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Abstract: Reservoir computing (RC) is a promising approach for model-free prediction of complex
nonlinear dynamical systems. Here, we reveal that the randomness in the parameter configurations of
the RC has little influence on its short-term prediction accuracy of chaotic systems. This thus motivates
us to articulate a new reservoir structure, called homogeneous reservoir computing (HRC). To further
gain the optimal input scaling and spectral radius, we investigate the forecasting ability of the HRC
with different parameters and find that there is an ellipse-like optimal region in the parameter space,
which is completely beyond the area where the spectral radius is smaller than unity. Surprisingly, we
find that this optimal region with better long-term forecasting ability can be accurately reflected by the
contours of the l2-norm of the output matrix, which enables us to judge the quality of the parameter
selection more directly and efficiently.

Keywords: reservoir computing; prediction accuracy; chaotic system; homogeneous RC; optimal
parameter region

1. Introduction

In the early 2000s, the echo state networks (ESNs) attributed to Jaeger [1] and the liquid state
machines (LSMs) attributed to Maass [2] were consecutively and independently proposed, which could
be seen as the birth of the seminal reservoir computing (RC) framework. Although the RC is often
regarded as a typical class of simple three-layered recurrent neural networks (RNNs), it is different
from the conventional RNNs in that the input weight matrix and the intermediate reservoir weight
matrix are randomly generated and fixed at the initial time and only the output layer needs to be trained
using the training data. Surprisingly, this randomly generated structure exhibits excellent performance
on the reconstruction and model-free prediction of chaotic dynamical systems [3–6].

Many investigations have been devoted to the design of appropriate structures to achieve a

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022152


3005

lightweight RC. Appeltant et al. proposed a framework of RC, in which the spatial reservoir structure
is folded into a temporal space so that the function of RC can be realized by using only one nonlinear
neuron with delayed feedback [7]. Note that this single-neuron reservoir structure is spatially
expanded with only one connection weight and a very simple ring topology in the reservoir. Inspired
by this framework, Rodan explored the three simplest RC structures, which showed that these
structures are sufficient for predicting some typical dynamical systems accurately [8]. Griffith et al.
also experimentally demonstrated that the utilization of the very simple reservoir topological
structures does not negatively impact the performance of the RC [9]. However, there have been few
studies considering whether the number of the parameters can be further reduced in a manner where
the reservoir structure is a randomly generated network and how many parameters we need at least for
achieving the prediction tasks.

Additionally, a series of studies have investigated the effect of the parameters on the RC’s
performance theoretically and experimentally. Particularly taken into account is the optimal spectral
radius of the reservoir weight matrix for some specific prediction tasks [10–16]. The theoretical
analysis of the spectral radius is devoted to giving a sufficient and necessary condition for the echo
state property (ESP). Analyses indicate that the ESP is violated if the spectral radius of the reservoir
weight matrix exceeds unity [1, 10, 13]. The subsequent study shows that, when we relate the network
response to the temporal or statistical properties of the input-driven signal, a spectral radius above
unity may not destroy the ESP [13, 14]. Computationally, it was found that the performance of the RC
gets better when the reservoirs are scaled toward the “edge of chaos” [17–19] and much effort has
been devoted to finding the optimal spectral radius for specific dynamical systems [16]. However,
there have been few studies taking both the input scaling and the spectral radius into consideration
and depicting the optimal region in the parameter space of the RC.

Although many advances summarized above have been presented, a series of questions naturally
and further arise. For instance, “Can we further reduce the number of the parameters in both the input
matrix and the reservoir matrix without harming the prediction ability?”, “Where is the optimal region
located in the parameter space for achieving a lightweight RC?”, and “How to judge the parameter
selection without testing data?” To fully address these questions, the main purpose of this article is to
find a more lightweight RC structure and provide a parameter selection method for it.

Specifically, we first show that the randomness of the RC parameters has little influence on the
short-term prediction accuracy of chaotic systems. Thus, we present a new reservoir structure, called
homogeneous reservoir computing (HRC). The HRC’s input edges share the same weight and the
reservoir edges share another single weight. We demonstrate that, compared with the conventional
RC, the performance of the HRC attains at almost the same accuracy in the short-term prediction
tasks of chaotic dynamical systems. In addition, we verify that in the case where the input weights
are non-homogeneous and the edges of the reservoir are homogeneous, the HRC is comparable to the
conventional RC in terms of the accurate prediction over a specific time duration. We also find that
the optimal parameter region of the HRC presents a regular ellipse-like region lying entirely outside
the area where the spectral radius is smaller than unity. Surprisingly, the bound of this optimal region
can be accurately reflected by the contours of the l2-norm of the output matrix. As such, we propose a
direct method to judge the quality of the parameter selection for the HRC.

The main contributions of this work can be summarized into four aspects. First, we provide a
lightweight RC structure, named as “homogeneous reservoir computing”, which only requires two
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adjustable parameters to be comparable to the conventional RC in the short-term prediction accuracy
of the chaotic systems. The required number of the parameters is less than all the existing RC
structures. Second, we find an optimal parameter region for achieving long-term forecasting tasks,
which always consists of a negative correlation area and an ellipse-like area. We indeed provide an
intuitive enlightenment on how the parameters of the HRC should be selected using the found optimal
region. Third, we find surprisingly that the size of the l2-norm of the output matrix can accurately
measure the long-term forecasting capability of the HRC. Inspired by this finding, we propose a
metric to judge the quality of the parameter selection of the HRC. Last, we provide a computationally
friendly algorithm for accurately selecting the optimal parameters for achieving prediction tasks
without performing the prediction process in the testing data.

2. A framework of homogeneous reservoir computing

To begin with, we briefly introduce the basic framework of the RC. A conventional RC network
structure is shown in Figure 1(a), which consists of three layers, an input layer consisting of Din input
neurons, a randomly recurrently connected reservoir layer with Dres intermediate reservoir neurons,
and an output layer composed of Dout output neurons. The input neurons are sparsely connected to
the intermediate neurons of the reservoir layer, whose weight matrix is denoted by Win, the neurons
inside the reservoir are sparsely connected with each other, whose weight matrix is denoted by Wres,
the reservoir and the output layer are fully connected, whose weight matrix is denoted by Wout. The RC
paradigm randomly assigns the input weights in Win and the reservoir weights in Wres, only the output
matrix Wout need to be trained via a regularized linear least-squares optimization procedure [20].

During the training phase, the RC receives the input data sequence {x(t)}Tt=0 and recursively maps
the sequence to the high-dimensional reservoir state space written by

r(t + 1) = tanh [Wresr(t) + Winx(t)], (2.1)

where r(t) = [r1(t), r2(t), . . . , rDres(t)]
> is a Dres-dimensional vector with the component ri(t)

representing the state of the i-th reservoir neuron at time t. After that, we apply a linear output layer
and get the Dout-dimensional output y(t) as

y(t) = Woutr(t).

We intend to match y(t) to the target output ytarget(t) by minimizing the loss function

L =

T∑
t=0

‖y(t) − ytarget(t)‖22 + γ‖Wout‖
2
2, (2.2)

where γ is the regularization parameter to prevent overfitting and y(t) takes as x(t + 1) in the task of
predicting dynamical systems. Using Tikhonov’s regularization, Wout can be given by

Wout = YtargetR>(RR> + γI)−1,

where Ytarget = [ytarget(0) ytarget(1) . . . ytarget(T )] represents the target output matrix and
R = [r(1) r(2) . . . r(T + 1)] is the reservoir state matrix.
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(a) (b)

Figure 1. (a) Structure of the conventional RC. Different colors of the input edges and the
reservoir edges represent different connection strengths selected randomly. (b) Structure of
the HRC. All the input edges share the same input scaling, and all the reservoir edges share
the same feedback state scaling.

During the predicting phase, x(t) is replaced by Woutr(t) in Eq (2.1) and the reservoir state turns into
a high-dimensional autonomous system as

r(t + 1) = tanh [(Wres + WinWout)r(t)],

which can produce the predicted time series continuously.
Now, we propose our framework of the HRC as sketchily depicted in Figure 1(b). Compared with

the conventional RC, the HRC owns the homogeneous edges connecting the input layer with the
reservoir layer, which means that the weights of these edges are all the same. Besides, the edges in the
reservoir layer are homogeneous as well. In our framework, we construct the adjacency matrix of the
reservoir as a sparse Erdös-Renyi random network, whose average node degree is denoted by d. Then,
in order to get the homogeneous reservoir weight matrix, we multiply the adjacency matrix by the
feedback state scaling factor α, one of the parameters of our particular interest. As for the input edges,
we assign each intermediate node to be connected with only one input node and each input node to be
connected with the same number of intermediate reservoir nodes. All the input edges share the same
connection strength β, another parameter of our interest. Thus, the recursion of the reservoir state is
written as

rH(t + 1) = tanh [αWadj
res rH(t) + βWadj

in x(t)],

where Wadj
res and Wadj

in are the 0-1 matrices representing the connection structure of the HRC. We verify
that the prediction ability of the HRC is comparable to that of the conventional RC through testing
different chaotic dynamical systems. Homogenization of these edges is more conducive to reducing
the number of the parameters of the RC and is potentially conducive to the hardware implementation
of the RC as well.
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3. Short-term prediction of chaotic systems using HRC

In this section, the short-term forecasting accuracy between the conventional RC and the HRC is
compared computationally using different but representative chaotic dynamical systems. We choose
the low-dimensional Lorenz system and large spatiotemporally chaotic solutions of the Kuramoto-
Sivashinsky equation to show their performance on conducting the short-term prediction tasks.
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Figure 2. Prediction results for the Lorenz system. (a) Prediction error of the conventional
RC with different training lengths for the next 50 time steps. (b) Prediction error of the HRC
with different training lengths for the next 50 time steps.
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The Lorenz system is described by

ẋ = σ(y − x),
ẏ = x(r − z) − y,

ż = xy − bz,

where the parameters are standardly set as σ = 10, r = 28, and b = 8
3 . Our goal is to train the RC and

the HRC on the same segment of the Lorenz dynamics, and then to test their prediction accuracy in the
following 50 time steps.

Table 1. Parameters selection of the RC and the HRC for the short-term prediction of the
Lorenz system.

Dres α β ρ

RC 900 [0, 0.3] [−0.1, 0.1] 0.6
HRC 900 0.142 0.01 0.6

The prediction results of the RC and the HRC for the Lorenz system are shown in Figure 2. Here,
we use the same connection structure and the same spectral radius ρ for the RC and the HRC, while
only their connection strengths are selected, respectively, as listed in Table 1, to ensure the achievement
of their best performance. For the input data, we select the sampling time step as ∆t = 0.005. After
the training phase with different training data lengths, we use the RC and the HRC to predict the next
50 steps of the system, respectively, and display the prediction error. Obviously, in the prediction of
the subsequent 50 steps, the accuracy of the HRC is comparable with that of the conventional RC.
Surprisingly, when the number of training steps is 500, the prediction accuracy of the HRC is even
significantly better than that of the RC. Through the observation of the state function of the intermediate
nodes, we find that this phenomenon is possibly due to the randomness of the input parameter selection.
Some input edges with large connection strength can cause the reservoir nodes related with them to
receive large input intensities which push them to the saturated regime of the activation function. As
a result, these saturated nodes, which are almost invalid, reduce the richness of the reservoir state
dynamics and negatively impact the ability of the RC in capturing the nonlinear dynamics of the target
chaotic dynamical system.

Table 2. Parameters selection of the RC and the HRC for the short-term prediction of the
KSE.

Dres α β ρ

RC 2944 [0, 1.0] [−0.5, 0.5] 0.1
HRC 2944 0.014 0.2 0.1

For a more complex spatiotemporally chaotic system, we test the short-term prediction of the
chaotic solutions of the KSE which is a 1-dimensional partial differential equation given by

∂y
∂t

= −y
∂y
∂x
−
∂2y
∂x2 −

∂4y
∂x4 ,
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where y(x, t) is a scalar field. We set the spatial domain as x ∈ [0, 22] and divide it evenly using 64
grid points and numerically solve the KSE with the time step ∆t = 0.25. These settings are the same
as those used in [16]. When the other parameters are selected as those displayed in Table 2, both the
HRC and the RC realize accurate prediction in the first 5 Lyapunov time, as shown in Figure 3.
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Figure 3. Prediction results for the spatiotemporal chaotic solutions of the Kuramoto-
Sivashinsky equation. (a) Original data, predicted output and predicted error of the
conventional RC. (b) Original data, predicted output and predicted error of the HRC. We
multiply t by the largest Lyapunov exponent (Λmaxt) of the chaotic system, so that each unit
on the horizontal axis represents one Lyapunov time, which represents the average amount
of time for errors to grow by a factor of e.

4. Optimal parameter region for long-term prediction

In this section, we select a tolerance bound ε of the prediction error according to the statistical
properties of each chaotic system, and measure the long-term forecasting ability of the RC and the
HRC according to the time steps Nε when the norm of error between the predicted output and the
target output exceeds ε for the first time

Nε = inf{N : ‖y(T + N) − ytarget(T + N)‖2 ≥ ε}.

We find that the long-term forecasting ability of the HRC is not as good as that of the conventional
RC. However, if we recover the randomness of the input weight matrix and keep the reservoir matrix
homogeneous as before, the HRC can forecast as many time steps as the conventional RC. For the
reason given above, we just consider the case that only the edges in the reservoir layer of the HRC are
homogeneous.

After displaying the accurate prediction steps with different input scaling and spectral radius, we
find that for a variety of chaotic systems, there always exists an ellipse-like optimal region in the
parameter space. The shape and the location of this ellipse are associated with the average degree d of
the adjacency matrix of the reservoir as Figure 4(a). Most of the studies associated with the RC scale
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the reservoir weight matrix to a spectral radius below or around unity to obtain the ESP. However,
we note that our ellipse-like optimal region lies almost entirely outside this widely accepted optimal
region within which only a small area can achieve a high number of accurate prediction steps. By
calculating the maximum Lyapunov exponent of the dynamical system reconstructed by the HRC, we
verify experimentally that in this ellipse-like optimal region where the spectral radius can be far beyond
unity, the HRC can not only accurately predict short-term “weather” of the target system, but capture
its long-term “climate” as well. This shows that the parameters chosen from the ellipse-like optimal
region do not destroy the ESP of the HRC. We further find that a larger spectral radius will make the
convergence of the intermediate states of the HRC greatly slow down, thus requiring longer driven data
to push the reservoir state to the correct dynamics.
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Figure 4. (a) Accurate prediction steps of the HRC with different reservoir average node
degrees for the Lorenz system. The average node degrees are 3, 6, 9, and 12, respectively,
from the most left to the most right, and the two scanned parameters are the input scaling
and the spectral radius. The dimension of the reservoir is set as Dres = 900 and the tolerance
bound is set as ε = 0.5. (b) The l2-norm of the output matrix of the HRC with different
reservoir average node degrees for the Lorenz system. The average node degrees are 3, 6, 9,
and 12, respectively, from the most left to the most right.

Taking the Lorenz system as an example, we set the tolerance bound ε = 0.5 and randomly generate
100 Erdös-Renyi network structures as adjacency matrices of the HRC. We train all 100 HRC and
get their average accurate prediction steps Nε which is treated as the long-term forecasting ability
corresponding to different parameters. It can be seen that the parameter area with the largest number of
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accurate prediction steps is mostly concentrated in an oblique “ellipse-like” area, which is completely
outside the bound of the spectral radius equal to 1 as shown in Figure 4(a) (The solid black line
represents the spectral radius equal to 1). The existence of the elliptical region is independent of
other structural parameters of HRC, but its shape and location are associated with the average node
degree in the reservoir layer. Within the area where the spectral radius is smaller than unity, there is
a small optimal region where the input scale in this region has a negative correlation with the spectral
radius.
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Figure 5. (a) Accurate prediction steps of the HRC for the prediction task of the mean
temperature collected in the city of Delhi. The two scanned parameters are the input scaling
and the spectral radius. The dimension of the reservoir is set as Dres = 900 and the tolerance
bound is set as ε = 4. (b) The l2-norm of the output matrix of the HRC for the mean
temperature collected in the city of Delhi. (c) The bound of the optimal region and the
contour of Wout’s norm for the HRC. The bound of the optimal region corresponds to Nε ≥ 27,
and the contour of Wout’s norm corresponds to ‖Wout‖2 ≤ 50.

Additionally, we test the broad applicability of our result on the weather data collected in the city of
Delhi during the period of 4 years (from 2013 to 2017) as the training data and predict the daily average
temperature for the ensuing period. We set the tolerance bound ε = 4 and randomly generate 50 Erdös-
Renyi network structures to get their average accurate prediction steps Nε . We find that HRC can
accurately predict the daily temperature for the next 30 days when the parameters are appropriately
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selected. There is also an obvious optimal parameter region where the input scaling is negatively
correlated with the spectral radius within the area where the spectral radius is smaller than unity, as
shown in the right panel of Figure 5(a). Likewise, there is also an ellipse-like region in the area where
the spectral radius is greater than unity. The optimal input scaling interval increases monotonically
with the spectral radius in this ellipse-like region, as shown in the left panel of Figure 5(a).

Finally, it is noted that the spectral radius of unity can be regarded as an exact “inflection point”.
The optimal parameter region exhibits completely different behaviors when the spectral radius exceeds
one in the prediction tasks of various chaotic dynamical systems and actual scenarios. The cause of
this phenomenon awaits further and systematic exploration.

5. A metric for judging the parameters of the HRC

In this section, we show that the bound of the optimal region obtained above corresponds accurately
to the l2-norm of the output matrix. We still consider the prediction task of the Lorenz system and
calculate the l2-norm of the output matrices of the HRC associated with different input scaling and
spectral radius as Figure 4(b). Surprisingly, the contours of the l2-norm of the output matrix in the
parameter space are consistent with the trend of the lower bound of the optimal region in Figure 4(a),
including the ellipse-like region and the negative correlation region as well. Furthermore, if we choose
appropriate accurate prediction steps and l2-norm size, the contours of the long-term prediction ability
with certain accurate prediction steps almost exactly coincide with the contours of l2-norm of the output
matrix, as shown in Figure 6. For the Delhi Weather Data, the contours of the l2-norm of the output
matrix also accurately coincide with the contours of the optimal region despite the decrease of the
boundary smoothness, as shown in Figure 5(b),(c).
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Figure 6. The bound of the optimal region and a contour of Wout norm for the HRC with
different average node degrees in the reservoir layer. (a) The average degree of the reservoir
neurons is 6. The bound of the optimal region corresponds to Nε ≥ 370, and the contour of
Wout norm corresponds to ‖Wout‖2 ≤ 18. (b) The average degree of the reservoir neurons is
12. The bound of the optimal region corresponds to Nε ≥ 370, and the contour of Wout norm
corresponds to ‖Wout‖2 ≤ 20.
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Thus, without testing data, we provide a method to judge the long-term forecasting ability of the
HRC by calculating the l2-norm of its output matrix. Empirically, it can be treated as an accurate metric
of the quality of the parameter selection. In numerical experiments, we can calculate the l2-norm of
Wout under different parameters selected from a coarse grid and seek better parameters corresponding to
a smaller the l2-norm of Wout. Specifically, we provide a method to select the optimal parameters for an
actual scenario using this metric without performing the prediction process in the testing data. We find
that outside the lower bound of the optimal parameter region, the l2-norm of the output matrix with the
same spectral radius rapidly declines with the increase of the input scaling, while once it gets into the
optimal region, the change slows down considerably, as shown in Figure 7. As the input scaling crosses
the upper bound of the optimal region, the norm of the output matrix increases slightly. Inspired by this
phenomenon, we first choose an optional input scaling interval based on the scale of the training data
and divide the interval into incremental grid points. In general, the interval we choose should be such
that the product of its upper bound and the training data lies in the unsaturated region of the activation
function. After that, for a determined spectral radius, we calculate the corresponding l2-norm of Wout

sequentially. Once the trend of the l2-norm of Wout obtained from two adjacent calculations changes
from decreasing to increasing, we can determine that the current parameters are already inside the
optimal region.
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Figure 7. The curve shows how the average prediction steps and the output matrix norm
change with the input scaling in the case of the spectral radius equal to 7 for the prediction
task of the Delhi Weather Data. The input scaling interval bounded by the two dashed lines
corresponds to the optimal region.

In addition, this phenomenon also inspires us to optimize the performance of the RC by reducing
the norm of the output matrix. It can be realized by appropriately increasing the coefficient of the
regularization term in Eq (2.2). Besides, existing studies have shown that removing reservoir neurons
and their respective edges corresponding to the largest weights in the output matrix can effectively
improve the performance [21], which is essentially a way to reduce the norm of the output matrix as
well.
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6. Discussion and concluding remarks

In this article, we provide a lightweight framework of the RC called homogeneous reservoir
computing. Compared with the conventional RC, there are only two parameters in the HRC, the input
scaling and the feedback state scaling. We experimentally verify that the homogenization of the input
edges and the reservoir edges in the HRC has no negative influence on the short-term prediction
accuracy of chaotic dynamical systems. Additionally, the HRC with homogeneous reservoir edges
only is comparable to the conventional RC in the long-term forecasting ability.

For the long-term forecasting ability, an optimal region of the parameter space is given. We provide
an intuitive enlightenment on how the parameters of the HRC should be selected according to the
properties of this optimal region. The optimal region with the spectral radius below unity shows a
negative correlation between the input scaling and the feedback state scaling. This phenomenon can be
interpreted intuitively in a sense that the signals received by the reservoir neurons, which are in the form
of weighted summation of the input scaling and the feedback state scaling, need to be in the nonlinear
region of the activation function. However, most of the optimal parameters are found to be in an
ellipse-like region beyond the area where the spectral radius is smaller than unity. It is counterintuitive
as reservoir computing with a spectral radius much larger than unity is easier to destroy the ESP. The
ellipse-like region reflects a proportional relationship between the input scaling and the feedback state
scaling. When we choose a larger spectral radius, the feedback state signal received by a reservoir
neuron becomes larger as well. As a result, we need to choose a larger input scaling to provide a
sufficiently strong driven signal. Further investigation is anticipated to unveil the optimal proportion
between the input-driven signal and the feedback state signal for the reservoir neurons.

We also find surprisingly that the optimal parameter region is consistent with the region where
the l2-norm of the trained output matrix is small. The lower boundary of the optimal region can be
accurately fitted by the contour line of Wout’s norm. Therefore, we give a direct method to judge the
quality of the parameter selection by calculating the norm of the output matrix. In addition, we also
capture the abrupt changes in the rate of the l2-norm change of the output matrix within and outside the
optimal region. Inspired by this finding, we articulate a computationally friendly algorithm to select a
set of optimal parameters for a real-world scenario.

We acknowledge that the HRC still has some limitations because of the homogenization of its
connecting edges. We can only use a sparse adjacency matrix as the network structure of the
homogeneous reservoir layer because the fully-connected structures can cause the rank of the
adjacency matrix to degenerate to one, which thus likely reduces the representation capability of the
HRC. We find that sparse Erdös-Renyi random networks all perform well in the prediction tasks, but
the optimal network structure of the HRC for any specific chaotic system remains unclear.
Additionally, we need to provide much better and more precise parameter settings to achieve the same
short-term or long-term forecasting ability as the conventional RC. In this article, we provide a metric
for judging the parameters which can help us get such a precise parameter setting, but the
fundamental mechanism rendering this method effective still needs further exploration.

There are still several directions awaiting in-depth study in the near future: (1) Elucidating the
reason why the parameters with a better forecasting ability mostly are located in the region
corresponding to the spectral radius larger than unity, and why the parameters region presents in the
elliptical form, (2) deciphering the mechanism that induces the l2-norm of the output matrix to have
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the capability in accurate reflection of the long-term forecasting ability for dynamical systems, (3)
designing the method to select the optimal parameters according to the statistical information of the
data, (4) investigating the relation between the optimal region and the connection structure, such as
the average degree of reservoir neurons, and (5) applying the developed and developing optimal
frameworks to the paramount problems, such as the hidden structures detection, tipping-point
detection, and the causality detection [22–24], in time series analytics fusing the representative
methods of dynamical systems and machine learning.
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18. N. Bertschinger, T. Natschläger, Real-time computation at the edge of chaos in recurrent neural
networks, Neural Comput., 16 (2004), 1413–1436. https://doi.org/10.1162/089976604323057443

19. N. Bertschinger, T. Natschläger, R. Legenstein, At the edge of chaos: Real-time computations and
self-organized criticality in recurrent neural networks, Adv. Neural Inf. Process. Syst., 17 (2004).

20. B. Schrauwen, D. Verstraeten, J. Van Campenhout, An overview of reservoir computing: theory,
applications and implementations, in Proceedings of the 15th European Symposium on Artificial
Neural Networks, (2007), 471–482.

21. A. Haluszczynski, J. Aumeier, J. Herteux, C. Räth, Reducing network size and
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