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Abstract: Recently, Çanakçi and Schroll proved that associated with a string module M(w) there is an
appropriated snake graph G . They established a bijection between the corresponding perfect matching
lattice L (G ) of G and the canonical submodule lattice L (M(w)) of M(w). We introduce Brauer
configurations whose polygons are defined by snake graphs in line with these results. The developed
techniques allow defining snake graphs, which after suitable procedures, build Kronecker modules. We
compute the dimension of the Brauer configuration algebras and their centers arising from the different
processes. As an application, we estimate the trace norm of the canonical non-regular Kronecker
modules and some families of trees associated with some snake graphs classes.
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1. Introduction

In the last few years, it has been proved that Brauer configuration algebras (BCAs) are a helpful tool
in different fields of applied mathematics [1–3]. In particular, they were used in cryptography and the
theory of graph energy. Green and Schroll introduced such algebras as a generalization of Brauer graph
algebras. Bearing in mind that any Brauer graph algebra is a Brauer configuration algebra. Perhaps, the
main characteristic of BCAs is that their theory of representation is based on combinatorial data [4,5].

Snake graphs is another helpful combinatorial tool for a better understanding of the theory of repre-
sentation of some algebras with applications in number theory. In particular, in the theory of continued
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fractions. Such graphs were studied by Propp [6] in the context of the investigation of the Laurent
phenomenon associated with cluster algebras.

Çanakçi and Schiffler developed a complete theory for snake graphs, which were used to compute
the Laurent expansions of the cluster variables in cluster algebras of surface type [7–11]. Perfect match-
ings of suitable snake graphs parametrize terms in the Laurent polynomial of such variables. Çanakçi
and Schiffler proved that each snake graph G defines a unique continued fraction whose numerator is
given by the number of perfect matchings of a suitable snake graph.

Regarding applications of the snake graph theory, we recall that recently Çanakçi and Schroll [12]
defined abstract string modules associating to each of such modules a suitable snake graph, whose lat-
tice of perfect matchings is in bijective correspondence with the lattice of submodules of such abstract
module. Conversely, they proved that each snake graph defines a string module given by an orientation
of Dynkin type A, where every vertex is replaced by a copy of an algebraically closed field F, and the
arrows correspond to the identity map.

We establish interesting interactions between snake graph theory, matrix problems and the algebra
representation theory, in line with Çanakçi and Schroll’s work. We prove in this paper that some
suitable snake graphs can be used to build non-regular Kronecker modules, recall that if F is a field,

and Λ =
(
F F2

0 F

)
is the Kronecker algebra then the finite dimensional right Λ-modules are said to be

Kronecker modules. It is worth noticing that the category of Kronecker modules is equivalent to the
category of pairs (A, B) of matrices A, B over F of the same size. We also define Brauer configuration
algebras, for which it is possible associating a string snake graph or a subset of the set of vertices of
the preprojective (or preinjective) component of the Auslander-Reiten quiver of the Kronecker algebra
Λ. Dimensions of these Brauer configuration algebras are also given in this work.

Figure 1 shows how Brauer configuration algebras, snake graphs, and solutions of the Kronecker
problem are related to the main results presented in this paper.

This paper is distributed as follows; in Section 2, we recall definitions and notation used throughout
the document. In particular, we recall notions of Brauer configuration algebra (2.1), the Kronecker
problem (2.3) and snake graph (2.4). In Section 3, we make an overview of Çanakçi and Schroll’s
work regarding interactions between snake graphs and string modules. In Section 4, we give our main
results. We prove that some non-regular Kronecker modules can be built with some suitable snake
graphs. We introduce Brauer configuration algebras associated with snake graphs and estimate the
trace norm of some Kronecker trees and non-regular Kronecker modules. Concluding remarks are
given in Section 5.
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Figure 1. Brauer configuration algebras, the Kronecker problem, and the snake graph theory
are related via red arrows. Theorem 6 gives a way of building snake graphs with some
suitable Brauer configuration algebras. Theorems 7 and 8 prove that preprojective Kronecker
modules (of type II), and preinjective Kronecker modules (of type III), arise from some
suitable snake graphs. Theorem 11 gives the structure of a Brauer configuration algebra
induced by preprojective Kronecker modules. Theorem 12 provides the trace norm of some
Kronecker trees used to enumerate helices, also named Kronecker snake graphs (see Theorem
10). Theorem 13 gives the trace norm of some non-regular Kronecker modules.

2. Background and related work

In this section, we introduce some definitions and notations to be used throughout the paper. In
particular, it is given a brief overview regarding Brauer configuration algebras, and snake graph theory.

2.1. Brauer configuration algebras

Green and Schroll introduced Brauer configuration algebras as a generalization of Brauer graph
algebras [4, 5]. Its definition goes as follows:

A Brauer configuration algebra ΛΓ (or simply Λ if no confusion arises) is a bound quiver algebra
induced by a Brauer configuration Γ = (Γ0,Γ1, µ,O), where:

• Γ0 is a finite set of vertices.
• Γ1 is a collection of polygons, which are labeled multisets consisting of vertices (vertices repeti-

tion allowed). Each polygon contains more than one vertex.
• µ is a map from the set of vertices Γ0 to the set of positive integers N\{0} = N+, µ : Γ0 → N

+.

• O is a choice for each vertex α ∈ Γ0, of a cyclic ordering of the polygons in which α occurs as a
vertex including repetitions (see [4] for more details). For instance, if a vertex α ∈ Γ0 occurs in
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polygons Uii ,Ui2 , . . . ,Uim , for suitable indices i1, i2, . . . , im ∈ {1, 2, 3, . . . , n}, then the cyclic order
is obtained by linearly ordering the list, say

Uα1
i1
< Uα2

i2
< · · · < Uαm

im
, αis > 0. (2.1)

Where, Uαs
is
= U (1)

is
< U (2)

is
< · · · < U (αs)

is
means that vertex α occurs αs times in polygon Uis ,

denoted αs = occ(α,Uis). The cyclic order is completed by adding the relation Uim < Ui1 . Note
that, if Ui1 < · · · < Uit is the chosen ordering at vertex α. Then the same ordering can be
represented by any cyclic permutation.
The sequence (2.1) is said to be the successor sequence at vertex α denoted S α, which is unique
up to permutations. Note that, Green and Schroll [4] mentioned that different orientations choice
are typically associated to non-isomorphic Brauer configuration algebras.
Henceforth, in this paper, if a vertex α′ , α belongs to some polygons U j1 ,U j2 , . . .U jk ordered
according to the already defined cyclic ordering associated with the vertex α. Then, we will
assume that up to permutations, the cyclic ordering associated with the vertex α′ is built, taking
into account that polygons U j1 ,U j2 , . . .U jk inherit the order given by the successor sequence S α.
• If α ∈ Γ0 then there is at least one polygon Ui such that α ∈ Ui.

If α ∈ Γ0 then the valency val(α) of α is given by the identity

val(α) =
∑
U∈Γ1

occ(α,U). (2.2)

If α ∈ Γ0 is such that µ(α)val(α) = 1 then α is said to be truncated (it occurs once in just one
polygon). Otherwise α is a non-truncated vertex. It is worth pointing out that each polygon in a Brauer
configuration has at least one non-truncated vertex. A Brauer configuration without truncated vertices
is said to be reduced.

Latter on, we will assume that successor sequences associated with non-truncated vertices are of
the form (2.1). As Green and Schroll mentioned in [4], if α is a non-truncated vertex and val(α) = 1.
Then, there is only one choice for the associated cyclic ordering.

In [3], Cañadas et al. introduced Algorithm 1 to build the Brauer quiver QΓ and the Brauer con-
figuration algebra ΛΓ = FQΓ/IΓ induced by a Brauer configuration Γ, where IΓ is an admissible ideal
generated by suitable relations associated with the vertices occurrences.

From now on, if no confusion arises, we will assume notations Q, I and Λ instead of QΓ, IΓ and
ΛΓ, for a quiver, an admissible ideal, and the Brauer configuration algebra induced by a fixed Brauer
configuration Γ.

Since polygons in Brauer configurations are multisets, we will often assume that such polygons are
given by words of the form

w = xs1
1 xs2

2 . . . x
st−1
t−1 xst

t (2.3)

Where for each i, 1 ≤ i ≤ t, xi is an element of the polygon called vertex and si is the number of
times that the vertex xi occurs in the polygon [13]. In particular, if vertices xi in a polygon V of a Brauer
configuration are integer numbers then the corresponding word w will be interpreted as a partition of
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Algorithm 1: Construction of a Brauer configuration algebra
1. Input A reduced Brauer configuration Γ = (Γ0,Γ1, µ,O).
2. Output The Brauer configuration algebra ΛΓ = FQΓ/IΓ
3. Construct the quiver QΓ = ((QΓ)0, (QΓ)1, s : (QΓ)1 → (QΓ)0, t : (QΓ)1 → (QΓ)0)

(a) (QΓ)0 = Γ1,
(b) For each cover Ui < Ui+1 ∈ Γ1 define an arrow a ∈ (QΓ)1, such that s(a) = Ui and

t(a) = Ui+1,
(c) Each relation Ui < Ui defines a loop in QΓ,
(d) Each ordered set S α defines a cycle Cα = S α ∪ {Uim < Ui1} in QΓ called special cycle.

Special cycles are obtained from successor sequences by defining a suitable circular
relation, without loss of generality, we assume that a relation of the form Uim < Ui1 holds in
special cycles.

4. Define the path algebra FQΓ,
5. Construct the admissible ideal IΓ, which is generated by the following relations:

(a) If αi, α j ∈ U, U ∈ Γ1 and Cαi ,Cα j are corresponding special cycles then Cµ(αi)
αi −Cµ(α j)

α j = 0,
(b) If Cαi is a special cycle associated to the vertex αi then Cµ(αi)a = 0, if a is the first arrow of

Cαi ,
(c) If α, α′ ∈ Γ0, α , α′, a, b ∈ (QΓ)1, a , b, ab < Cα for any α ∈ Γ0 then ab = 0, if a ∈ Cα,

b ∈ Cα′ and ab ∈ FQΓ,
(d) If a is a loop associated to a vertex α with val(α) = 1 and µ(α) > 1 then aµ(α)+1 = 0.

6. ΛΓ = FQΓ/IΓ is the Brauer configuration algebra.
7. For the construction of a basis of ΛΓ follow the next steps:

(a) For each U ∈ Γ1 choose a non-truncated vertex αU and exactly one special α-cycle CαU at U,
(b) Define:

A = {p | p is a proper pre f ix o f some Cµ(α)
α },

B = {Cµ(α)
αU | U ∈ Γ1}.

(c) A ∪ B is a F-basis of ΛΓ.

Electronic Research Archive Volume 30, Issue 8, 3087–3110.



3092

an integer number nV associated with the polygon V where it is assumed that each vertex xi is a part of

the partition and si is the number of times that the part xi occurs in the partition and nV =
t∑

i=1
sixi. If the

order of the letters (or parts) xi matters in the construction of a word (partition) w (nV) then we will say
that w (nV) is a composition. Note that, in this case, each ordering of the letters define a polygon. We
let N(w) denote the set of compositions associated with a word w. N(w) is endowed with an injective
numbering fw : N(w) −→ N(w). If c is a composition. Then, fw(c) = j ∈ N(w) = {1, 2, . . . , |N(w)|}.
N(w) is endowed with the usual order of natural numbers. In such a case, if w′,w′′ ∈ N(w) and
fw(w′) < fw(w′′) is a covering, then we will assume that as polygons w′ < w′′ is a covering in the
corresponding successor sequences.

The following results describe the structure of Brauer configuration algebras [4, 14].

Theorem 1 (Theorem B, Proposition 2.7, Theorem 3.10, Corollary 3.12, [4]). Let Λ be a Brauer
configuration algebra with Brauer configuration Γ.

1) There is a bijective correspondence between the set of indecomposable projective Λ-modules and
the polygons in Γ.

2) If P is an indecomposable projective Λ-module corresponding to a polygon V in Γ. Then rad P is
a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices
of V and where the intersection of any two of the uniserial modules is a simple Λ-module.

3) A Brauer configuration algebra is a multiserial algebra.
4) The number of summands in the heart ht(P) = rad P/soc P of an indecomposable projective Λ-

module P such that rad2 P , 0 equals the number of non-truncated vertices of the polygons in Γ
corresponding to P counting repetitions.

5) If Λ′ is a Brauer configuration algebra obtained from Λ by removing a truncated vertex of a
polygon in Γ1 with d ≥ 3 vertices then Λ is isomorphic to Λ′.

Proposition 1 and Theorem 2 give formulas for the dimensions dimF Λ, and dimF Z(Λ) of a Brauer
configuration algebra Λ and its center Z(Λ) [4, 14].

Proposition 1 (Proposition 3.13, [4]). Let Λ be a Brauer configuration algebra associated with the
Brauer configuration Γ and let C = {C1, . . . ,Ct} be a full set of equivalence class representatives of
special cycles. Assume that for i = 1, . . . , t, Ci is a special αi-cycle where αi is a non-truncated vertex
in Γ. Then

dimF Λ = 2|Q0| +
∑

Ci∈C

|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the αi-cycle Ci

and ni = µ(αi).

Theorem 2 (Theorem 4.9, [14]). Let Λ = FQ/I be the Brauer configuration algebra associated to the
connected and reduced Brauer configuration Γ. Then

dimF Z(Λ) = 1 +
∑
α∈Γ0

µ(α) + |Γ1| − |Γ0| + #(Loops Q) − |CΓ|,

where CΓ = {α ∈ Γ0 | val(α) = 1, and µ(α) > 1}.

In this case, rad M denotes the radical of a module M, rad M is the intersection of all the maximal
submodules of M.
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2.2. The message of a Brauer configuration

The notion of the message of a Brauer configuration and labeled Brauer configurations were in-
troduced by Espinosa et al. [1, 15] to define suitable specializations of some Brauer configurations.
According to them, since polygons in a Brauer configuration Γ = (Γ0,Γ1, µ,O) are multisets, it is
possible to assume that any polygon U ∈ Γ1 is given by a word w(U) of the form

w(U) = αs1
1 α

s2
2 . . . α

st−1
t−1α

st
t (2.4)

Where for each i, 1 ≤ i ≤ t, si = occ(αi,U).
The message is in fact an algebra of words element WΓ associated with a fixed Brauer configuration

such that for a given field F the word algebra WΓ consists of formal sums of words with the form∑
αi∈F
U∈Γ1

αiw(U), 0w(U) = ε is the empty word, and 1w(U) = w(U) for any U ∈ Γ1. The product in this case

is given by the usual word concatenation. The formal product (or word product)

M(Γ) =
∏
U∈Γ1

w(U) (2.5)

is said to be the message of the Brauer configuration Γ.
The notion of labeled Brauer configurations is helpful to define suitable specializations of some

Brauer configuration algebras [15].
An integer specialization of a reduced Brauer configuration Γ = (Γ0,Γ1, µ,O) is a Brauer configu-

ration Γe = (Γe
0,Γ

e
1, µ

e,Oe) endowed with a suitable map e : Γ0 → N, such that

Γe
0 = Img e ⊂ N,

Γe
1 = e(Γ1) = {e(H) | H ∈ Γ1}, if H ∈ Γ1 then e(H) = {e(αi) | αi ∈ H} ∈ e(Γ1),

we(U) = ((e(α1)) f1(e(α2)) f2 . . . (e(αn)) fn), is the specialization under e of a word

w(U) = α f1
1 α

f2
2 . . . α

fn
n associated with a polygon U ∈ Γ1,

µe(e(α)) = µ(α), for any vertex α ∈ Γ0.

(2.6)

The orientation Oe is defined by the orientation O, in such a way that if

S α = Uα1
i1
< Uα2

i2
< · · · < Uαm

im

is a successor sequence associated with a vertex α ∈ Γ0 (see, (2.1)). Then,

S ′e(α) = (e(Ui1))
α1 < (e(Ui2))

α2 < · · · < (e(Uim))αm

is contained in the successor sequence S e(α) associated with e(α) ∈ Γe
0.

M(Γe) =
∑

U∈Γe
1

we(U) is the specialized message of the Brauer configuration Γ.

A Brauer configuration Γ = (Γ0,Γ1 = {Ui1 , . . . ,Uim}, µ,O) is said to be S -labeled (or simply labeled,
if no confusion arises) by an integer sequence S = {n1, n2, . . . , n|Γ1 |} if each polygon Ui j is labeled by
an integer number n j, 1 ≤ j ≤ |Γ1|. In such a case we often write
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Γ1 = {(Ui1 , n1), (Ui2 , n2), . . . , (Uim , nm)},
For each vertex α ∈ Γ0, it is defined a corresponding cyclic ordering of labeled polygons where α

occurs. One advantage of labeling Brauer configurations is that the set S can be used to systematically
define the orientation associated with each vertex or obtain the polygons recursively [15].

It is worth noticing that the set S used to label a Brauer configuration can be any finite set. In this
paper, we also use finite well-ordered sets of matrices to label Brauer configurations.

As an example, we recall that Espinosa [15] defined the following labeled Brauer configuration
K = (K0,K1, µ,O), where:

K0 = {α
h
1, α

h
2, . . . , α

h
k | 1 ≤ h ≤ k},

K1 = {(U1, n1), (U2, n2), . . . , (Uk, nk)) | αi
w ∈ (Ui, ni), ni ≥ 2}.

(2.7)

Vertices αi
w ∈ (Ui, ni) ∈ K1 are given by the following formula

αi
w = ni − g(wi−1, i) − g(wi, i) − 2, (2.8)

where for a given vector w = (w1,w2, . . . ,wk) ∈ {0, 1}k, wi ∈ {0, 1}, g is a map g := {0, 1} × Z+ → {1, 2}
defined by

g(0, i) =

2, if i is even;
1, if i is odd;

and g(1, i) =

1, if i is even;
2, if i is odd;

.

In particular, g(w0, 1) = g(wk, k) = 0. The definition of g can be reformulated by the rule g(x, n) =
2 − (x + n (mod 2)).
µ(α) = 2, for any vertex α ∈ Γ0.
Successor sequences are defined by relations of the form (Ui, ni) < (Us, ns), if i < s (see (2.1)).
Suitable specializations of K are used in Theorem 5 to describe the number of perfect matchings

of some snake graphs.

2.3. The Kronecker problem

The Kronecker matrix problem consists of finding canonical Jordan form of pairs (A, B) of matrices
(with the same size) with respect to the following elementary transformations:

(i) All elementary transformations on rows of the block matrix (A, B).
(ii) All elementary transformations made simultaneously on columns of A and B having the same

index number.

Weierstrass solved this problem in 1867 for some particular cases, whereas Kronecker in 1890
solved the complex number field case. We recall that solutions of the Kronecker problem allow solving
systems of linear differential equations of the form Ax′(t) + Bx(t) = f (t).

Nowadays, it is known that if F is an algebraically closed field, then up to isomorphism every
indecomposable Kronecker pair (A, B) belongs to one of the following four classes shown in Figures
2–4 [16].
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0: In C(p) ,

Figure 2. Regular Kronecker modules of type 0. C(p) is a Frobenius matrix or companion
matrix of a minimal polynomial ps(t), with n = s∂p(t), ∂p(t) denotes the degree of the
polynomial p(t).

I = I∗: (a) In Jn(0) ,

(b) Jn(0) In ,

Figure 3. Regular Kronecker modules of type I. Jn(0) ∈ {J+n (0), J−n (0)} and J±n (0) denotes a
corresponding upper or lower Jordan block. Whereas, I∗ denotes the dual case defined by the
classification problem.

II = III∗:
→

In

←

In ,

III = II∗: I↑n I↓n .

Figure 4. Non-regular Kronecker modules.
→

In (
←

In, respectively) denotes an n× (n+ 1) matrix
obtained from the identity In by adding a column of zeroes in fact the last column (the first
column, respectively) in these matrices consists only of zeroes. I↑n (I↓n, respectively) denotes
an (n + 1) × n matrix obtained from the identity In by adding a row of zeroes.

Solving the Kronecker problem is equivalent to give a complete classification of the FQ-modules
over the path algebra FQ, where Q is the quiver shown in Figure 5.

Figure 5. 2-Kronecker quiver.

Figure 6 shows the preprojective component of the Auslander-Reiten quiver of the 2-Kronecker
quiver Q, which has as vertices indecomposable representations of type III. The preinjective component
has indecomposable representations of type III∗ as vertices.

Electronic Research Archive Volume 30, Issue 8, 3087–3110.
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Figure 6. Preprojective component of the Auslander-Reiten quiver associated with the 2-
Kronecker quiver.

Henceforth, we let (n+1, n) ((n, n+1)) denote a representative of the indecomposable preprojective
(preinjective) Kronecker modules class obtained from a representation of type III (II) via elementary
transformations of type (ii). Several invariants can be defined for Kronecker modules, for instance, the
Frobenius cells Fn are invariants for indecomposable Kronecker modules of type 0, whereas Jordan
blocks Jn(0) are invariants for indecomposable Kronecker modules of type I.

This paper proves that non-regular Kronecker modules can be defined by using some suitable snake
graphs. So, it is possible to argue that each non-regular Kronecker module has associated a set of snake
graphs whose cardinality is invariant under admissible transformations.

2.4. Snake graphs

A tile G is a square in the plane whose sides are parallel or orthogonal to the elements in the standard
orthonormal basis of the plane (as in [10] in this work a tile G is considered as a graph with four vertices
and four edges in the obvious way).

A snake graph G is a connected planar graph consisting of a finite sequence of tiles G1,G2, . . . ,Gd,
such that Gi and Gi+1 share exactly one edge ei and this edge is either the north edge of Gi and the
south edge of Gi+1 or the east edge of Gi and the west edge of Gi+1, (cf. [7–11]). Denote by Int(G ) =
{e1, e2, . . . , ed−1} the set of interior edges of the snake graph G . We will use the natural ordering of the
set of interior edges of G , so that ei is the edge shared by tiles Gi and Gi+1. A snake graph is called
straight if all its tiles lie in one column or one row, and a snake graph is called zigzag if no three
consecutive tiles are straight. Two snake graphs are isomorphic if they are isomorphic as graphs.

Figure 7. Example of a snake graph and one of its perfect matchings.
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For positive integers n1, n2, . . . , nk, we let G f (n1, n2, . . . , nk) denote a snake graph, with n1 ≥ 2 tiles
in the first row, n2 ≥ 2 in the first column, n3 ≥ 2 tiles in the second row and so on up to nk ≥ 2. In this
case the last tile in a given row is the first tile in the next column (if it exists) vice versa the last tile in
a given column coincides with the first tile in the next row. As an example, in Figure 7, it is shown the
snake graph G f (5, 3, 3, 2, 5, 4, 2).

A perfect matching P of a graph G is a subset of the edges of G such that every vertex of G is
incident to exactly one edge in P. We denote by Match(G) the set of perfect matchings of G.

A sign function f of a snake graph G is a map f from the set of edges of G to the set of signs {+,−},
such that on every tile in G the north and the west edge have the same sign, the south and the east have
the same sign, and the sign on the north edge is opposite to the sign on the south edge. For example,
in Figure 8, we show a labeling of the snake graph G f (5, 3, 3, 2, 5, 4, 2).

Figure 8. Snake graph G f (5, 3, 3, 2, 5, 4, 2) = G [2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 3]. The first notation
(second notation) is adopted according to the number of tiles in each contained straight snake
graph (signs associated with internal tiles) of the graph G .

Note that, on every snake graph there are exactly two sign functions. A snake graph is determined up
to symmetry by its sequence of tiles together with a sign function on its interior edges {e1, e2, . . . , ed−1}.
Henceforth, it will be assumed the notation e0 = sw(G ) (the edge at the southwest of the first tile).

If ed ∈ ne(G ) (the edge at the northeast of the last tile) then sign function can be extended in a
unique way to all edges in G and it is obtained a sign sequence

sgn(G ) = { f (e0), f (e1), f (e2), . . . , f (ed−1), f (ed)}

Actually this sequence uniquely determines the snake graph and a choice of a north east edge
ed ∈ ne(G ).

A positive finite continued fraction is a function

[a1, a2, . . . , an] = a1 +
1

a2 +
1

a3+
1

a4+
1

...+ 1
an

(2.9)

on n variables a1, a2, . . . , an, ai ∈ Z≥1. Now let [a1, a2, . . . , an] be a positive continued fraction and let
d = a1 + a2 + · · · + an − 1 and consider the sign sequence:
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(−ε, . . . ,−ε︸       ︷︷       ︸
a1

, ε, . . . , ε︸  ︷︷  ︸
a2

, . . . ,±ε, . . . ,±ε︸       ︷︷       ︸
an

), (2.10)

where ε ∈ {+,−},

−ε =

+, if ε = −;
−, if ε = +;

sgn(ai) =

−ε, if i is odd;
ε, if i is even;

Thus each integer ai corresponds to a maximal subsequence of constant sign sgn(ai) in the sequence
(2.10).

The snake graph G [a1, a2, . . . , an] of the positive continued fraction [a1, a2, . . . , an] is the snake
graph with d tiles determined by the sign sequence (2.10). In particular, G [1] is a single edge and the
continued fraction of the graph in Figure 8 is [2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 3].

Çanakçi and Schiffler proved Theorems 3 and 4 regarding snake graphs and their relationships with
continued fractions [7–11].

Theorem 3. The number of snake graphs with exactly N perfect matchings is ϕ(N), where ϕ is the
totient Euler function.

Theorem 4. 1) The number of perfect matchings of G [a1, a2, . . . , an] is equal to the numerator of
the continued fraction [a1, a2, . . . , an].

2) The number of perfect matchings of G [a2, a3, . . . , an] is equal to the denominator of the continued
fraction [a1, a2, . . . , an].

3) If Match(G ) denotes the number of perfect matchings of the snake graph G then [a1, a2, . . . , an] =
Match(G )[a1,a2,...,an]
Match(G )[a2,a3,...,an] .

For instance, the snake graph G [2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 3] shown in Figure 8 has 3221 perfect
matchings.

The following theorem proves that the number of perfect matchings of a snake graph is given by a
message specialization of the Brauer configuration K [15] (see, formulas (2.7)).

Theorem 5 (Theorem 14, [15]). For all n1, n2 . . . , nk ≥ 2, we have

Match(G f (n1, n2, . . . , nk)) = M(K e),

where e : K0 → N is a specialization of the Brauer configuration given by identities (2.7) and (2.8)
such that e(αi

wi
) = Fαi

wi
with F j being the jth Fibonacci number.

3. String modules and snake graphs

An abstract string is a word of the form w = a1a2 . . . an, with a j ∈ {→,←}, 1 ≤ j ≤ n. ∅ is also
considered an abstract string. If a j =→ (←), for any j then w is said to be a direct string (inverse
string).

According to Çanakçi and Schroll [12], the following procedure allows building a snake graph with
n + 1 tiles from an abstract string w = a1a2 . . . an:
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1) If w = ∅ then the corresponding abstract snake graph is given by a single tile.
2) If there is at least one letter, then a1, a2, . . . , an is a concatenation of a collection of alternating

maximal direct and inverse strings wi such that w = w1w2 . . .wk. Each wi might be of length 1.
3) For each wi, it is constructed a zigzag snake graph Gi with l(wi)+1 tiles. where l(wi) is the number

of direct or inverse arrows in wi. Let Gi be the zigzag snake graph with tiles T i
1, . . . ,T

i
l(wi)+1, such

that T i
2 is glued to the right (resp. on top) of T i

1 if wi is direct (resp. inverse).
4) We now glue Gi+1 to Gi, for all i, by identifying the last tile T i

l(wi)+1 of Gi and the first tile T i+1
1 of

Gi+1, such that, T i
l(wi)

, T i
l(wi)+1, T i+1

2 is a straight piece.

w = -1 -2 -3 �4 5
1 2

3 4 5

Figure 9. Example of the snake graph associated with a 4-arrow string. The string module
M(w) over the corresponding Dynkin algebra of type A is obtained replacing every vertex by
a copy of a field F and the arrows correspond to the identity.

Çanakçi and Schroll proved that if A = FQ/I is a bound quiver algebra and M(w) is a string module
over A with string w and with associated snake graph G . Then the perfect matching lattice L (G ) of G
is in bijection with the canonical submodule lattice L (M(w)) of M(w).

4. Main results

Results in this section allow establishing interactions between Brauer configuration algebras, Kro-
necker modules and snake graphs. We start by defining a labeled Brauer configuration whose polygons
have associated a unique snake graph as Çanakçi and Schroll describe in [12].

4.1. Interactions between Brauer configuration algebras and snake graphs

We letN(w) denote the set of all possible compositions associated with a word w = xs1
1 xs2

2 . . . x
st−1
t−1 xst

t

(see (2.4)).

For n ≥ 3 fixed. We denote by Sn, the labeled Brauer configuration (Sn
0,S

n
1, µ,O), such that

S
n
0 = {0, 1},
S

n
1 = {(Ui, j) | w(Ui) ∈ N(w),w = 0(i)1(n−i), 0 < i ≤ n, j = fw(w(Ui))},

µ(0) = µ(1) = 1.
(4.1)

Note that a labeled polygon (Ui, j) contains i zeroes and n − i, 1’s. Successor sequences associated
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with vertices 0 and 1 are defined by the following relations:

(Ui, j) < (Ui, k), if j < k,

(Ui, j) < (Ui+1, k), for any j, k,

(Ui,Mi) < (Ui+1,mi+1) is a covering if Mi = Max{ fw(w(Ui)) | w = 0(i)1(n−i)}, and
mi+1 = Min{ fw(w(Ui+1)) | w = 0(i+1)1(n−i−1)},

S 0 = (U1, 1)(1) < (U1, 2)(1) < · · · < (U1,

(
n
1

)
)(1) < (U2, 1)(2) < · · · < (U2,

(
n
2

)
)(2) < · · · < (Un, 1)(n),

S 1 = (U1, 1)(n−1) < (U1, 2)(n−1) < · · · < (U1,

(
n
1

)
)(n−1) < (U2, 1)(n−2) < · · · < (U2,

(
n
2

)
)(n−2) <

. . . (Un−1,

(
n

n − 1

)
− 1)(1) < (Un−1,

(
n

n − 1

)
)(1) (see (2.1)).

(4.2)

Theorem 6. For n ≥ 3 fixed, the following properties hold for the Brauer configuration algebra ΛSn

dimF ΛSn = 2(2n + ten
k−1 + t f n

k −1 − 1),

dimF Z(ΛSn) = (n − 1)2n − n + 3.
(4.3)

Where

en
k =

n∑
k=1

k
(
n
k

)
,

f n
k =

n−1∑
k=1

(n − k)
(
n
k

)
,

ti =
i(i + 1)

2
is the ith triangular number

(4.4)

Furthermore, each labeled polygon (Ui, j) ∈ Sn
1 is defined by a n + 1-tile snake graph.

Proof. For n ≥ 3 fixed, we note that, the number of compositions associated with a word-polygon
w = 0(k)1(n− j) ∈ N(w) is

(
n
k

)
. Thus,

|Sn
1| = 2n − 1, (4.5)

Then, the occurrences of 0 in w is k
(

n
k

)
. Therefore, val(0) =

n∑
k=1

k
(

n
k

)
= en

k and val(1) =
n−1∑
k=1

(n− k)
(

n
k

)
=

f n
k . The dimension of the algebra is obtained by definition.

The number of loops associated with a word of the form 0(n) = n − 1, and the number of loops
associated with a word of the form w(Uk) = 0(k)1(n−k) is n − 2. Then, #(Loops (N(w)) = (n − 2)

(
n
k

)
,

1 ≤ k ≤ n − 1. Thus, #(Loops QSn) =
n−1∑
k=1

(n − 2)
(

n
k

)
+ (n − 1), 1 ≤ k ≤ n − 1. Then, the dimension

dimF Z(ΛSn) of the center is given by the identities dimF Z(ΛSn) = 1+ |Sn
1|+ (n− 2)(2n − 2)+ (n− 1) =

(n − 1)2n − n + 3.
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The map σ : Sn
0 −→ {→,←}, such that σ(0) =→, σ(1) =←, with σ(w′) = σ(0(i)1(n−i)) =

(σ(0))(i)(σ(1))(n−i), for any composition-polygon w′ ∈ Sn
1. Thus, each polygon has associated an ab-

stract string, for which it is possible defining a snake graph G with n + 1 tiles. We are done. □

4.2. Interactions between Brauer configuration algebras, Kronecker modules and Snake graphs

In this section, we recall the notion of helix introduced by Cañadas et al. [17] These helices are
nothing but snake graphs, if we consider entries of the considered matrices as tiles.

As in the case of string modules (see Section 3), the following theorems prove that both preprojec-
tive and preprojective Kronecker modules can be built from suitable snake graphs.

Theorem 7. For n ≥ 2 fixed, the (2n + 1)−terms snake graph

Gpnk = G (n + 1, n + 1, 2, 2, n + 1, 2, n + 3, 2, n + 1, 2, . . . , n + 3, 2, n + 1, 2, . . . , 2, n + 3)

induces the indecomposable preprojective Kronecker module (n+1, n). Furthermore the corresponding
continued fraction of Gpnk has the following form

[2, 1, 1, . . . , 1︸      ︷︷      ︸
n−2

, 2, 1, 1, . . . , 1︸      ︷︷      ︸
n−2

, 4,∆, 2],

where
∆ = 1, 1, . . . , 1︸      ︷︷      ︸

n−2

, 3, 1, 1, . . . , 1︸      ︷︷      ︸
n

, 3, 1, 1, . . . , 1︸      ︷︷      ︸
n−2

, 3 1, 1, . . . , 1︸      ︷︷      ︸
n

, . . .

and the length l(∆) of ∆ is given by the following identities:

l(∆) =

n(n − 1) − 1, if n is odd;

n(n − 1) − 2, if n is even;

Proof. Let us consider that an indecomposable matrix block has n columns and n + 1 rows, which are
defined by the straight snake graphs in alternative fashion. First subsnake graph corresponds to the first
row of the matrix block, second subsnake graph corresponds to the first column of the matrix block
and so on.

Odd rows and the first column are labeled taking into account that if the last tile of a given row ri

is not labeled, then the first tile of the next column ci is not labeled. Besides, the labels determine the
way that rows and columns of a matrix block must be constructed. The procedure goes as follows:

Labeled horizontal straight snake graphs indicates that each tile corresponds to an entry of a row of
the matrix block developed from the right to the left. Whereas, a labeled vertical straight snake graph
indicates that the tiles correspond to the entries of a column of the matrix block developed from the top
to the bottom.

An indecomposable preprojective Kronecker module (n + 1, n) is obtained from Gpnk by assigning
alternatively either 0 or a 1 to the ends of the straight snake graphs constituting Gpnk. In this case, a 0
is assigned to the first tile in the first row, then a 1 is assigned to the corresponding last tile, which is
the first tile of the next straight snake graph, which has assigned a 0 in its last tile, and the procedure
goes on. Numbers 1’s are entries of the identities in the matrix block, which can be completed by
definition. □
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The following example illustrates step by step the arguments posed in the proof of Theorem 7.
Considering the labeled snake graph Gp3k presented in Figure 10. In Figure 11, 0 and 1 are assigned
alternately to the ends of each straight snake subgraph, in Figure 12, Gp3k is rolled up into the matrix
block and finally using the definition of a preprojective Kronecker module we complete each matrix
block (see Figure 4).

Gp3k =

Figure 10. Labeled snake graph Gp3k.

0 1

0 1

0 1

0 1

Figure 11. Assigned a 0 or 1 to the ends of each straight snake subgraph.

0

1 0

0

1

1

1

0

Figure 12. The defined snake graph is rolled up into the matrix block.
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0

1

0

1

1

0

1

0

Figure 13. The preprojective Kronecker module is completed by definition.

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0

The following theorem is the preinjective version of Theorem 7.

Theorem 8. For n ≥ 3 fixed. The (2n + 1)−terms snake graph

Gink = G (3, n, 4, 2, n + 2, 2, n + 4, 2, n + 2, . . . , 2, h),

where h ∈ {n+2, n+4} induces the indecomposable preinjective Kronecker module (n+1, n). Further-
more the corresponding continued fraction of Gink has the following form

[2, 2, 1, 1, . . . , 1︸      ︷︷      ︸
n−3

, 2, 1, 3, 1, 1, . . . , 1︸      ︷︷      ︸
n−1

,∆, 2],

where ∆ = 3, 1, 1, . . . , 1︸      ︷︷      ︸
n+1

, 3, 1, 1, . . . , 1︸      ︷︷      ︸
n−1

, 3, 1, 1, . . . , 1︸      ︷︷      ︸
n+1

, 3 1, 1, . . . , 1︸      ︷︷      ︸
n−1

, . . . and the length of ∆, l(∆) is

l(∆) =

n(n − 2) − 3, if n is odd;

n(n − 2) − 2, if n is even;

The following result regarding snake graphs Gpnk and Gink is easy to see.

Proposition 2. If l(G ) denotes the length of a snake graph G , then

l(Gpnk) =

n(n + 2) − 2, if n is odd;

n(n + 2) − 1, if n is even;

and

l(Gink) =

n(n + 2) − 3, if n is odd;

n(n + 2) − 2, if n is even;
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4.2.1. Helices

Helices were introduced by the first autor et al. in [17]. In this paper, we observe that such helices
are nothing but snake graphs associated with non-regular Kronecker modules. For n ≥ 1, let Pn be an
(n + 1) × 2n, k-matrix then Pn can be partitioned into two (n + 1) × n matrix blocks A and B. In such a
case we write Pn = (Pn, A, B, n), where A = (ai, j) = [CA

i1 , . . . ,C
A
in], B = (bi, j) = [CB

j1 , . . . ,C
B
jn], with CA

ir
(CB

js
) columns of Pn, if IA (IB) is the set of indices IA = {ir | 1 ≤ r ≤ n} (IB = { js | 1 ≤ s ≤ n}) then

IA ∩ IB = ∅, and |IA| = |IB| = n. In this case, each column of the matrix Pn belongs either to the matrix
A or to the matrix B and a word WPn = lm1 . . . lmn . . . lm2n , lmh ∈ {A, B}, 1 ≤ h ≤ 2n is used to denote
matrix Pn by specifying the way that columns of Pn have been assigned to the matrices A and B.

A row rPn of Pn has the form (rA, rB) with rA (rB) being a row of the matrix block A (B). We let RA

(RB) denote the set of rows of the matrix block A (B), whereas Hn denotes the set of all matrices Pn

with the aforementioned properties.
An helix associated with a matrix Pn of type Hn is a connected directed graph h whose construction

goes as follows:

1) (Vertices) Vertices of h are entries of blocks A and B. We let h0 denote the set of vertices of h.

(a) Fix two different rows iPn = (iA, iB) and jPn = ( jA, jB) of Pn.
(b) Choose sets PA and PB of pivoting entries also called pivoting vertices, PA ⊂ A, PB ⊂ B such

that |PA| = |PB| = n. Entries in A\PA and B\PB are said to be exterior entries or exterior
vertices. In this case, if x ∈ PA (x ∈ PB) then x < iA (x < jB).

PA and PB are sets of the form:

PA = {ai1, j1 , ai2, j2 , . . . , ais, js}, jx , jy if and only if ix , iy,

PB = {bt1,h1 , bt2,h2 , . . . , bts,hs}, hx , hy if and only if tx , ty.
(4.7)

Where, air , jr ∈ RA\iA, btm,hm ∈ RB\ jB, 1 ≤ r,m ≤ s. It is chosen just only one entry air , jr

(btm,hm) for each row in RA\iA (RB\ jB) and for each column CA (CB) of A (B).

2) (Arrows) arrows in h are defined in the following fashion:

(a) Arrows in h are either horizontal or vertical. We let h1 denote the set of arrows of h.
(b) Horizontal arrows connect a vertex of the matrix block A (B) with a vertex of the matrix

block B (A). Vertical arrows only connect vertices in the same matrix block. Starting and
ending vertices of horizontal (vertical) arrows are entries of the same row (column) of Pn.

(c) The starting vertex of a horizontal (vertical) arrow is an exterior (pivoting) vertex. The ending
point of a horizontal (vertical) arrow is a pivoting (exterior) vertex.

(d) A pivoting vertex occurs as ending (starting) vertex just once. Thus, h does not cross itself.
(e) The first and last arrow of h are horizontal and its starting vertex belongs to iA.
(f) Each vertical arrow is preceded by a unique horizontal arrow, and unless the first arrow, any

horizontal arrow is preceded by a vertical arrow.
(g) All the rows of Pn are visited by h, and no row or column of Pn is visited by arrows of h more

than once.
(h) There are not horizontal arrows connecting exterior vertices of jA with vertices of jB.
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Figure 14 is an example of an helix of type

(4P3 , 2P3 , PA = {p3,2, p1,3, p2,5}, PB = {p4,1, p1,4, p3,6}),

associated with a matrix P3 of type H3 and defined by the word WP3 = BAABAB.

p1,1 p1,2
//p1,3 p1,4

��

p1,5 p1,6

p2,1 p2,2 p2,3 p2,4
// p2,5 p2,6 jB

p3,1
// p3,2

OO

p3,3 p3,4 p3,5 p3,6

p4,1

OO

p4,2
oo p4,3 p4,4 p4,5 p4,6 iA

Figure 14. Example of a helix or snake graph (considering vertices as tiles of a snake graph
glued according to the orientation of the arrows. Bearing in mind that the cases ← and ↓
must be reversed for the gluing process).

The following Theorems 9 and 10 were proved by the first author et al. in [17].

Theorem 9 (Corollary 9, [17]). If for n ≥ 1, Pn and P′n are equivalent preprojective Kronecker modules
with dimension vector of the form [n+1 n] and corresponding sets of helices HPn and HP′n then |HPn | =

|HP′n |.

Helices associated with preprojective (preinjective) Kronecker modules are said to be preprojective
(preinjective) Kronecker snake graphs or simply Kronecker snake graphs, if no confusion arises (note
that, preprojective Kronecker snake graphs Gpnk are helices).

(2, 1) = 0 -
?�1
1
0 ��

��

��
��•

?•�
���
•2

1

3

-1• 2•

(3, 2) =
0
1
0

0
0

1
0
1

0
1
0

0

-

?�6

-

Figure 15. Examples of Kronecker snake graphs. The number of such graphs equals the
number a(n) of ways of connecting n + 1 equally spaced points on a circle with a path of n
line segments ignoring reflections.
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Theorem 10 (Theorem 10, [17]). If for n ≥ 1, Pn denotes a preprojective Kronecker module then the
number of helices associated with Pn is hPn

n = n!⌈ n
2⌉ where ⌈x⌉ denotes the smallest integer greatest

than x.

The proof of Theorem 10 is based on a bijection between maximal paths (connecting the vertex-root
with vertices at the last level) of trees (Kronecker trees) Tn shown in Figure 16 and Kronecker snake
graphs, for n ≥ 1 fixed.

n-children

(n − 2) · · · (n − 2) · · · (n − 1)

T(n−2) · · · T(n−2) · · · T(n−2) (n − 2)

...

(1)

· · · (n − 2)

...

(1)

· · · (n − 2)

...

(1)

(n − 2)-children

.....................................................................................................................
...
............

...................................................................................
.....
.......
.....

........................................................................................................................ .........
...

.....................................................................................................................
....
............

...................................................................................
.....
.......
.....

......................................................................................................................... ........
....

........................................................................................................................
....
............

...................................................................................
.....
.......
.....

............................................................................................................................ ........
....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

Figure 16. Kronecker tree of type Tn associated with the preprojective Kronecker module
(n + 1, n).

4.2.2. Brauer configuration algebras induced by preprojective Kronecker modules

This section introduces Brauer configuration algebras induced by Kronecker modules, which ac-
cording to Theorem 7 can be constructed from a snake graph.

For n ≥ 1, let Ψn be a labeled Brauer configuration, such that Ψn = (Ψn
0,Ψ

n
1, µ,O). The labeling is

given by (n + 1) × n matrix blocks A, and B related to canonical preprojective Kronecker modules (see
Figure 4). Ψn satisfies the following conditions:

Ψn
0 = {0, 1},
Ψn

1 = {(U
n
1 , A), (Un

2 , B)},

w(Un
1) = w(Un

2) = 0(n2)1(n), are the words associated with the polygons.
µ(0) = µ(1) = 1. The following are the corresponding successor sequences

S 0 = (Un
1 , A)(1) < (Un

1 , A)(2) < · · · < (Un
1 , A)(n2) < (Un

2 , B)(1) < (Un
2 , B)(2) < · · · < (Un

2 , B)(n2),

S 1 = (Un
1 , A)(1) < (Un

1 , A)(2) < · · · < (Un
1 , A)(n) < (Un

2 , B)(1) < (Un
2 , B)(2) < · · · < (Un

2 , B)(n).

(4.8)
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QΨn = ◦
Un

1 ,A

l11
��

l10
&&

α1
0

((

β1
1

��
◦

Un
2 ,B

l21




l20

gg

α2
0

ee

β2
1

\\

Figure 17. Example of the Brauer quiver defined by the Brauer configuration Ψn, l1
1 (l1

2) de-
notes the family of n loops associated with the vertex 1 in (U1, A) ((U2, B)). In the same way,
l0
1 (l0

2) denotes the family of 2n2 − 1 loops associated with the vertex 0 at the corresponding
polygon.

Admissible ideal I such that the Brauer configuration algebra ΛΨn = FQΨn/I is generated by the
following relations, in this case, we use symbols αh

0,i, and βh′
1, j to denote arrows in sets αh

0, and βh
1,

respectively, h = 1, 2.

1) lh
0, jβ

h
1, for all lh

0, j ∈ lh
0, h = 1, 2.

2) lh
1,iα

h
0, for all lh

1,i ∈ lh
1, αh

0 ∈ β
h
1.

3) (lh
m,n)2 = lh

m,n, for all possible values of n, m = 0, 1.
1. αh

0β
h′
1 , βh

1α
h
0.

Figure 17 shows the shape of a Brauer quiver QΨn associated with a Brauer configuration Ψn, for
n ≥ 1 fixed.

Theorem 11. For n ≥ 1 fixed, the following properties hold for the Brauer configuration algebra ΛΨn

dimF ΛΨn = 2(2 + t2n2−1 + t2n−1),
dimF Z(ΛΨn) = 2n2 + 2n − 1.

(4.9)

Where ti denotes the ith triangular number.

Proof. It suffices to observe that val(0) = 2n2, and val(1) = 2n. □

4.2.3. The Kronecker energy

If M(Q) is the m × n-adjacency matrix of a quiver Q. And σ1 ≥ σ2 ≥ · · · ≥ σn is the set of singular
values of M(Q) [3]. Then, the trace norm ||M(Q)||∗ of M(Q) is given by the sum

||M(Q)||∗ =
min{m,n}∑

i=1

σi. (4.10)

The trace norm of a quiver is a generalization of the energy E(G) of a graph G, which is the sum of
the absolute values of its adjacency matrix eigenvalues.
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The main problem in the theory of graph energy consists of estimating the energy value (trace norm
value) of significant classes of graphs (matrices). Bearing in mind that the trace norm of a given matrix
is the sum of its singular values as defined in identity (4.10).

In this paper, we estimate the trace norm value of a Kronecker tree of type Tn (see Figure 16) defined
by preprojective Kronecker snake graphs.

Theorem 12. For n ≥ 1 fixed, the trace norm ||M(Tn)||∗ of the Kronecker tree Tn satisfies the following
inequalities:

(n − 1)(n)(4n + 1)
6

+ d⌈
√

n⌉ ≤ ||M(Tn)||∗ ≤
2n2(n − 2)3/2 + 6

√
n

3
. (4.11)

Where n2 is the number of bifurcations of Tn.

Proof. By construction, we note that, there is a bijection f : B −→ S , where B is the set of

ramifications of the form bn =

•

•• •︸︷︷︸
n− vertices

and the set of singular values of M(Tn) given by the rule

f (bn) =
√

n. In fact, the characteristic polynomial Pn(λ) has the form:

Pn(λ) = λn0(λ − 1)n1(λ −
√

2)n2 . . . (λ −
√

n)nk , (4.12)

nk = 1. In this case, n2 is the largest multiplicity. Thus,

n∑
j=0

√
j = ||M(Tn)||∗ ≤ n2(

n−2∑
i=1

√
i) +
√

n ≤ n2
2(n−2)3/2

3 + 2
√

n = 2n2(n−2)3/2+6
√

n
3 .

On the other hand,

||M(Tn)||∗ ≥
n∑

j=0

√
n =

n∑
i=1

i(2i + 1) + d⌈
√

n⌉ = (n−1)(n)(4n+1)
6 + d⌈

√
n⌉. We are done. □

The following result regards the trace norm of non-regular Kronecker modules. Note that, these
modules are matrix interpretations of polygons Ψn

1 in Brauer configuration (4.8).

Theorem 13. For n ≥ 1 fixed, ||(n + 1, n)||∗ = ||(n, n + 1)||∗ = 2n

Proof. Considered as matrices, it holds that (n + 1, n)t(n + 1, n) = diag(1, 2, 2, . . . , 2, 1)n+1. The
corresponding singular values are σ1 = σ2 = · · · = σn−1 = 2, σn = σn+1 = 1. On the other hand,
(n, n + 1)(n, n + 1)t = diag(2, 2, . . . , 2, 2), therefore the associated singular values are σ1 = σ2 = · · · =

σn = 2. □

5. Concluding remarks

Brauer configuration algebras defined by Kronecker modules can be associated with string snake
graphs. In particular, non-regular Kronecker modules can be built via suitable snake graphs. Since non-
regular Kronecker modules have a matrix presentation, giving their trace norm values is also possible.

To obtain results as those presented in this paper for other matrix problems as the four subspace
problem is an interesting task for the future.
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