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Abstract: With the rapid development of artificial intelligence technology, the intelligence and 

autonomy of Unmanned Aerial Vehicles (UAVs) have been significantly improved. Because the real 

trajectory data is often discontinuous and random, the current aircraft maneuver trajectory prediction 

methods are far from meeting the practical requirements of the autonomous air tasks. Especially, in 

order to occupy a better position rapidly where it is easier to attack the enemy, a fast and accurate 

maneuver trajectory prediction method for the UAVs is proposed in this paper. Firstly, the prediction 

model of aircraft maneuvering trajectory is built by extracting characteristic information from the 

historical trajectory. Aiming at the problem of slow optimization speed and easy to fall into local 

optimization, a global aircraft maneuver trajectory prediction method based on the Hummingbird 

Optimization Algorithm (HOA) and Gated Recurrent Unit (GRU) is proposed. Then, the 

implementation process of the maneuver trajectory prediction method based on the above HOA-GRU 

network for the UAVs is presented. Finally, the aircraft maneuver trajectory prediction method is 

applied to a simulation training system with the discontinuous and random air task data. The simulation 

results show that the proposed method can predict the maneuver trajectory of the UAVs with 

discontinuous data in real time with less error and less time. 

Keywords: Unmanned Aerial Vehicle; aircraft maneuver trajectory prediction; Hummingbird 

Optimization Algorithm; Gated Recurrent Unit; discontinuous data; differential dynamical system 
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1. Introduction 

The Unmanned Aerial Vehicles (UAVs) can complete a variety of complex air tasks, and are 

playing a more and more important role in the mordent wars. Because there is no need to consider the 

limitations of human physical conditions, the UAVs can give full play to the performance of aircraft 

and make large overload maneuvers that are difficult for manned aircraft. Especially, with the rapid 

development of artificial intelligence technology, the degree of intelligence and autonomy of the UAVs 

has been improved quickly. The intelligence of the UAVs in the autonomous air tasks integrates the 

detection, predictive identification, tracking, decision-making, control functions, and so on [1]. It 

should be pointed out that, as an important link in the autonomous air tasks of the UAVs, the aircraft 

trajectory prediction strategy can provide the future aircraft flight trajectory in advance, and shorten 

the time needed for task decision, and occupy the better positions where it is easier to attack the 

enemies [2]. Therefore, in order to occupy better attack positions, it is necessary to study the fast and 

accurate maneuver trajectory prediction technology for the UAVs. 

Because the air task is very fierce and changeable, the trajectory prediction model of the UAVs is 

highly nonlinear and time-varying [2]. With the nonlinear and time-variable historical trajectory 

information and complex situation information, it is difficult to predict the future trajectory 

characteristic information rapidly and accurately for the UAVs [3]. So far, there are many research 

results on the trajectory prediction methods of the UAVs. Generally speaking, they can be divided into 

two categories: one is model-driven, the other is data-driven.  

The model-driven trajectory prediction method needs to acquire the prior knowledge and the 

motion law of the aircraft at first, and then constructs a very accurate dynamic or kinematic model [4]. 

Reference [5] proposes a Bayes trajectory prediction method based on intention speculation. Reference [6] 

gives a trajectory prediction method, which is realized by linear fitting of lift-drag ratio state function 

combined with numerical integration. Reference [7] presents a trajectory prediction method based on 

grey dynamic filtering. Reference [8] uses an extended Kalman filter to estimate the motion state of 

the UAVs, and then calculates the trajectory combined with the motion model. For the model-driven 

methods above, they are extremely sensitive to the initial states and model parameters of the aircraft. 

Only when the initial state value is of high accuracy and the model parameters can be accurately 

estimated, the result of the aircraft trajectory prediction may be more accurate [9,10]. 

The data-driven method is to analyze the historical trajectory data of the aircraft, and mine the 

flight rules hidden in the data, so as to realize the prediction of the spatial position of the aircraft in the 

future time. A BP neural network is used to construct the trajectory prediction system, which realizes 

the accurate prediction of the flight trajectory in a short time [11]. Reference [12] uses an improved 

particle swarm optimization algorithm to optimize the trajectory prediction method based on Elman 

neural network. Reference [13] proposes a trajectory prediction method based on winding neural 

network, which improved the prediction accuracy of complex trajectory greatly. Reference [14] uses 

the Gated Recurrent Unit (GRU) to predict the flight trajectory, which has a smaller prediction error 

than the BP network. Thus, the data-driven trajectory prediction methods above do not need to establish 

an accurate motion model of the aircraft in advance, and the prediction system is simple and real-time. 

However, the data-driven trajectory prediction methods have more requirements of the rationality of 

the data itself, and the adjustment of system parameters may be time-consuming. 

In order to avoid dependence on accurate models and reasonable data and improve prediction 

accuracy and prediction speed, this paper proposes an aircraft maneuver trajectory prediction method. 
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The contributions of this paper are summarized in the following two aspects.  

1) An aircraft maneuver trajectory prediction method based on the Hummingbird Optimization 

Algorithm (HOA) to optimize the GRU prediction network is proposed. This method avoids the 

disadvantages of traditional GRU network for the UAVs, such as slow optimization speed and easy to 

fall into local optimization. 

2) The maneuver trajectory prediction method based on HOA-GRU for the UAVs is presented. This 

method combines the advantages of model-driven method and data-driven method, and obtains a better 

prediction accuracy and speed for the UAVs. 

The remainder of this paper is organized as follows. In Section 2, the historical trajectory 

characteristics of aircraft are extracted and the prediction model of aircraft maneuver trajectory is built. 

In Section 3, in order to avoid the slow optimization speed and local optimization of the previous 

prediction methods, the HOA is used to optimize the GRU prediction network, and then a global 

optimal maneuver trajectory prediction method based on HOA-GRU is proposed. In Section 4, the 

flow and steps of maneuver trajectory prediction method based on HOA-GRU for the UAVs are 

presented. In Section 5, the HOA-GRU prediction method is applied to a simulation system with lots 

of real flight data. Finally, the effectiveness of the proposed trajectory prediction method is verified by 

some simulation experiments. 

2. Maneuver trajectory prediction modeling of the UAVs 

For the convenience of analysis, the maneuvering trajectory model of the UAVs needs to be 

established in this section.  

It is assumed that the airborne radar of the UAV can obtain the historical trajectory information 

of the other side’s aircraft, including the specific position 𝑃𝑒,𝑡−1 = [𝑥𝑒,𝑡−1, 𝑦𝑒,𝑡−1, 𝑧𝑒,𝑡−1] at time t-1 

and 𝑃𝑒,𝑡 = [𝑥𝑒,𝑡, 𝑦𝑒,𝑡, 𝑧𝑒,𝑡] at the time t in the X-Y-Z coordinate system. If the time interval of the time 

t-1 and t is 𝛥𝑡, the velocity of the aircraft is: 

𝑣𝑒,𝑡 =
(𝑃𝑒,𝑡−𝑃𝑒,𝑡−1)

𝛥𝑡
                                 (1) 

Then the velocity change rate of the aircraft is: 

𝛥𝑣𝑒,𝑡 =
(𝑣𝑒,𝑡−𝑣𝑒,𝑡−1)

𝛥𝑡
                                (2) 

The change rate of the deviation angle of the trajectory, 𝛥𝜓𝑒,𝑡, which denotes the intersection 

angle between the due east direction and the projection of the instantaneous motion direction of the 

aircraft onto the ground plane, can be obtained as: 

𝛥𝜓𝑒,𝑡 =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛 (

(𝑥𝑒,𝑡−𝑥𝑒,𝑡−1)

(𝑦𝑒,𝑡−𝑦𝑒,𝑡−1)
) , 𝑥𝑒,𝑡 − 𝑥𝑒,𝑡−1 ≥ 0

𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛 (
(𝑥𝑒,𝑡−𝑥𝑒,𝑡−1)

(𝑦𝑒,𝑡−𝑦𝑒,𝑡−1)
) , 𝑥𝑒,𝑡 − 𝑥𝑒,𝑡−1 < 0, 𝑦𝑒,𝑡 − 𝑦𝑒,𝑡−1 ≥ 0

−𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 (
(𝑥𝑒,𝑡−𝑥𝑒,𝑡−1)

(𝑦𝑒,𝑡−𝑦𝑒,𝑡−1)
) , 𝑥𝑒,𝑡 − 𝑥𝑒,𝑡−1 < 0, 𝑦𝑒,𝑡 − 𝑦𝑒,𝑡−1 < 0

        (3) 
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Here, the altitude of the aircraft at time t of the aircraft, 𝐻𝑒,𝑡, can be acquired by our airborne 

radar. Then the change in altitude of an aircraft is 𝛥𝐻𝑒,𝑡 =
(𝐻𝑒,𝑡−𝛥𝐻𝑒,𝑡−1)

𝛥𝑡
.  

The change rate of inclination angle of the trajectory, 𝛥𝜃𝑒,𝑡, which denotes the angle between the 

horizontal plane and the instantaneous motion direction of the aircraft, can be expressed as: 

𝛥𝜃𝑒,𝑡 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝛥𝐻𝑒,𝑡

√(𝑥𝑒,𝑡−𝑥𝑒,𝑡−1)
2
+(𝑦𝑒,𝑡−𝑦𝑒,𝑡−1)

2
)                     (4) 

From Eqs (1)–(4), we can get the characteristics of the maneuver trajectory of the aircraft 𝑋𝑒 =

[𝛥𝜓𝑒 , 𝛥𝜃𝑒 , 𝛥𝐻𝑒 , 𝛥𝑣𝑒] of the aircraft. Here, 𝛥𝜓𝑒 is the rate of change in the deflection angle, 𝛥𝜃𝑒 is 

the rate of change in the inclination angle, 𝛥𝐻𝑒,𝑡 is the rate of change in the altitude of the aircraft, 

𝛥𝑣𝑒  is the rate of change in the speed of the aircraft. 

Assume that 𝑋𝑒 = [𝛥𝜓𝑒 , 𝛥𝜃𝑒 , 𝛥𝐻𝑒 , 𝛥𝑣𝑒]  is the characteristic parameters of the historical 

trajectory of the aircraft, and 𝑌𝑒 = [𝛥𝜓𝑒 , 𝛥𝜃𝑒 , 𝛥𝐻𝑒 , 𝛥𝑣𝑒] is the characteristic parameters of the future 

trajectory of the aircraft. Based on the historical data 𝑋𝑒 from the airborne radar, the future data 𝑌𝑒 

is expected to be predicted. This is a prediction problem of the trajectory of the aircraft. 

Based on the actual flight data, we can get a set of the training samples 𝑆 = {(𝑋𝑒 , 𝑌𝑒)|𝑋𝑒 =

𝑋𝑒,𝑖, 𝑌𝑒 = 𝑋𝑒,𝑗} , where 𝑖 = 𝑡 − 𝑛 + 1: 𝑡, 𝑗 = 𝑡 + 1: 𝑡 + 𝑚, 𝑛 > 0,𝑚 > 0 . Now, the problem of maneuver 

trajectory prediction of the aircraft can be defined as: 

𝑌𝑒,𝑗 = 𝑓𝑝𝑟𝑒𝑑(𝑋𝑒,𝑖|𝑆) = 𝑓𝑝𝑟𝑒𝑑(𝑋𝑒,𝑖|𝜃𝑝𝑟𝑒𝑑)                       (5) 

where, 𝑋𝑒,𝑖 is the input variable for past time i, 𝑌𝑒,𝑗 is the predicted output variable at the future time 

j, 𝑓𝑝𝑟𝑒𝑑 is the prediction algorithm of the future trajectory of the aircraft, 𝜃𝑝𝑟𝑒𝑑 is the parameters of 

the predict network. 

According to Eq (5), assuming that the current time is t and the prediction time interval is 𝛥𝑡, the 

future trajectory of the aircraft at the next time t+1 can be calculated as follows: 

𝜓𝑒,𝑡+1 = 𝜓𝑒,𝑡 + 𝛥𝜓𝑒,𝑡+1 ⋅ 𝛥𝑡                             (6) 

𝜃𝑒,𝑡+1 = 𝜃𝑒,𝑡 + 𝛥𝜃𝑒,𝑡+1 ⋅ 𝛥𝑡                              (7) 

𝑣𝑒,𝑡+1 = 𝑣𝑒,𝑡 + 𝛥𝑣𝑒,𝑡+1 ⋅ 𝛥𝑡                              (8) 

[

𝑥𝑒,𝑡+1
𝑦𝑒,𝑡+1
𝑧𝑒,𝑡+1

] = [

𝑥𝑒,𝑡
𝑦𝑒,𝑡
𝑧𝑒,𝑡

] + [

𝑣𝑒,𝑡+1 𝑐𝑜𝑠 𝜃𝑒,𝑡+1 𝑐𝑜𝑠 𝜓𝑒,𝑡+1
𝑣𝑒,𝑡+1 𝑐𝑜𝑠 𝜃𝑒,𝑡+1 𝑠𝑖𝑛 𝜓𝑒,𝑡+1

𝛥𝐻𝑒,𝑡+1 ⋅ 𝛥𝑡
]                   (9) 

where 𝑥𝑒,𝑡+1 , 𝑦𝑒,𝑡+1 , 𝑧𝑒,𝑡+1 , 𝜃𝑒,𝑡+1 , 𝜓𝑒,𝑡+1  and 𝑣𝑒,𝑡+1  are respectively represent the predicted 

position of the aircraft in the X-Y-Z coordinate system, the inclination angle of the trajectory, the 

deflection angle and the speed of the aircraft at time t + 1. Here, 𝑧𝑒,𝑡+1 is denoted by the height of the 

aircraft 𝛥𝐻𝑒,𝑡+1 in Eq (9). 

3. Global optimal prediction method based on HOA-GRU algorithm 

Based on the prediction model of the maneuver trajectory in Section 2, this section focuses on the 

effective global optimization strategy of the maneuver trajectory prediction of the UAVs. 
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Firstly, a GRU search strategy is proposed to overcome the problem of gradient disappearance 

for the long time series prediction. Then, in order to avoid the gradient optimization of GRU falling 

into local optimization, the depth optimization based on HOA is proposed. Finally, combining the 

advantages of the above GRU and HOA, a kind of HOA-GRU optimization algorithm is proposed to 

avoid the disadvantages of traditional GRU network for the UAVs, such as slow optimization speed 

and easy to fall into local optimization. 

3.1. Long term optimization strategy based on GRU  

Recurrent Neural Network (RNN) provides an effective solution to the problem of time series 

prediction [15], but there are some problems including the gradient explosion and gradient 

disappearance when dealing with long-term time series problems. As the advanced versions of RNN, 

the Long Short-term Memory (LSTM) [16] and GRU [17] strategy effectively solve the gradient 

problem of RNN. Compared with LSTM, GRU has a simpler structure and fewer parameters. By 

introducing the gate structure, the GRU is composed of update door and reset door for the UAVs. The 

schematic diagram of GRU network is shown in Figure 1.  

 

Figure 1. GRU network diagram. 

The specific model structure of the GRU is as follows. The current information of the Candidate’s 

hidden layer is given as: 

𝑟𝑡 = 𝜎(𝑊ℎ𝑟ℎ𝑡−1 +𝑊𝑥𝑟𝑥𝑡 + 𝑏𝑟)                           (10) 

ℎ
~

𝑡 = 𝑡𝑎𝑛ℎ(𝑊
𝑟ℎ
~(𝑟𝑡 ∗ ℎ𝑡−1) +𝑊𝑥ℎ

~𝑥𝑡 + 𝑏ℎ
~)                      (11) 

where 𝑟𝑡 is the reset of the door, which determines how much historical memory to retain. ℎ
~

𝑡 is the 

latest information at the current time in the Candidate hidden layer, ℎ𝑡−1 , ℎ𝑡  are respectively the 

information at the time t-1 and t in the Candidate hidden layer. 𝑊
𝑟ℎ
~, 𝑊

𝑥ℎ
~, 𝑊𝑥𝑟, 𝑊ℎ𝑟 are the weight 

coefficients, 𝑏𝑟, 𝑏
ℎ
~ are the offset coefficients. 𝜎 is the specific coefficient. 

𝑧𝑡 = 𝜎(𝑊ℎ𝑧ℎ𝑡−1 +𝑊𝑥𝑧𝑥𝑡 + 𝑏𝑧)                          (12) 

xe,t

ht-1 ht ye,t

1－
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ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡

~

                             (13) 

where, 𝑊ℎ𝑧, 𝑊𝑥𝑧 are the weight, 𝑏𝑧 is the offset, 𝑧𝑡 is the forgetting gate, which is used to record 

the hidden layer information input ℎ𝑡−1 at the last time and the current information ℎ𝑡
~

, and obtain 

the output information ℎ𝑡. If 𝑧𝑡 = 0, the hidden layer directly outputs the hidden layer information 

ℎ𝑡−1 of the previous time, and if 𝑧𝑡 = 1, the candidate hidden layer directly outputs the information 

ℎ𝑡 of the current hidden layer: 

𝑦𝑡 = 𝜎(𝑊𝑦𝑡ℎ𝑡)                                (14) 

where, 𝑊𝑦𝑡 represents weight between the current hidden layer output ℎ𝑡 and the final output layer. 

3.2. Random optimization strategy based on HOA 

HOA is a random optimization algorithm that simulates the process of hummingbird honey 

collection. At the beginning of the algorithm, multiple hummingbird individuals are randomly created 

in the search space [18]. The position of each individual corresponds to a feasible solution of the 

optimization problem. The quality of food source is the value of objective function, and the best food 

source is the global optimal solution. The whole process of HOA can be divided into two phases: the 

self-searching phase and the guided searching phase. The specific form of the algorithm is as follows: 

1) Self-searching phase 

Assume that the population size of hummingbirds is 𝑁𝑃 and the dimension in the search space 

is 𝐷. 𝑋𝑖
𝑡 = {𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , 𝑥𝑖,3

𝑡 ,⋯ , 𝑥𝑖,𝐷
𝑡 } represents the 𝑖th hummingbird individual at time t. During the 

self-searching phase, hummingbirds can look for food sources based on their previous experience. 

When hummingbirds can constantly find better sources of food (𝑋𝑖
𝑡 ≠ 𝑋𝑖

𝑡−1), the validity of previous 

experience is verified. Therefore, the position of each hummingbird is updated based on the previous 

gradient information: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑖
𝑡 − 𝑋𝑖

𝑡−1)                        (15) 

where, 𝑋𝑖
𝑡 and 𝑋𝑖

𝑡−1 respectively represent the position of the 3116th hummingbird at 𝑡 and 𝑡 −

1, and 𝑟𝑎𝑛𝑑 denotes the random number in the range [0, 1]. 

When the hummingbird keeps searching and finds no better results (𝑋𝑖
𝑡 ≠ 𝑋𝑖

𝑡−1), it means that the 

hummingbird’s past experience no longer applies. In this case, the hummingbird randomly changes its 

search direction. This process was simulated using a Levy flight. Levy flight is an important non-

Gaussian random walk whose random step size follows a large-tailed probability distribution. The 

most important feature of this flight mode is that it maximizes space exploration in uncertain 

environments, because of the infinite and rapid growth of variance. A Levy flight can search more 

efficiently than a regular random walk such as the Brownian motion [19].  

The Levy flight is capable of producing larger jumps than the Brownian motion, thus exploring 

space more widely. Therefore, it is more suitable for large-scale search. The search process based on 

Levy flight is expressed as follows: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼0(𝑋𝑖
𝑡 − 𝑋𝑏𝑒𝑠𝑡

𝑡 ) ⊕ 𝐿𝑒𝑣𝑦(𝛽)                     (16) 

Here, 𝑋𝑏𝑒𝑠𝑡
𝑡  represents the global optimal solution at the time t , 𝛼0 = 0.01 is the scale factor, 
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⊕ is scalar-multiplication. Then, 𝐿𝑒𝑣𝑦(𝛽) can be computed as: 

𝐿𝑒𝑣𝑦(𝛽) =
𝜇

|𝜐|1/𝛽
                                (17) 

where 𝜇  and 𝜐  respectively represent two random numbers that follow the Gaussian distribution 

𝑁(0, 𝜎𝜇
2) and 𝑁(0, 𝜎𝜐

2), where 

𝜎𝜇 = (
𝛤(1+𝛽) 𝑠𝑖𝑛(𝜋𝛽/2)

𝛤[(1+𝛽)/2]𝛽2(𝛽−1)/2
)
1/𝛽

, 𝜎𝜐 = 1                      (18) 

where 𝛤(𝑧) represents the gamma function, and the size of 𝛽 is set to 1.5 [19]. 

2) Guided-searching phase 

At this stage, the current best hummingbird individuals are called territorial birds, and the other 

individuals are called follower birds. The territorial bird patrols its territory to keep other birds away. 

This behavior can be expressed as: 

𝑋𝑇,𝑡+1 = 𝑋𝑇,𝑡 + 𝑟𝑑 ⋅ 𝜆                            (19) 

where 𝑋𝑇,𝑡 represents the position of the territorial bird at the moment 𝑡, 𝑋𝑇,𝑡 is a random number 

in the range of [-1, 1], and dr  is the specific coefficient. 𝜆 is the step factor, defined as follows: 

𝜆 = 0.1 ⋅ (𝑢𝑏 − 𝑙𝑏)                              (20) 

where 𝑢𝑏 and 𝑙𝑏 respectively represent the upper and lower bounds of the search space. 

There are two ways to follow a hummingbird [19].  

Case 1: when the territorial bird finds no threat, the follower bird will approach the territory quickly: 

𝑋𝑗
𝐹,𝑡+1 = 𝑋𝑗

𝐹,𝑡 + 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑇,𝑡 −𝑀𝐹 ⋅ 𝑋𝑗
𝐹,𝑡)                     (21) 

where 𝑋𝑗
𝐹,𝑡

 is the position of the 𝑗 − 𝑡ℎ follower bird at time T, 𝑀𝐹is a random value of 1 or 2. 

Case 2: When the territorial bird finds the follower, the follower is driven away and flies around. 

During this process, the follower bird 𝑗 will randomly select a companion 𝑘(𝑘 ≠ 𝑗) to follow. If the 

position 𝑘 is better, it will move toward it, otherwise, it will move away. The above can be expressed 

by the following formula: 

𝑋𝑗
𝐹,𝑡+1 = 𝑋𝑗

𝐹,𝑡 + 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑘
𝐹,𝑡 − 𝑋𝑗

𝐹,𝑡), 𝑖𝑓 𝑓𝑖𝑡𝑋𝑘
𝐹,𝑡 ≤ 𝑓𝑖𝑡𝑋𝑗

𝐹,𝑡             (22) 

𝑋𝑗
𝐹,𝑡+1 = 𝑋𝑗

𝐹,𝑡 − 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑘
𝐹,𝑡 − 𝑋𝑗

𝐹,𝑡), 𝑖𝑓 𝑓𝑖𝑡𝑋𝑘
𝐹,𝑡 ≥ 𝑓𝑖𝑡𝑋𝑗

𝐹,𝑡             (23) 

where 𝑗, 𝑘 ∈ {1,2,3,⋯ ,𝑁 − 1}, 𝑗 ≠ 𝑘, 𝑓𝑖𝑡𝑋𝑘
𝐹,𝑡

 and 𝑓𝑖𝑡𝑋𝑗
𝐹,𝑡

 are respectively the fitness value of 𝑋𝑘
𝐹,𝑡

 

and 𝑋𝑗
𝐹,𝑡

. 

To sum up, the complete search process of following birds is described as follows: 
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𝑖𝑓 𝑃𝐹𝑡 ≥ 𝑟𝑎𝑛𝑑 

{to carry out the Case 1;} 

else 

{to carry out the Case 2.} 

where the probability of the following bird being discovered by the territorial bird can be calculated 

by the formula: 

𝑃𝐹𝑡 =
𝑟𝑎𝑛𝑘(𝑓𝑖𝑡𝑋𝑗

𝐹,𝑡)

𝑁−1
                               (24) 

where 𝑟𝑎𝑛𝑘(𝑓𝑖𝑡𝑋𝑗
𝐹,𝑡) represents the rank of the following bird j among all companions according to 

fitness value. 

In addition, the boundary control policy for preventing invalid searches can be described as follows: 

𝑋𝑖,𝑑
𝑡 = 𝑢𝑏 − 𝑟𝑎𝑛𝑑 ⋅ (𝑢𝑏 − 𝑙𝑏), 𝑖𝑓𝑋𝑖,𝑑

𝑡 < 𝑙𝑏𝑜𝑟𝑋𝑖,𝑑
𝑡 > 𝑢𝑏               (25) 

Finally, HOA adopts the greedy strategy to update the population. That is to say, only when the 

fitness value 𝑋𝑖
𝑡+1  of is better than 𝑋𝑖

𝑡 , the individual 𝑋𝑖
𝑡+1  will be retained; otherwise, the 

individual will not be updated. This scenario is described as follows: 

𝑋𝑡+1 = {
𝑋𝑡+1𝑖𝑓𝑓(𝑋𝑡+1) < 𝑓(𝑋𝑡)

𝑋𝑡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                        (26) 

3.3. Global prediction method of GRU network optimized by HOA  

As can be seen from the above analysis, the GRU has the advantages of simple structure and 

few parameters when predicting long time series, but the optimization speed is slow and it is easy to 

fall into local optimization. The HOA has strong global search ability and better adaptability. 

Therefore, an HOA-GRU optimization algorithm is proposed to effectively avoid the shortcomings 

of GRU network. 

The whole idea of optimizing GRU network parameters based on HOA is to optimize the weight 

and bias parameters in the GRU network after training by using the strong global search ability, local 

exploration ability and high adaptability of HOA. The parameters are constantly adjusted according to 

the fitness function, and finally the best parameters of the GRU prediction network are obtained. 

In the GRU network, there are 10 parameters that need to be optimized, and they are respectively 

𝑊
𝑟ℎ
~ ∈ 𝐼ℎ∗𝑛 , 𝑊

𝑥ℎ
~ ∈ 𝐼ℎ∗ℎ , 𝑊𝑥𝑟 ∈ 𝐼

ℎ∗𝑛 , 𝑊ℎ𝑟 ∈ 𝐼
ℎ∗ℎ , 𝑊𝑥𝑧 ∈ 𝐼

ℎ∗𝑛 , 𝑊ℎ𝑧 ∈ 𝐼
ℎ∗ℎ , 𝑊𝑦𝑡 ∈ 𝐼

𝑚∗ℎ , 𝑏𝑟 ∈ 𝐼
ℎ∗1 , 𝑏

ℎ
~ ∈

𝐼ℎ∗1, 𝑏𝑧 ∈ 𝐼
ℎ∗1. Here, ℎ is the number of hidden layers, 𝑛 is the number of historical data, and 𝑚 is 

the number of steps to predict the future. The HOA needs to optimize all parameters in the GRU 

network, and the search dimension D is 3 ∗ (ℎ ∗ 𝑛) + 3(ℎ ∗ ℎ) + 3 ∗ (ℎ ∗ 1) + 𝑚 ∗ ℎ. 

In the training process of HOA, the fitness function is required to guide the optimization direction 

of the algorithm, update the population and gradient, and solve the minimum fitness value until the 

termination condition of the algorithm is met. Therefore, the fitness function is: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ (𝑌𝑒,𝑖 − 𝑓𝑝𝑟𝑒𝑑(𝑋𝑒,𝑖|𝜃𝑝𝑟𝑒𝑑))
2𝑛𝑒

𝑖=1                      (27) 
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where 𝑛𝑒  is the time sequence length of the training data, 𝑌𝑒,𝑖  is the actual output value, 

𝑓𝑝𝑟𝑒𝑑(𝑋𝑒,𝑖|𝜃𝑝𝑟𝑒𝑑) is the output value of the prediction model, and 𝜃𝑝𝑟𝑒𝑑 is the GRU optimization 

parameter. 

4. Procedure of aircraft maneuver trajectory prediction method based on HOA-GRU network 

Combining atomic search optimization algorithm and GRU network, this section proposes an 

aircraft maneuver trajectory prediction method based on HOA optimized GRU network. The prediction 

model mainly takes the characteristic time series of the maneuver trajectory at the historical moment 

as the input and the characteristic time series of the maneuver trajectory at the future moment as the 

output, to dig the motion law of the maneuver trajectory. 

The maneuver trajectory prediction process based on HOA-GRU is shown in Figure 2. 

Extract the characteristic 

parameters of maneuver 

trajectory

Air task data

Obtain the trajectory 

prediction sample set

Set the number of 

hidden layers, number of 

historical data and 

number of future steps

Start
Initialize the HOA 

population distribution

Calculate the fitness of 

individuals

(Network output accuracy)

Whether termination 

conditions are met?

Optimize GRU network 

parameters

Construct HOA-GRU 

prediction network

Provide the real-time target 

historical trajectory in air 

combat

Predict future target trajectory

noyes

Self-searching 

phase

Guided searching phase

 

Figure 2. Flow chart of target maneuver trajectory prediction. 

The specific steps are as follows: 

Step 1: The prediction sample set of aircraft maneuver trajectory is constructed by extracting the 

characteristic parameters of air confrontation data maneuver trajectory; 

Step 2: Determine the GRU network structure, and take the bias value and weight value as the 

optimization object of HOA; 

Step 3: Initialize the atomic population distribution of HOA according to the GRU network 

structure; 

Step 4: According to Eq (27), the fitness value of individual hummingbirds of HOA is calculated 

to determine the global optimal solution of atomic population; 

Step 5: Update the speed and position of individual atoms according to the search strategy of 

hummingbirds; 

Step 6: Determine whether the termination conditions of HOA are met. If yes, output the global 
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optimal network parameters; if no, continue to calculate the fitness function and update the element 

population distribution until the termination condition is met. 

Step 7: Output the global optimal network parameters to obtain the optimal GRU network structure; 

Step 8: Input the real-time aircraft trajectory characteristic parameters into the HOA-GRU 

maneuver trajectory prediction model, output the future aircraft trajectory characteristic parameters, 

and then obtain the future aircraft trajectory. 

5. Simulation experiment and analysis 

In order to verify the feasibility and effectiveness of the HOA-GRU prediction method in solving 

the problem of maneuver trajectory prediction, the number of GRU hidden units and the size of HOA 

atomic population were obtained by flight parameter training of aerial aircraft maneuver trajectory in 

this section. Then, two basic maneuvering cases and one complex maneuvering case were selected to 

test the effectiveness and robustness of the maneuver prediction model based on HOA-GRU. In order 

to verify the superiority of the proposed method, HOA-GRU is compared with RNN [15], LSTM [16], 

GRU [17] and HOA-LSTM, and the specific parameters of the compared algorithms are shown in 

Table 1. The simulation environment is including Windows 10, the CPU is 2.80 GHz, 8 GB memory, 

and the programming software is Matlab. Each simulation experiment was run 20 times, and the 

prediction results of 20 times were counted. 

Table 1. Prediction algorithm parameter settings. 

Algorithm Parameter Settings 

RNN The number of hidden layer nodes is the same as that of HOA-GRU 

LSTM The number of hidden layer nodes is the same as that of HOA-GRU 

GRU The number of hidden layer nodes is the same as that of HOA-GRU 

HOA-LSTM 
The population size and number of hidden layer units are the same as HOA-

GRU 

HOA-GRU The parameters are obtained by the following experimental analysis 

5.1. Analysis and determination of HOA-GRU parameters 

In order to determine the input step size 𝑛  and output step size 𝑚  of the aircraft maneuver 

prediction model, the performance of the prediction model under different input step size and output 

step size was analyzed. 

Figure 3 shows the effects of different input step sizes and output step sizes on the performance 

of the HOA-GRU maneuvering prediction model. As can be seen from Figure 3(a), the Root Mean 

Square Error (RMSE) of aircraft maneuvering prediction based on the HOA-GRU does not change 

much as the input step size increases. As the output step size increases, the RMSE of HOA-GRU 

increases, but after the output step size is larger than 5, the RMSE changes little. As can be seen from 

Figure 3(b), the test prediction time slightly increases with the increase of input step size. With the 

increase of output step size, the prediction time does not change much. In summary, the input step size 

should be 2~5, and the output step size should be 1~3. In order to improve the prediction accuracy and 

real-time, this paper selects the input step size 𝑛 = 5 and the output step size 𝑚 = 1. 
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(b) the prediction time result 

Figure 3. The impact of different input step and output step on the prediction performance 

of HOA-GRU. 

In order to explore the effects of population size and number of hidden layer units on the 

performance of HOA-GRU based maneuver trajectory prediction model, the maneuver trajectory 

samples were used to test the prediction model, and the RMSE and prediction time under different 

parameters were calculated.  

Figure 4 shows the effects of different population sizes and the number of hidden layer units on 

the performance of HOA-GRU-based maneuvering prediction model. As can be seen from Figure 4(a), 

with the increase of population atom number, RMSE has a slight increasing trend. As the number of 

hidden layer units increases, RMSE decreases. As can be seen from Figure 4(b), the prediction time 

changes little with the increase of population size. With the increase of the number of hidden layer 

units, the prediction time tends to increase, and after the number of hidden layer units reaches 40, the 

prediction time increases sharply. In summary, the population size is selected as 20, and the number of 

hidden layer units is set as 30. 
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Hidden layer units

Population size

 

(a) the prediction error result 

 

(b) the prediction time result 

Figure 4. The impact of different population size and number of hidden layer units on the 

prediction performance of HOA-GRU. 

5.2. Simulation and analysis of maneuver trajectory prediction 

According to the parameter analysis in the previous section, the HOA-GRU-based maneuver 

trajectory prediction model has an input step size of 5, an output step size of 1, a population size of 20, 

and a number of hidden layer elements of 30. In the simulation experiment of maneuver trajectory 

prediction in this section, three operating conditions are selected, including two basic maneuverings 

and one complex maneuvering. Meanwhile, the prediction performance statistics include RMSE and 

prediction time. 

Case1: Climb maneuver 

Figure 5 shows the result of climb maneuver prediction based on HOA-GRU algorithm. As can 

be seen from Figure 5(a), the error of the characteristic deviation angle change rate 𝛥𝜓𝑒 of predicted 

trajectory based on HOA-GRU is less than 0.005°, the error of trajectory inclination angle 𝜃𝑒 is less 

than 1°, the error of altitude change rate 𝛥𝑧𝑒 is less than 0.05m, and the error of velocity change rate 

𝛥𝑣𝑒  is less than 0.2 m/s. As can be seen from Figure 5(b), the X-axis error, Y-axis error and Z-axis 

error of the position state of the climb maneuver trajectory do not exceed 4.4, 4.5 and 4.5 m respectively. 
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As can be seen from Figure 5(c), the climb maneuver trajectory based on HOA-GRU has little 

difference with the shape of the real trajectory. 

 
(a) the prediction results of maneuver trajectory characteristics 
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(b) the position state error result of maneuver trajectory 
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(c) the actual trajectory versus the predicted trajectory 

Figure 5. HOA-GRU prediction results for basic climb maneuver. 
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Case2: Dive maneuver 

Figure 6 shows the prediction results of dive maneuver based on HOA-GRU algorithm. As can 

be seen from Figure 6(a), the error of the characteristic deviation angle change rate 𝛥𝜓𝑒  of the 

trajectory prediction based on HOA-GRU is less than 0.005°, the error of the track inclination angle 

𝜃𝑒 is less than 2°, the error of the altitude change rate 𝛥𝑧𝑒 is less than 0.1m, and the error of the 

velocity change rate 𝛥𝑣𝑒  is less than 0.5 m/s. As can be seen from Figure 6(b), the X-axis error of the 

position state of the subduction maneuver trajectory is less than 2.1 m, the Y-axis error is less than 3m, 

and the Z-axis error is less than 6.7 m. As can be seen from Figure 6(c), the maneuver trajectory based 

HOA-GRU has little difference with the shape of the real trajectory. 
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(b) the position state error result of maneuver trajectory 
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(c) the actual trajectory versus the predicted trajectory 

Figure 6. HOA-GRU prediction results for basic dive maneuver. 

Case3: Complex maneuver 

Figure 7 shows the prediction results of complex maneuvering based on HOA-GRU algorithm. 

As can be seen from Figure 7(a), the error of the characteristic deviation angle change rate 𝛥𝜓𝑒, the 

track inclination angle 𝜃𝑒 , altitude change rate 𝛥𝑧𝑒  and velocity change rate 𝛥𝑣𝑒  of complex 

maneuver predicted trajectory are less than 5°, 5°, 1 m and 1 m/s respectively. From Figure 7(b), the 

X-axis error, Y-axis error and Z-axis error of the position state of the complex maneuver trajectory are 

less than 15, 15 and 20 m respectively. As can be seen from Figure 7(c), the complex maneuver 

trajectory based on HOA-GRU almost matches the real trajectory. 

In conclusion, the prediction error of aircraft maneuver trajectory based on HOA-GRU is small 

and meets the requirements of accuracy and time. 

 

(a) the prediction results of maneuver trajectory characteristics 
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(b) the position state error result of maneuver trajectory 
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(c) the actual trajectory versus the predicted trajectory 

Figure 7. The prediction results for complex maneuver based on HOA-GRU. 

Tables 2 and 3 respectively give the comparison results of the prediction error and prediction time 

of HOA-GRU and other prediction algorithms under three working conditions. As can be seen from 

Table 2, the prediction error of maneuver trajectory based on HOA-GRU is smaller than other 

algorithms, indicating that the prediction accuracy of this method is better than other algorithms. 

Table 2. Comparison of prediction errors of HOA-GRU and other prediction algorithms. 

No. RNN LSTM GRU HOA-LSTM HOA-GRU 

Case1 0.1179 0.1168 0.1151 0.1010 0.0899 

Case2 0.0072 0.0076 0.0087 0.0049 0.0045 

Case3 0.9757 0.2168 0.2453 0.0286 0.0113 
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As can be seen from Table 3, the prediction time of maneuver trajectory based on GRU is less 

than that of other algorithms, while the prediction time based on HOA-GRU is greater than that of 

GRU, but better than other algorithms. 

Table 3. Comparison of prediction time of HOA-GRU and other prediction algorithms. 

No. RNN LSTM GRU HOA-LSTM HOA-GRU 

Case1 0.0416 s 0.0066 s 0.0023 s 0.0029 s 0.0024 s 

Case2 0.0098 s 0.0029 s 0.0020 s 0.0043 s 0.0021 s 

Case3 1.9574 s 0.4662 s 0.3550 s 0.7567 s 0.3972 s 

In conclusion, from the perspective of prediction accuracy, the prediction error of HOA-GRU is 

the smallest. From the perspective of prediction time, GRU has the shortest prediction time. Because 

HOA-GRU uses HOA optimization mechanism, the prediction time is more than GRU, but it is better 

than other algorithms, and meets the real-time requirements of air tasks. 

6. Conclusions and discussion 

In order to achieve fast and accurate maneuver trajectory prediction in air task, a practical data-

driven algorithm of the maneuver trajectory prediction for the UAVs is proposed in this paper, which 

does not rely on accurate mathematical model and has global optimization performance. This method 

combines the advantages of model driven method and data-driven method, and obtains a better 

prediction accuracy and faster prediction speed for the UAVs. 

Specifically, aiming at the problems of low accuracy and poor timing of aircraft maneuvering 

trajectory prediction, this prediction method uses the HOA to optimize the original GRU network. On 

the one hand, this method combines the advantages of GRU search strategy to overcome the problem 

of gradient disappearance in long time series prediction. On the other hand, it makes use of the 

advantages of HOA to avoid the gradient optimization of GRU falling into local optimization. 

At present, the model is driven by real aircraft trajectory data under different working conditions, 

and many simulation results have been obtained. The results show that the proposed method can predict 

the trajectory of aircraft with a low error under the premise of real-time performance. Future studies 

should establish a more complete maneuvering trajectory unit library and increase the prediction 

accuracy and speed. Moreover, the multi-UAV cluster control experiments will be carried out to verify 

the effectiveness of maneuver trajectory prediction using the above algorithm in the real environment. 
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