((δ+
x |u

n+1
j |

2)2 − (δ+
x |u

n−1
j |

2)2) +
hγ1

2τ

J−1∑
j=0

(|un+1
j |

6 − |un−1
j |

6)

=0,

we can get En = En−1 = · · · = E0, where

En = −
h
4

J−1∑
j=0

(|δ+
x un+1

j |
2 + |δ+

x un
j |

2) +
h
2

J−1∑
j=0

|un
j |

2|un+1
j |

2 +
hγ1

4

J−1∑
j=0

(|δ2
xu

n+1
j |

2 + |δ2
xu

n
j |

2)

−
3hγ1

4

J−1∑
j=0

|δ+
x (un

ju
n+1
j )|2 −

hγ1

4

J−1∑
j=0

((δ+
x |u

n+1
j |

2)2 + (δ+
x |u

n
j |

2)2) +
hγ1

2

J−1∑
j=0

(|un+1
j |

6 + |un
j |

6). (4.2)

Therefore Theorem 2.3 holds.

Proof. We make the discrete inner product of (2.1) and un+ 1
2 , and then take the imaginary part, therefore

Theorem 2.1 holds.

Proof. We make the discrete inner product of (2.4) and δ+
t un, and then take the real part, therefore

Theorem 2.2 holds.
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