ERA, 30(8): 2964-2980.

EE Elect . DOI: 10.3934/era.2022150
AIMS ectronic Received: 03 March 2022

@ Research Archive Revised: 18 April 2022

Accepted: 10 May 2022
http://www.aimspress.com/journal/era Published: 31 May 2022

Research article

Matrix-Valued hypergeometric Appell-Type polynomials

Muajebah Hidan', Ahmed Bakhet>*, Hala Abd-Elmageed > and Mohamed Abdalla '

! Department of Mathematics, College of Science, King Khalid University, Abha 61471, Saudi
Arabia

2 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
3 Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt

* Correspondence: Email: kauad_2006 @azhar.edu.eg.

Abstract: In recent years, much attention has been paid to the role of special matrix polynomials of
a real or complex variable in mathematical physics, especially in boundary value problems. In this ar-
ticle, we define a new type of matrix-valued polynomials, called the first Appell matrix polynomial of
two complex variables. The properties of the newly definite matrix polynomial involving, generating
matrix functions, recurrence relations, Rodrigues’ type formula and integral representation are inves-
tigated. Further, relevant connections between the first Appell matrix polynomial and various matrix
functions are reported. The current study may open the door for further investigations concerning the
practical applications of matrix polynomials associated with a system of differential equations.
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1. Introduction

In 1880, Appell introduced in [1] sequences of polynomials {P,(17)},>0 satisfying the relation

d
2 Pa() = 1Py (), - Po(rp) # 0.
n

If P(7) is a formal power series of the form

& n

PO =) a4 a0,

n=0
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Then Appell sequences can also be defined by means of their exponential generating function
G(n, ) given by

G1.7) = P()e" = Z P,(n) —
n=0

Several members belonging to the Appell family can be obtained by properly choosing P(7), such as
Bernoulli polynomials, Euler polynomials, hypergeometric Bernoulli polynomials, Genocchi polyno-
mials and Hermit polynomials (cf. [2]).

In [3], the new Appell polynomial family %*(m, 1) are presented in the terms of the generalized
hypergeometric function as follows

n m
?Ii(m, n) =n k+qu 5 x|
ﬁlaﬁZ? """ ,ﬁq

where the generalized hypergeometric function is written in the following manner

a; ap -
(a/l)n (ap)n
qu\ﬁ ,7]}— E —neC,

1 ﬁz .. ﬁq (ﬁl)n (ﬂq)n n!

and ay, - - - @) are complex parameters with 8y,---8, € C\ Z; (Z, = {0} UZ"), and

M40 [@@+Dod@+t=D, (€N, aecC

(@)= ———= (b
['(ar) 1, t=0; 9 € C\ {0},

is the Pochhammer symbol and I'(.) is gamma function.

The class of Gauss hypergeometric polynomials is defined by Bajpai and Arora [4] in the following
equivalent formulas

—-n, 192 _
APTE) = £ ,F, | (eNo=(0jUN
95
1.2
() -n,1 -9 —n (1.2)
792 : F [ ’é‘:].
( 3)11 1 _ ﬁz —-n

Also, the authors [4] investigated several results of the polynomials AP (&) included, semi-
orthogonality, integral formulas, finite sums and some relevant connection with Foxs H-function and
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Jacobi polynomials. Moreover, generating function and orthogonality property of a class of of Gauss
hypergeometric polynomials occurring in quantum mechanics presented by Bajpai in [5]. Khanna
and Srinivasa Bhagavan [6] derived the generating function of AP (&) using the representations of
the Lie group S L(2, C). However, mathemtical proplerties of generalized hypergeometric polynomial
are reported by Khan [8]. Morover, A new real-valued Appell-type polynomial family by mean of a
generalized hypergeometric function are presented by Bedratyuk and Luno [7]. Further, some finite
summation formulas involving multivariable hypergeometric polynomials are archived by Djordjevic
etal. [9]. Additionaly, the zeros of a class of generalized hypergeometric polynomials with applications
are investegated in [10,11]. Furthermore, Appell polynomials turn into the Gould-Hopper polynomials
in [12]. Later, Cekim and Aktas [13] introduced the matrix generalization of the Gould-Hopper poly-
nomials by means of the generating function. Recently, the Gould-Hopper-Laguerre-Appell matrix
polynomials using operational methods and to investigate their properties are introduced by Nahid and
Khan [14]. More recent, they are derived the matrix recurrence relations, the matrix differential, ma-
trix integro-differential and matrix partial differential equations for the Gould-Hopper-Laguerre-Appell
matrix polynomials in [15]. In a similar vein, Defez et al. presented Bernoulli matrix polynomials and
discussed some its properties in [16].

In recent years, a prominent study problem that gained attraction is matrix-valued polynomials and
their applications (see, e.g., [17-19]). Matrix-valued Gegenbauer-type polynomials and their appli-
cations are discussed by Koelink et al. [20]. While Ismail et al. [21], presented matrix valued Her-
mite polynomials and some properties. Further, results on Jacobi, Gegenbauer, Legendre, generalized
Bessel and Laguerre matrix polynomials have been archived in [22]. Later on, the researchers in [23]
established some results on the two complex variables first Appell hypergeometric matrix function F
considering the convergence domain {(z,w),€ C? : |z] < 1, |w| < 1}. They derived new formulas
involving the contiguous relations, finite sums, the generating matrix functions, and several recursion
formulae.

The purpose of the current manuscript is to introduce a new matrix-valued Appell-type polynomial
by using first Appell hypergeometric matrix function F; and discuss certain mathematical properties
for the novel defined matrix polynomial.

The paper is organized as follows. First, in Section 2, some basic concepts and and notations needed
in the results are recorded. In Section 3, we introduce the first appell matrix polynomial in terms of the
first Appell hypergeometric matrix function F; and discusses some limit formulas and auxiliary matrix
polynomials of the first appell matrix polynomial. In Section 4, we prove some different generating
matrix functions for the first appell matrix polynomials. Section 5 explore different recurrence relations
to simplify the computation of the first appell matrix polynomials. We establish in Section 6 Rodrigues’
type formula for the first appell matrix polynomial. Certain integral representation for the first appell
matrix polynomial is derived in Section 7. Matrix partial differential equations satisfied by the first
appell matrix polynomial in Section 8. Finally, in Section 9, we shows the concluding remarks.

2. Preliminaries

Here, we will summarize basic concepts and notations that will be largely exploited in this work
(see, e.g., [17,18,22]).
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Let Mi;(C) denotes the complex vector space constituted of all square matrices with j rows and j
columns with entries in complex space. For any matrix 7' € 9t;(C), o(T') (spectrum of T) denotes the
set of all eigenvalues of T,

w(T) = max{R(n) : n € (1)}, w(T) =min{R(n) : n € o(T)}, 2.1)

where u(T) is referred to as the spectral abscissa (the largest of the real parts of its eigenvalues) and
u(=T) = —u(T). The square matrix 7T is said to be positive stable if and only if u(7) > 0. I and 0 stand
for the identity matrix and the zero matrix in 9 ;(C), respectively.

If ®(n) and ®,(n7) are holomorphic functions of the complex variable z, which are defined in an
open set € of the complex plane, and T is a matrix in 9t ;(C) with o<(T') C €, then from the properties
of the matrix functional calculus, ( [18]) we have

©1(T)0x(T) = 0,(T)0(T).
If R, T in M;(C) and RT = TR, then
01(R)O,(T) = Ox(R)O(T).

Definition 2.1. [26] If T is a positive stable matrix in 9¢;(C), then I'(T') is defined by
I(T) = f e x"dx; x" " = exp((T - I)log x). (2.2)
0

The reciprocal Gamma function denoted by I'"'(y) = 1/I'(5) is an entire function of the complex
variable  and for any matrix 7" in 9i;(C), the image of I'"'(n) acting on T, denoted by I'"!(T), is also
well defined [26]. Furthermore, if

T +ml is invertible for all integers m € Ny, 2.3)
then I'(T') is invertible, its inverse coincides with I'"!(7) and one gets the formula
(D =TT +1)...(T+(m—-DI) =0T +m)TY(T); meN,. 2.4)

From (2.4), it easily follows, for a nonzero scalar & and T' € 9t;(C), that

-1

T T
lim £" (—) 7" lime™ [(—) ] [T meN, 2.5)
e—0 E'm e—0 E/m
Also, using (2.4), we have
(Tixm = (T)n(T + ml) = (T) (T + kI),,. (2.6)

From [18], we observe that

—1* — —
L V. N o)

Recently, authors [23] defined the first Appell matrix hypergeometric functions as follows:
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Definition 2.2. For |z] < 1 and |w| < 1, we have

6,0 w
F, LWL =
(’0 s

S

ZSWI'

(@505 @), L@ ] =
Sr.

e
Ms

Il
[«
Il
(=)

r

Mg

2 ¢+ sl,w
(@)s(9)s[(@),]™ o 2F 1[ ;W], (2.8)
@+ sl

ii
[«

where ¢, ¥, w and ¢ are commutative matrices in 9i;(C) such that ¢ + n/ is invertible for all integer
n € Ny.

Immediately, one observes the following simple identities ( [18,23]):

o, 0w o, 0w U, ¢, 0, w
Fy ;2,01 =F ;32,0 = F3 ;2,0

@ ®,0 @
¢, 9 ¢, 9
=Fy ;Z,0]=2F1{ ;Z], (2.9)
0, ¢ ¢
and
$,9,0 ¢,9,0 ¢,%, w,0
Fl[ ;z,w):Fz[ ;z,w]:F3[ ;z,w], (2.10)
@ ®,0 @

where F,, F3 and F, are matrix versions of the classical Appell hypergeometric functions (see, e.g.,
[23-25]) and , F; is matrix version of the classical Gauss hypergeometric function [26] under condi-
tions, ¢, ¥, w, ¢ and 6 are commutative matrices in 9t ;(C) such that ¢ + nl and 6 + nl are invertible for
all integer n € N,.

The confluent Appell matrix functions or Humbert matrix functions [27]

¢9ﬁ s 1
m+n 19 n m+n
®, aw|= Y @ (W)Z'EZ(“’D) I 2.11)
@ m,n=0
¢’ﬂ & -1
D, cwl| = Z (¢)m(ﬁ2’;[’;¢‘)m+n] "W, (2.12)
© m,n=0 o
¢
(D)l (@menl™
®s ST W zmw”. (2.13)
[0 m;O m!n!

3. Matrix-valued polynomial analogue for Appell series F

In this section, we define a new matrix-valued Appell-type polynomial in terms of the first Appell
hypergeometric matrix function F; and discuss limit (confluence) formulas as follows:
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Definition 3.1. Let ¢, 6 and ¢ be positive stable and commuting matrices in 9i;(C), such that ¢ satisfies
the condition (2.3). Then, for n € Ny, the first Appell matrix polynomial FF, is defined by

-nl,¢$,0
Pn[ 2 ;z,w] _ @ F1[ ;z,w]. 3.1)
) n! o

where F'| is defined in (2.8).
Remark 3.1. Note that the polynomial F, is generalize of the Gauss hypergeometric polynomials (1.2)
and a matrix version of the class polynomial [28].

Remark 3.2. Clearly, using the relations (2.9) and (2.10), we obtain other formulas of the Appell matrix
polynomial F,, for example,

-nl;¢,0
Fn[ ¢,0 ;Z,W] = (‘p3" F2[ ;z,w], (3.2)
4 " ®, 0
and
,0 n —nl; o,
R[¢ m4=(@zﬂ(’1¢+ m) (3.3)
® n! ®

Upon using (2.5) with (3.2), the following limit (confluence) formulas can be stated

. iy —nl
hmnmwg*ﬂ[¢s;aav=®{ ””;aﬁ,
e—0 QD QO

™

11,6 -nl, 8
. | -1 s . — ’ .
£1_r)r& n![(©),] F, [ o ez, w| =0 ( 0 Z, w)

and

¢ 8
e’e

. —nl
hr% n! [(@),]™! Fn[ | €2, sw] = (D3( ‘Z 32, w).

From the relation (2.5) and the equations (2.11)—(2.13) with above limit formulas, various conflu-
ence formulas can be easily obtained.

4. A family of generating matrix functions
Generating matrix relations play an important role in the introduce of matrix-valued polynomials
and discuss its properties (see, e.g., [17,22]). In this section, we investigate various generating matrix

relations for the first Appell matrix polynomials as follows:
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@0

Theorem 4.1. The generating matrix function of F, [ 32 w] is as

ZwmmJWJ¢ﬁL4ﬂ
n=0 ¥

6.6 4.1
[/U,qf),@,. ut _Wt] (4.1)

:1—[’_/1F s T s |
( ) : -t 1-1

where ¢, 6 and ¢ are positive stable and commuting matrices in W ;(C) such that ¢ + nl satisfies the
spectral condition (2.3) withA € C\ Z, |t| <1, |z/(0 =D < 1and |w/(1 -1)| < 1.

Proof. Assume that the left-hand side of (4.1) is denoted by L. Upon using the series expression of
(4.1) with (2.6) and (2.7) to L, we observe that

— Z (/l)n ( n)p+q(¢)p(9)q[(‘p)p+q] ! wis
|

4 rlq!
() p+(z_0) (0)g[(©)pegl™ o (4 2
+p+qh
_ p+a(@)p ' q' Plp+q (—zt)P (—wit)1 Z ( P‘ q9) o
ot plq! n!
Changing the order of summations in (4.2) and make use of the identity
S (A +p+ Q)
DRI D gy, <,
n!
then, with a little simplification and the definition (2.8) we arrive at the right-hand side of (4.1).

O

As a consequence of Theorem 4.1, we obtain the following corollaries.

Corollary 4.1. Let ¢, 6 and ¢ be positive stable and commuting matrices in I ;(C) such that ¢ + nl
satisfies the spectral condition (2.3) with |t| < 1, |zl < 1, w| < 1, [t +w| < land |t +z| < 1. The
following generating matrix function holds true:

(o)

ZF4Z%54ﬂ=UﬁWHU—Hmeﬂ+Mﬁ' (4-3)

n=0

Corollary 4.2. Let ¢,0 and ¢ be positive stable and commuting matrices in M ;(C) such that ¢ + nl
satisfies the spectral condition (2.3). Then we have

i(M‘
n=0

where @, is defined in (2.12) with |zt] < 1 and |wt| < 1.

’9 2, W] "=¢ <Dz( (’Z’DQ ; —t, —wt), (4.4)
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Corollary 4.3. Let ¢,0 and ¢ be positive stable and commuting matrices in M ;(C) such that ¢ + nl

satisfies the spectral condition (2.3) with |t| < 1 and |z/(1 — t)| < 1, the following generating matrix
function holds true:

> Wil F[ »0. z] ;
n=0 4

ALO+0 (4.5)
= (1 -0 ,F T

11—t
¥
Theorem 4.2. Let ¢, 0, w and ¢ be positive stable and commuting matrices in M ;(C) such that ¢ + nl

. .. . . 1 1
satisfies th? spe.ct'ral COI’ldlthl’l.(Z.j’) wth 7| <'m1n{(1+|zl)(1+|m), (1+|z|)(1+|n|)}’ nl <1, |zl < 1and|w| < 1.
The following bilinear generating matrix relation holds true:

(9]

—nl, .0
Z 2F1( " w;n) Fn[¢ ;z,W] t
¢ 7

n=0
=1 =00 —t+ 200 =t +wt) (1 =t + )™ (4.6)
w; ¢, 0
< F . znt wnt
! "A=t+z20(I—t+nt) (L=t +n)(1 —t+wp) |
Proof. Let S be the left-hand side of (4.6). Then we have
N ¢, 0 ] ;
S = w 1 F, i w| t
;Z()( il (=)t [SO
B > (n+k ,0 i
= Z(a))k[(@k] 1(—77f)kz ( ) Frik ¢ sLw| t
k=0 =0 k ¢
=1 -0"YU-t+z2)0A -t +wt)™?
= 9 z w
X P k ¢’ ) s 5
;(w)k[("a)k (l—t) ¢ 1—t+zt' l—t+wt
which, in view of (4.1), we obtain the coveted result. O

If w = 0 in Theorem 3.1, we have the following result:

Corollary 4.4. Let ¢, 0, w and ¢ be positive stable and commuting matrices in M ;(C) such that ¢ + nl
satisfies the spectral condition (2.3) with |t| < min{——, L} |n| < 1, and |z| < 1. Then we have

Tk (1+|z|)
(V) -nl, w —nl, "
QO' o F sn| 2F ¢ ;2| ¢t
— n! @ @
=(1 =00 -t+z20°A -t +n)™” 4.7
w, ¢ nzt
X oF ; .
: 1( ® (1—t+zt)(1—t+7]t))
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5. Recurrence relations
In this section, we consider some recurrence relations for the first Appell matrix polynomial.

0
Theorem 5.1. Let F, [ d)g’o 3 Z, w} be given in (3.1), the following recurrence relation holds true:

0,0

zD, F, 3L W

+wD, Fn[ $,6 ;z,w]—nFn[ $,6 ;z,w]
v 4 5.1)
=—0@+m-1DDE,, [ ¢9,09 ;Z,W],

where n > 1 and ¢, ¢ and 6 are positive stable and commuting matrices in I ;(C) such that ¢ + nl is

invertible for all integer n > 0, such that D, = a%’ D, = %.
Proof. To prove (5.1) we consider
A=¢ (I)z( ¢ 0 s —2t, —Wt) , (52)
¥
where O, is given in (2.12). Then
P ¢+I,9._ B
DA=-to ¢pe CI)Z( o+l zt, wt), (5.3)
P P ¢, 0+1
D,A=-tp Oe ¢2( o+ zt, wt) 5.4
and
DA =¢ (I)z( 2 ;—7t, —Wl)
¥
_ +1,6
—zp g e q)z( ¢<,0 +7 :—2zt, —wt) (5.5)
g ¢,0+1
weo fe (Dz( W 2t, Wl),
we eliminate @, from (5.3), (5.4) and (5.5) as follows
zD,A+wD,A—-1tD,A = —tA. (5.6)

Since
A= ;[(‘p)n]_] F, [ ¢(:09 5%, W] "
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and using (5.6), we get

Z ZO[((p)n]_l 1 Dz F, [ (b(:og s, w

+w Z[(‘p)n]_l " Dw IF;n [ ¢S’09 3 Zs W]
n=0

I - (5.7)
— ¢’ 9 -1 ¢’ 9
- [(@)n] ln Fn[ LWt =~ [(@)n-1] tnFn— LWL,
Z; @) ) Z} (@1 1
from which it follows that
zD. F, »6 ;zwl+wD, Fn[ ¢9’09 ;z,W] —nIFn[ ¢S’DH ;z,W]
0 (5.8)
=—(p+(n-DDF,, [ d:’p 32, w].
This finishes the proof of Theorem 5.1. O
Theorem 5.2. For n > 1, the recurrence relation for the first Appell matrix polynomials is as
n Fn[ 4.6 szwl=(@+2n- DI F,, [ 4.6 ;z,w]
(2 2
X —-z¢F, ¢ +¢I’9 3 2, w] - wlF,_, [ 2 9‘; I 3 2, w] (5.9)

(¢ + (-2 F,y [ "’j - w}

where ¢, 0 and ¢ be positive stable and commuting matrices in I ;(C) such that ¢ + nl is invertible for
all integer n € Ny.

Proof. To prove (5.9), assume that

0=(0-n*(+ IZ—_tt)-¢(1 n ll_tt)-". (5.10)
Then, we get
(1= 0D,0 = —t¢(1 — 1% (1 + 1Z—_tt)—<¢+’>(1 t IL_tt)-@, (5.11)
and
(1-0D,0=-t6(1 -1 (1 + 1Z—_lt)—¢(1 + %)‘“’”), (5.12)
But
0= ZO Pn[ ¢9’09 ;z,w] 7, (5.13)
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it follows that

¢.0 _ $.6 _ $.60
Dan[ ¢ s W —Dan—l ¢ s W ¢Fn—1 (,0+I s W, (514)
and
DWFn[¢’0;Z,w]:DWFn_1[¢’9;z,w]—@Fn_l ¢+I’6;z,w]. (5.15)
@ (12 12

Elimination of the derivatives from (5.8), (5.14) and (5.15) leads us to the recurrence relation

0
ann[ ¢, SZLW
@

= (¢ + 20— DD F,y [ "’;f 2 w]

x—z¢F|? ;”9 ;z,w] —WOF, [ "”if ! ;z,W] (5.16)

,0
~(p+ (=2 Fn—z[ " ;z,w].
This completes the proof of Theorem 5.2. m|

6. Rodrigues’ type formula

Here, we present Rodrigues’ type formula of the first Appell matrix polynomial in the following
theorem:

Theorem 6.1. For n, k € N, the following Rodrigues’ type formula holds true:

6,0 wt
IFy ; ,
¢ z—-1 wt—1
71 = z)°(1 — wr)?
_ X z)'( W)D
n:.

6.1)

lt'l[t(p+(n—l)](1 _ Zt)_¢(1 _ wt)—@],

where ¢, 0 and ¢ be positive stable and commuting matrices in I;(C) such that ¢ + nl is invertible for
all integer n € Ng with |t| < 1,|zt] < 1, |wt| < 1, |;T’1| < landlwf—_’ll < 1.

Proof. From the Binomial matrix formula, see [18]

m!

D w1 iy, < 1,
m=0
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and the definition of first Appell matrix polynomial Fy, see (3.1), we easily have

D;l[ﬁ“"-”’(l — 271 - wt)-"]

n

=2, (’Z) D[V DY (1 - 20 (1 — wi) |

r=0
=2 (")(r)(@n(qb)r_k(e)k[(so)r]‘l 7w
—\r)\k

X ttp+(n—1)1(1 _ Zt)—¢—(r—k)1(1 _ Wt)_(9+k1)
=11 -2 —wr)™®
x Z (_n)k+s(§0)n(¢)k(9)s[(90)k+s]_1 It

k!s! (zt—l) (wt—l

)S

k+s<n

t t
= (1 - a1 —we | 0 ]
o ‘zt—1 wt—1
The above equation gives the proof of Theorem 6.1. O

7. Integral formula

In this section, we show certain integral representation for the first Appell matrix polynomial by the
product of (3.3) as follows

,0 ,0
Fm [ ¢1 ! 525 Z:| Fn [ ¢2 2 sw, W]
#1 ¥2

n m - I, 9 - I, 6
:(902) (¢2) 2F1( ml, ¢; + I;Z) 2F1( nl, ¢, + 6, ;w)

m! n! ©1 ©2

SR Im+n—-r—s+1)
:r(gol +mI) F(S02+I/LI)ZO Zor(m_r+1) F(l’l—S‘l'l) (71)
X1+ @+ (r+s—DD T (@ + rDI (@2 + sI)

1
Im+n—-r—-s+1)

X (=1)™ (¢ + 01, (2 + 602),s %

I @1+ @+ (r+s—DI)

Changing the order of summations in (7.1) and applying the integral formula

TA+B+DI'A+DI'B+1)

JA+B /2
= f exp ((4 - B)ai) cos**? @ da, A, B € M/(C), (A +B)> -1,
T —n/2

then, with a little simplification, we arrive at
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Fm[ ¢1.01 ;z,z] ]Fn[ 92,0, SW, W
@1 ©2

2¢1 +@2+(m+n-2)I1

I o1 + ¢+ (m+n—DI) T (g +ml) T(es + nl)

= =
72 )2 (7.2)
X f exp (((pl — )i+ (m— n)I,Bi) cos? ™22 o cos™" 3
-r/2 -r/2
1+ 01,42+ 02 . .
X Foin :29P cosa secB, we P cosa secB| da dp.

or+¢—1
Therefore the following theorem can be investigated.
Theorem 7.1. Assume that ¢,, 61, ¢ ¢, 6, and ¢, are positive stable and commutative matrices
in M;(C), such that ¢\, ¢, satisfies the condition (2.3) and u(p; + ¢2) > —1. Then, the integral

representation (7.2) holds true.

Remark 7.1. Note that when j = 1, the provided formulas are reduced to those of the classical Appell
polynomial F; (cf. [28]).

8. Matrix partial differential equations

Suppose that

-nl,¢,0 \
H=F, w|=— IFn[ 4.6 ;z,W]
(@) ®

- Zn: Zn: Us (2, w).
s=0 r=0

8.1)

Denoting the partial differential operator by
D=6, +06,, (8.2)
where 6, = Za% and 6, = w%. This operator has the particularly pleasant property
D" = (s + r*w'.

Now, the following partial differential equation for the first Appell hypergeometric matrix polynomial
of two complex variables can be deduced
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D[lz)w—l]?{

= Z (s + 1) ((s + NI + @ = D(=nl) 541 (9)s(O)r[(@)54r]

s,r=0

>“w

= > (54 7) (1D (GO (@) 1]

1!
=0 sr.

=z Z (¢ + SI) (—l’ll + (S + r)l) Us,r(Z’ W)

s,r=0

+w Z @+ rl) (—nl + (s + NI) U, (z,w)

s,r=0

=z(ID —nl) (611 + ¢) H + w(ID —nl) (6,1 + 0) H.

We readily see that the first Appell hypergeometric matrix polynomial F; should be a solution of a
partial differential equation given by

{z) [ID+¢—1] = UD - nD)|2(0:] + §) + w(B1 + 9)]} H =0. (8.3)

Remark 8.1. Similarly, we can indicate other matrix partial differential equations as special cases of
(8.3). For example,

-nl,¢$,0
{11) — 120, — Iwb, — (z¢ + we)} F czw|=0.
-nl

9. Concluding remarks

The area of matrix polynomial theory has been fast developing and is presently being applied in
many fields such as probability theory, physics, scattering theory, statistics, engineering and chemical
applications (see, e.g., [17-19]). In particular, the 2D special matrix polynomials are very advanta-
geous in several areas of mathematics, prediction theory and spectral analysis. These polynomials
allow the derivation of a number of useful identities in a fairly straight forward way and help in intro-
ducing new families of special polynomials. For example, Abdalla and Hidan [29] have established
the properties of 2D Jacobi matrix polynomials associated with applications. Khan and Raza have pro-
posed many interesting results on two variable Hermite generalized matrix polynomials in [30]. Also,
Fuli [31] introduced 2D Shivleys matrix polynomials and studied some its properties. Very recently,
results for certain 2D hybrid families related to the Appell matrix polynomials are derived by Nahid
and Khan [14,15].

Motivated by the previous works, In this paper, we introduce the first Appell matrix polynomials
of two complex variables and discuss many its properties. It is interesting to note that the matrix
polynomials here lead to the generalization of several matrix polynomials into the two variable forms of
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the hypergeometric, Laguerre, Hermite, Bernoulli, Jacobi, Legendre and truncated exponential matrix
polynomials (see, [22]). In addition, this approach allows to derive several new results that can be used
in theoretical and applicable aspects and for some numerical algorithm.
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