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Abstract: Minimizing closed geodesics on surfaces are linearly unstable. By starting with this classi-
cal Poincaré’s instability result, in the present paper we prove a result that allows to deduce the linear
instability of periodic solutions of autonomous Lagrangian systems admitting an orbit cylinder (condi-
tion which is satisfied for instance if the periodic orbit is transversally non-degenerate) in terms of the
parity properties of a suitable quantity which is obtained by adding the dimension of the configuration
space to a suitably defined spectral index. Such a spectral index coincides with the Morse index of the
periodic orbit seen as a critical point of the free period action functional in the case the Lagrangian is
Tonelli, namely fibrewise strictly convex and superlinear, and it encodes the functional and symplectic
properties of the problem.
The main result of the paper is a generalization of the celebrated Poincaré ’s instability result for
closed geodesics on surfaces and at the same time extends to the autonomous case several previous
results which have been proved by the authors (as well as by others) in the case of non-autonomous
Lagrangian systems.

Keywords: periodic orbits; free period Lagrangian systems; linear instability; Maslov index; spectral
flow

1. Introduction and description of the problem

A celebrated result proved by Poincaré at the beginning of the last century puts on evidence the re-
lation between the (linear and exponential) instability of an orientation preserving closed geodesic as a
critical point of the geodesic energy functional on the free loop space of a surface and the minimization
property of such a critical point. The literature on this criterion is quite broad. We refer the interested
reader to [1–3] and references therein.
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A quite natural question is related to understand the role played by the energy level h on the in-
stability properties of a periodic orbit of an autonomous Lagrangian system. Some years ago, in his
expository article [4], Abbondandolo studied the question of the existence of periodic orbits of the
free period Lagrangian systems in terms of the Mañé critical values. It is worth noticing that the fixed
energy problem for Tonelli Lagrangians as well as for the restricted class of magnetic systems has
been intensively studied by many outstanding mathematicians such as Arnold, Novikov, Ginzburg,
Taimanov, Contreras, Paternain, etc. by starting on the work of Arnol’d [5] in the 1960s. If on the one
hand it is impossible to keep track of all the literature on the topic, some breakthrough papers in the
field are [6] and [7].

Very recently, Ureña in [8], studied the instability of closed orbits obtained by minimization, for an
autonomous Lagrangian system by combining the classical principle of Jacobi-Maupertuis principle
together with a nice reduction argument firstly introduced by Carathéodory. In this way, under some
suitable conditions, the dynamics of a free period Lagrangian system can be seen as the dynamics of a
non-autonomous and fixed period Lagrangian system lowering by 1 the degrees of freedom.

1.1. Basic definitions and main result

Let (M, ⟨·, ·⟩g) be a smooth n-dimensional Riemannian manifold without boundary, which represents
the configuration space of a Lagrangian dynamical system. Elements in the tangent bundle T M will be
denoted by (q, v), with q ∈ M and v ∈ TqM. Let L : T M → R be a smooth autonomous (Lagrangian)
function satisfying the following assumptions

(N1) L is non-degenerate on the fibers of T M, that is, for every (q, v) ∈ T M we have that dvvL(q, v) , 0
is non-degenerate as a quadratic form, where dvvL denotes the fiberwise second differential of L

(N2) L is exactly quadratic in the velocities meaning that the function L(q, v) is a polynomial of degree
at most 2 with respect to v.

Remark 1.1. Before stating our main result, we observe that we require that the Lagrangian function is
exactly quadratic in the velocity assumption (N2). The smoothness property of L are in general not suf-
ficient for guaranteeing the twice Fréchét differentiability of the Lagrangian action functional. In fact,
the functional is twice Fréchét differentiable if and only if L is exactly quadratic in the velocities. In
this case, the Lagrangian action functional is actually smooth. This fact depends upon the differentia-
bility properties of Nemitsky operators. We observe that, by using a finite dimensional approximations
for the free-period action functional as developed by authors in [7], it should be possible to remove the
technical condition (N2).

On the cartesian product Λ1(M) × R+, where Λ1(M) denotes the Hilbert manifold of 1-periodic loops
on M having Sobolev regularity H1, we define the free period Lagrangian action functional as

Eh(x,T ) B T
∫ 1

0

[
L
(
x(s),

x′(s)
T

)
+ h

]
ds,

where h is a real constant playing the role of energy. In fact, since the system is autonomous, the energy
is a first integral. By a direct computation of the first variation of the action functional Eh, it follows
that (x,T ) is a critical point of Eh if and only if it satisfies the Euler-Lagrangian equations having fixed
energy h.

Electronic Research Archive Volume 30, Issue 8, 2833–2859.



2835

Definition 1.2. Let (x,T ) be a critical point of Eh. We term (x,T ) non-null if

⟨dvvL(x(t), x′(t))x′(t), x′(t)⟩g , 0 for every t ∈ [0, 1].

Moreover, (x,T ) is termed

• L-Positive if ⟨dvvL(x(t), x′(t))x′(t), x′(t)⟩g > 0;
• L-Negative if ⟨dvvL(x(t), x′(t))x′(t), x′(t)⟩g < 0.

We observe that the notion of L-positivity (resp. L-negativity) provides a sort of generalization
of the Legendre convexity (resp. concavity) condition only along the selected orbit. Recall that the
classical Legendre convexity condition reads

(L1) L is C 2 strictly convex on the fibers of T M, that is, for every (q, v) ∈ T M we get dvvL(q, v) > 0 as
a quadratic form.

It is worth to observe that the above conditions have been introduced for avoiding any sign changing
of the quanity

⟨dvvL(x(t0), x′(t0))x′(t0), x′(t0)⟩g.

Otherwise, this provides deep difficulties, like in the definition of the spectral index.
Following authors, in [9, Definition 1.2], we are ready to introduce the notion of orbit cylinder.

Definition 1.3. A critical point (x,T ) of Eh admits an orbit cylinder if there exist ϵ > 0 and a smooth
(in s) family critical points {(xh+s,Th+s), s ∈ (−ϵ, ϵ)} of Eh+s such that (xh,Th) = (x,T ). Moreover, this
orbit cylinder is called non-degenerate if T ′(h) , 0.

Under the above notation our main result reads as follows.

Theorem 1.4. Let (x,T ) be a non-null critical point of the free-period Lagrangian action Eh admitting
an orbit cylinder. If one of the following four statements holds:

(1) x is L − Positive and

(OR) x is orientation preserving and ιspec(x,T ) + n is even
(NOR) x is orientation reversing and ιspec(x,T ) + n is odd

(2) x is L − Negative and

(OR) x is orientation preserving and ιspec(x,T ) + n is odd
(NOR) x is orientation reversing and ιspec(x,T ) + n is even

then x is linearly unstable.

Under the classical Legendre convexity condition, it is possible to prove that the spectral index
reduces to the classical Morse index. So, we get the following.

Corollary 1. Let us assume that (x,T ) is a critical point of free period Lagrangian action Eh admitting
an orbit cylinder and we assume that (L1) holds. If one of the following two alternatives holds

(OR) x is orientation preserving and ιMor(x,T ) + n is even
(NOR) x is orientation reversing and ιMor(x,T ) + n is odd
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then x is linearly unstable.

From a tecnical viewpoint a key step for proving our main result is based on a spectral flow formula
relating the Morse index of a periodic orbit as critical point of the free and fixed time Lagrangian action
functional. In [9], authors actually established such a relation under a non-degenerate assumption of
the orbit cylider. As already observed, here we give a generalization of the aforementioned results
provided in [9] by dropping the non-degeneracy assumption of the orbit cylinder. Such a generalization
is essentially based on a quite new results constructed by the second named author in [10].

A crucial intermediate step for proving the main result of this paper is based on a spectral flow for-
mula relating the spectral index to a symplectic invariant known in literature as Maslov index (which is
an intersection invariant constructed in the Lagrangian Grassmannian manifold of a symplectic space)
that plays a crucial role in detecting the stability properties of a periodic orbit. (For an index formula,
we refer the interested reader to [11–14] and references therein). Very recently, new spectral flow for-
mulas have been established and applied for detecting bifurcation of heteroclinic and homoclinic orbits
of Hamiltonian systems or bifurcation of semi-Riemannian geodesics. (Cfr. [15–17]).

Notation

For the sake of the reader, let us introduce some common notation that we’ll use henceforth through-
out the paper.

• (M, ⟨·, ·⟩g) denotes a Riemannian manifold without boundary, T M its tangent bundle and T ∗M its
cotangent bundle.
• Λ1(M) is the Hilbert manifold of loops on manifold M having Sobolev regularity H1.
• ω denotes the symplectic structure J the standard symplectic matrix such that ω(·, ·) = ⟨J·, ·⟩

where ⟨·, ·⟩ denotes the standard Euclidean product.
• ιMor(x) stands for the Morse index of x, ιspec(x) for the spectral index of x, ιgeo(x) for the geometrical

index of x, ι1 denotes the Maslov-type index or Conley-Zehnder index of a symplectic matrix path,
ιCLM denotes the Maslov (intersection) index and finally sf denotes the spectral flow.
• P(L) denotes the set of T -periodic solutions of the Euler-Lagrange Equation, P(H) the set of

T -periodic solutions of the Hamiltonian Equation.
• δi j is the Kronecker symbol. IX or just I will denote the identity operator on a space X and we set

for simplicity Ik := IRk for k ∈ N. Gr(·) denotes the graph of its argument, ∆ denotes the graph of
identity matrix I.
• U is the unit circle of the complex plane.
• O(n) denotes the orthogonal group, Sp(2n,R) or just Sp(2n) denotes the 2n × 2n real symplectic

group.
• P denotes the linearized Poincaré map.
• BFsa denotes the set of all bounded selfadjoint Fredholm operators, σ(·) denotes the spectrum of

the operator in its argument.
• We denote throughout by the symbol ·T (resp. ·−T) the transpose (resp. inverse transpose) of the

operator ·. Moreover rge (·), ker(·) and rank(·) denote respectively the image, the kernel and the
rank of the argument.
• Γ denotes the crossing form and n+/n− denote respectively the dimensions of the positive/negative

spectral spaces and finally sgn(·) is the signature of the quadratic form (or matrix) in its argument
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and it is given by sgn(·) = n+(·) − n−(·).

2. Lagrangian dynamics and variational framework

In this preliminary section we fix our basic notation and we explicitly provided the computation of
the first and second variation of the free period Lagrangian action functional.

2.1. Free-period Lagrangian action

Let (M, ⟨·, ·⟩g) be a (not necessarily compact or connected) smooth n-dimensional Riemannian man-
ifold without boundary, which represents the configuration space of a Lagrangian dynamical system
and we denote by ∥·∥ the Riemannian norm. Elements in the tangent bundle T M will be denoted by
(q, v), with q ∈ M and v ∈ TqM. The metric ⟨·, ·⟩g induces: a metric on T M, Levi-Civita connections
both on M and T M and finally the isomorphisms

T(q,v)T M = T h
(q,v)T M ⊕ T v

(q,v)T M � TqM ⊕ TqM,

for T v
(q,v)T M = ker Dτ(q, v) where τ : T M → M denotes the canonical tangent projection.

Notation 2.1. We shall denote by ∇t the covariant derivative of a vector field along a smooth curve x
with respect to the metric ⟨·, ·⟩g. ∂q (resp. ∂v) denotes the partial derivative along the horizontal part
(resp. vertical part) given by the Levi-Civita connection in the splitting of TT M and We shall denote
by ∂vv, ∂qv, ∂qq the components of the Hessian in the splitting of TT M.

Given a positive number T ∈ R, we denote by T the one-dimensional torus T = R/TZ. Let Λ1
T (M)

be the Hilbert manifold of all loops y : T→ M having Sobolev class H1. Setting x(t) = y(tT ), t ∈ [0, 1]
we get that the closed curve y will be identified with the pair (x,T ). The action of y on time interval
[0,T ] is given by ∫ T

0
[L

(
y(s), y′(s)

)
+ h] ds = T

∫ 1

0
[L

(
x(t), x′(t)/T

)
+ h] dt,

where h ∈ R is a parameter. For convenience, we denote

Eh(x,T ) B T
∫ 1

0
[L

(
x(t), x′(t)/T

)
+ h] dt. (2.1)

In short-hand notation, in what follows we use Λ1(M) instead of Λ1
1(M). In this way, we define a

one-to-one correspondente between⋃
T>0

Λ1
T (M) and Λ1(M) × R+

which preserves the action values. Bearing in mind such a correspondence, the free period action
functional (2.1) is defined on the manifold Λ1(M) × R+.

It is well-known that the tangent space TxΛ
1(M) can be identified in a natural way with the Hilbert

space of 1-periodic H1 (tangent) vector fields along x, i.e.,

H(x) =
{
ξ ∈ H1(R/Z,T M)

∣∣∣ τ ◦ ξ = x
}
.
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It is worth noticing that under the (N2) assumption, the Lagrangian functional is of regularity class C 2

(actually it is smooth). Let ⟨⟨·, ·⟩⟩1 denote the Riemannian metric on Λ1(M) defined by

⟨⟨ξ, η⟩⟩1 B

∫ 1

0

[
⟨∇tξ,∇tη⟩g + ⟨ξ, η⟩g

]
dt, ∀ ξ, η ∈ H(x).

For (ξ, b) ∈ H(x) × R, the first variation of Eh at (x,T ) ∈ Λ1(M) × R+ is given by

dEh(x,T )[(ξ, 0)] =
∫ 1

0

[〈
T∂qL

(
x(t), x′(t)/T

)
−

D
dt
∂vL

(
x(t), x′(t)/T

)
, ξ

〉
g

]
dt

+ ⟨∂vL
(
x(t), x′(t)/T

)
, ξ⟩g

∣∣∣∣1
0

(2.2)

and for (0, b) ∈ H(x) × R, it reduces to

dEh(x,T )[(0, b)] =

∫ 1

0

[
(L(x(t), x′(t)/T ) + h − ⟨∂vL(x(t), x′(t)/T ), x′(t)/T ⟩g) · b

]
dt. (2.3)

By Eqs (2.2) and (2.3), up to standard regularity arguments, it follows that critical points (x,T ) of Eh

are 1-periodic solutions of corresponding Euler-Lagrange equation having energy h. So, (x,T ) satisfies
the following equations:

D
dt

(
∂vL

(
x(t), x′(t)/T

))
= T∂qL

(
x(t), x′(t)/T

)
, t ∈ (0, 1)

L(x(t), x′(t)/T ) + h − ⟨∂vL(x(t), x′(t)/T ), x′(t)/T ⟩g = 0

Now, being Eh smooth it follows that the first variation dEh(x,T ) at (x,T ) coincides with the Fréchét
differential DEh(x,T ) and the second variation of Eh at (x,T ) coincides with D2Eh(x,T ). We set

P̄(t) B ∂vvL
(
x(t), x′(t)/T

)
, Q̄(t) B ∂qvL

(
x(t), x′(t)/T

)
, Q̄T(t) B ∂vqL

(
x(t), x′(t)/T

)
R̄(t) B ∂qqL

(
x(t), x′(t)/T

)
, L̄(t) = ∂qL(x(t), x′(t)/T ), κ(t) = ⟨P̄(t)x′(t), x′(t)⟩g

so, we get

d2Eh[(ξ, b), (η, d)] =

=

∫ 1

0
⟨−

D
dt

[
1
T

P̄(t)∇tξ + Q̄(t)ξ
]
+ Q̄T(t)∇tξ + TR̄(t)ξ, η⟩gdt +

〈 1
T

P̄(t)∇tξ + Q̄(t)ξ, η
〉

g

1

t=0

+

∫ 1

0

− 1
T 2

〈
P̄(t)x′(t),∇tη

〉
g
· b −

1
T 2

〈
P̄(t)x′(t),∇tξ

〉
g
· d +

〈
L̄(t) −

1
T

Q̄(t)x′(t), ξ
〉

g
· d

+

〈
L̄(t) −

1
T

Q̄T(t)x′(t), η
〉

g
· b +

1
T 3 κ(t) · bd

 dt.

Remark 2.2. For a complete details on the first and second variations, we refer the interested reader
to [18] and references therein.
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For a given critical point (x,T ) of Eh, let us consider the following fixed period Lagrangian action
functional:

ET
h (x) B T

∫ 1

0
[L

(
x(t), x′(t)/T

)
+ h] dt, (2.4)

where x ∈ Λ1(M). Actually, ET
h is the restriction of Eh to the submanifold Λ1(M) × {T }. By similar

calculations, the first variation of ET
h at x ∈ Λ1(M) is given by

dET
h (x)[ξ] =

∫ 1

0

[〈
T∂qL

(
x(t), x′(t)/T

)
−

D
dt
∂vL

(
x(t), x′(t)/T

)
, ξ

〉
g

]
dt

+ ⟨∂vL
(
x(t), x′(t)/T

)
, ξ⟩g

∣∣∣∣1
0
.

Critical points x of ET
h are 1-periodic solutions of corresponding Euler-Lagrange Equation:

D
dt

(
∂vL

(
x(t), x′(t)/T

))
= T∂qL

(
x(t), x′(t)/T

)
, t ∈ (0, 1). (2.5)

The second variation of ET
h at x is given by

d2ET
h (x)[ξ, η] =

∫ 1

0
⟨−

D
dt

[ 1
T

P̄(t)∇tξ + Q̄(t)ξ
]
+ Q̄T(t)∇tξ + TR̄(t)ξ, η⟩gdt

+

[
⟨

1
T

P̄(t)∇tξ + Q̄(t)ξ, η⟩g

]1

0
.

By the previous computation, we get that ξ ∈ ker d2ET
h (x) if and only if ξ is a H2 vector field along x

which solves weakly (in the Sobolev sense) the following boundary value problem
−

D
dt

( 1
T

P̄(t)∇tξ + Q̄(t)ξ
)
+ Q̄T(t)∇tξ + TR̄(t)ξ = 0, t ∈ (0, 1)

ξ(0) = ξ(1), ∇tξ(0) = ∇tξ(1).

(2.6)

By standard bootstrap arguments, it follows that ξ is also a classical (smooth) solution of Eq (2.6).

Remark 2.3. It is easy to prove that x is a critical point of fixed period Lagrangian system (2.4) provided
that (x,T ) is a critical point of free period Lagrangian system.

The next result provides an answer to the existence of an orbit cylinder about a T -periodic orbit x.
We refer the interested reader to [19, Section 4.1, Proposition 2] for the proof.

Proposition 2.4. Let us assume that a periodic solution x(t, E∗) of a Hamiltonian vector field XH on
M having energy E∗ = H(x(t, E∗)) and period T ∗ has exactly two Floquet multipliers equal 1. Then,
there exists a unique and smooth one-parameter family x(t, E) of periodic solutions with periods T (E)
close to T ∗ and lying on the energy surfaces H(x(t, E)) = E for |E − E∗| sufficiently small. Moreover,
T (E) converges to T (E∗) for E → E∗.
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3. Spectral index, geometrical index and Poincaré map

The goal of this section is to associate at the critical point (x,T ) of the free period Lagrangian action
given at Eq (2.1) and to a critical point x of the fixed period Lagrangian action given at Eq (2.4) the
spectral index, defined in terms of the spectral flow of a suitable path of Fredholm quadratic forms.
We refer the interested reader to [20, Appendix B] and references therein for a discussion about the
spectral flow.

3.1. Spectral index: an intrinsic (coordinate free) definition

Given (x,T ) be a critical point of Eh, for any s ∈ [0,+∞) we let Is : (H(x) × R) × (H(x) × R)→ R
the bilinear form defined by

Is[(ξ, b), (η, d)] B d2Eh(x,T )[(ξ, b), (η, d)] + sα(x,T )[(ξ, b), (η, d)]

where α(x,T )[(ξ, b), (η, d)] B
∫ 1

0
{⟨

1
T

P̄(t)ξ, η⟩g +
1

T 3 κ(t)bd} dt. (3.1)

Notation 3.1. In short-hand notation and if no confusion can arise, we set Qh B d2Eh(x,T ).

Proposition 3.2. For any s ∈ [0,+∞) let Qs denote the quadratic form associated to Is defined at
Eq (3.1). Then

s 7→ Qs is a smooth path of Fredholm quadratic forms onto H(x) × R. In particular Qh is a
Fredholm quadratic form on H(x) × R.

Proof. The proof is completely analogous to [20, Proposition 3.2]. □

We let (x,T ) be a critical point of the Lagrangian action functional (2.1). Then we can define the
bilinear form Is,T : H(x) ×H(x)→ R of x as a critical point of system (2.4) in the same way as (x,T ).
In fact, Is,T is given by

Is,T [ξ, η] B d2ET
h (x)[ξ, η] + sαT (x)[ξ, η] where αT (x)[ξ, η] B

∫ 1

0

〈
1
T

P̄(t)ξ, η
〉

g
dt.

Set Qh
T B d2ET

h (x). Arguing precisely as done in Proposition 3.2, it can be proved Is,T and Qh
T both are

Fredholm quadratic forms.
For any s ∈ [0,+∞), let Qs,T denote the quadratic form associated to Is,T . Now we are entitled to

define the following spectral indexes.

Definition 3.3. Let (x,T ) be a non-null critical point of the free period Lagrangian action given at
Eq (2.1). We term spectral indices of (x,T ) and x are respectively the integers given by

ιspec(x,T ) B sf
(
Qs, s ∈ [0, s0]

)
and ιTspec(x) B sf

(
Qs,T , s ∈ [0, s0]

)
.

where the (RHS) denotes the spectral flow of the path of Fredholm quadratic forms defined on the
interval [0, s0] for a sufficiently arge s0 > 0.
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Remark 3.4. It is easy to show that Definition 3.3 is well-posed meaning that the spectral indices are
independent on s0. This fact will be proved in the sequel and it is actually a direct consequence of
Lemma 3.6.

Proposition 3.5. We assume that (L1) holds. Then the Morse indices of (x,T ) and x (i.e., the dimension
of the maximal negative subspace of the Hessian of Qh and QhT ) are both finite and the following
equalities hold

ιspec(x,T ) = ιMor(x,T ) and ιTspec(x) = ιMor(x)

Proof. We only consider the free period Lagrangian action, being the fixed period case, completely
analogous. So, we start by observing that if L is C 2-strictly convex on T M, then α(x,T ) is a positive
Fredholm quadratic form and hence s 7→ Qs is a path of essentially positive Fredholm quadratic forms
being realized by a path of compact symmetric perturbation of a positive definite Fredholm operator.
In particular the Morse index of Qs is finite for every s ∈ [0,+∞). If s0 is sufficiently large the form
Qs0 is non-degenerate and positive definite being the quadratic form associated to α(x,T ) be Fredholm
and positive definite. In particular, its Morse index vanishes. Since the spectral flow for path of
essentially positive Fredholm quadratic forms is equal to the difference of the Morse indices at the
ends (cf. [20, Appendix B]), we get that

sf(Qs, s ∈ [0, s0]) = ιMor(Q0) − ιMor(Qs0) = ιMor(Q0).

This concludes the proof. □

3.2. Pull-back bundles and push-forward of Fredholm forms

We denote by E the ⟨·, ·⟩g-orthonormal and parallel frame pointwise given by

E(t) = {e1(t), . . . , en(t)}.

Given a critical point (x,T ) of the free period Lagrangian action, we let Ā : Tx(0)M → Tx(1)M � Tx(0)M
the ⟨·, ·⟩g-orthogonal operator defined by

Āe j(0) = e j(1).

Such a frame E, induces a trivialization of the pull-back bundle x∗(T M) over [0, 1] through the smooth
curve x : [0, 1]→ M; namely the smooth one parameter family of isomorphisms

[0, 1] ∋ t 7−→ Et where Et : Rn ∋ ei 7−→ ei(t) ∈ Tx(t)M ∀ t ∈ [0, 1] and i = 1, . . . , n
are such that ⟨Etei, Ete j⟩g = δi j and ∇tEtei = 0 (3.3)

here {ei}
n
i=1 is the canonical basis of Rn and δi j denotes the Kronecker symbol.

By Eq (3.3) we get that the pull-back by Et of the metric ⟨·, ·⟩g induces the Euclidean product on Rn

and moreover this pull-back is independent on t, as directly follows by the orthogonality assumption
on the frame E.

We set A B E−1
0 Ā−1E1 ∈ O(n) and define

Ad B

[
A 0
0 A

]
. (3.4)
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Let us now consider the Hilbert space

H1
A([0, 1],Rn) =

{
u ∈ H1([0, 1],Rn)

∣∣∣ u(0) = Au(1)
}

equipped with the inner product

⟨⟨v,w⟩⟩A B
∫ 1

0

[
⟨v′(s), Aw′(s)⟩ + ⟨v(s), Aw(s)⟩

]
ds.

Denoting by Ψ : H(x)→ H1
A([0, 1],Rn) the map defined by Ψ(ξ) = u where u(t) = E−1

t (ξ(t)), it follows
that Ψ is a linear isomorphism and it is easy to check that

ξ(0) = ξ(1) ⇐⇒ E0u(0) = E1u(1) ⇐⇒ u(0) = Au(1) and
∇tξ(0) = ∇tξ(1) ⇐⇒ u′(0) = Au′(1)

where, in the last, we used property of the frame being parallel.
For i = 1, . . . , n and t ∈ [0, 1], we let ei(t) B Etei and we denote by ⟨P(t)·, ·⟩, ⟨Q(t)·, ·⟩ and ⟨R(t)·, ·⟩

respectively the pull-back by Et of ⟨P̄(t)·, ·⟩g, ⟨Q̄(t)·, ·⟩g and ⟨R̄(t)·, ·⟩g and y L the pull-back of L̄ by Et.
Thus, we get

P(t) B [pi j(t)]n
i, j=0, Q(t) B [qi j(t)]n

i, j=0, R(t) B [ri j(t)]n
i, j=0 where

pi j(t) B ⟨P̄(t)ei(t), e j(t)⟩g, qi j(t) B ⟨Q̄(t)ei(t), e j(t)⟩g, ri j(t) = ⟨R̄(t)ei(t), e j(t)⟩g.

We observe that P and R are symmetric matrices and being ei(T ) =
∑n

j=1 ai je j(0) we infer that

P(0) = AP(T )AT, P′(0) = AP′(T )AT, Q(0) = AQ(T ), R(0) = AR(T )AT. (3.5)

Now, for every s ∈ [0,+∞), the push-forward by Ψ of the index forms Is on H(x) × R is given by
the symmetric bilinear forms on H1

A([0, 1],Rn) × R defined by

Is[(u, b), (v, d)]

=

∫ 1

0

{〈
1
T

P(t)u′(t), v′(t)
〉
+ ⟨Q(t)u(t), v′(t)⟩ +

〈
QT(t)u′(t), v(t)

〉
+ ⟨TR(t)u(t), v(t)⟩

}
dt

+

∫ 1

0

{
−

1
T 2 ⟨P(t)x′(t), v′(t)⟩ · b −

1
T 2 ⟨P(t)x′(t), u′(t)⟩ · d +

〈
L(t) −

1
T

Q(t)x′(t), u(t)
〉
· d

+

〈
L(t) −

1
T

QT(t)x′(t), v(t)
〉
· b +

1
T 3 κ(t) · bd

}
dt + sα(x)[(ξ, b), (η, d)]

where α(x,T )[(u, b), (v, d)] B
∫ 1

0

{〈
1
T

P(t)u(t), v(t)
〉
+

1
T 3 κ(t)bd

}
dt. (3.6)

Denoting by qA
s the quadratic form on H1

A([0, 1],Rn)×R associated to Is then, as direct consequence of
Proposition 3.2, we get that for every s ∈ [0,+∞), the quadratic form qA

s is Fredholm on H1
A([0, 1],Rn)×

R. The following result is crucial in the well-posedness of the spectral index.

Lemma 3.6. Under the above notation, there exists s0 ∈ [0,+∞) large enough such that for every
s ≥ s0, the form Is given in Eq (3.6) is non-degenerate (in the sense of bilinear forms).
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Proof. We argue by contradiction and we assume that for every s0 ≥ 0 there exists s ≥ s0 such that Is

is degenerate. Then there exists a (u, b) ∈ H1
A([0, 1],Rn) × R such that Is((u, b), (v, d)) ≡ 0 for every

(v, d) ∈ H1
A([0, 1],Rn) × R, namely we have

0 ≡ Is((u, b), (v, d))

=

∫ 1

0

{〈
1
T

P(t)u′(t), v′(t)
〉
+ ⟨Q(t)u(t), v′(t)⟩ +

〈
QT(t)u′(t), v(t)

〉
+ ⟨TR(t)u(t), v(t)⟩

}
dt

+

∫ 1

0

{
−

1
T 2 ⟨P(t)x′(t), v′(t)⟩ · b −

1
T 2 ⟨P(t)x′(t), u′(t)⟩ · d +

〈
L(t) −

1
T

Q(t)x′(t), u(t)
〉
· d

+

〈
L(t) −

1
T

QT(t)x′(t), v(t)
〉
· b +

1
T 3 κ(t) · bd

}
dt

+ s
∫ 1

0

{〈
1
T

P(t)u(t), v(t)
〉
+

1
T 3 κ(t)bd

}
dt. (3.7)

We let v(t) B 1
T P(t)u(t) and we observe that as direct consequence of Eq (3.5), the function v is

admissible (meaning that v belongs to H1
A). Since (x,T ) is non-null, we set d B sign κ(t) · b for

sign κ(t) ∈ {1,−1}.
By replacing v and d into Eq (3.7) respectively by v = Pu/T and d = sign κ(t) · b and dropping the

argument t in each function, we get

0 ≡ Is((u, b), (v, d)

=

∫ 1

0

{〈
1
T

Pu′,
1
T

(P′u + Pu′)
〉
+

〈
Qu,

1
T

(P′u + Pu′)
〉
+

〈
QTu′,

1
T

Pu
〉
+

〈
TRu,

1
T

Pu
〉}

dt

+

∫ 1

0

{
−

1
T 2

〈
Px′,

1
T

(P′u + Pu′)
〉
· b −

1
T 2 ⟨Px′, u′⟩ · sign κ(t) · b +

〈
L −

1
T

Qx′, u
〉
· sign κ(t) · b

+

〈
L −

1
T

QTx′,
1
T

Pu
〉
· b +

1
T 3 κ · b · sign κ(t) · b

}
dt

+ s
∫ 1

0

{〈
1
T

Pu,
1
T

Pu
〉
+

1
T 3 κb · sign κ(t) · b

}
dt. (3.8)

For i = 1, 2, 3, 4, we let Ci be given as follows:

C1 =
1

T 2 ∥P
′P−1∥ +

1
T
∥QP−1∥ +

1
T
∥QTP−1∥; C2 =

1
T
∥QP−1∥∥P′P−1∥ + ∥RP−1∥;

C3 =
1

T 3 ∥Px′∥ +
1

T 2 ∥Px′∥∥P−1∥ +
1
T
∥L −

1
T

QTx′∥;

C4 =
1

T 3 ∥Px′∥∥PP−1∥ + ∥L −
1
T

Qx′∥∥P−1∥.

and for for s sufficiently large we get

0 ≡ Is((u, b), (v, d)

≥

∫ 1

0

[
1

T 2 ∥Pu′∥2 −C1∥Pu′∥∥Pu∥ +
( s
T 2 −C2

)
∥Pu∥2
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−C3∥Pu′∥ · b −C4∥Pu∥ · b +
s + 1
T 3 |κ| b

2
]

dt > 0.

This concludes the proof. □

Remark 3.7. Here we would like to observe that the non-null assumption has been strongly used in
the proof of Lemma 3.6 and it is crucial in the previous construction. However, it is interesting to
understand if this condition is just technical or if it represent an obstruction to carry over this case
Theorem 1.4.

Now, for every s ∈ [0,+∞), the push-forward by Ψ of the index form Is on H(x) is given by the
symmetric bilinear form on H1

A([0, 1],Rn) defined by

Is,T [u, v] B
∫ 1

0

{〈
1
T

P(t)u′(t), v′(t)
〉
+ ⟨Q(t)u(t), v′(t)⟩

+
〈
QT(t)u′(t), v(t)

〉
+ ⟨TR(t)u(t), v(t)⟩

}
dt

where αT (x)[u, v] B
∫ 1

0

〈
1
T

P(t)u(t), v(t)
〉

dt.

By arguing precisely as before, we get that there exists a s0 > 0 large enough such that Is,T is non-
degenerate for every s > s0.

Proposition 3.8. Let (x,T ) be a non-null critical point of Lagrangian action given at Eq (2.1). Then
the spectral indexes are well-defined.

Proof. We start observing that, s 7→ qA
s is a path of Fredholm quadratic forms on H1

A([0,T ],Rn) × R.
Moreover, by Lemma 3.6, there exists s0 ∈ [0,+∞) such that qA

s is non-degenerate for every s ≥ s0 and
hence the integer sf{qA

s , s ∈ [0, s0]} is well-defined.
The conclusion follows by observing that qA

s is the push-forward by Ψ of the Fredholm quadratic
form Qs and by the fact that the spectral flow of a generalized family of Fredholm quadratic forms on
the (trivial) Hilbert bundle [0, s0] × (H(x) × R) is independent on the trivialization. This concludes the
proof. □

3.3. The difference between two spectral indices

This subsection is to provide an abstract formula for computing the difference between the spectral
indices defined above.

Let H be a real separable Hilbert space equipped with inner product ⟨·, ·⟩, W ⊂ H be a dense
subspace and let the inclusion map i : W → H be compact. We let A be an unbounded linear operator
on H having domain W and we assume that A is a Fredholm operator. Given a finite dimensional
Hilbert space V , we assume that B : V → H is a bounded linear operator and C : V → V is a bounded
self-adjoint linear operator. We denote by A : W ⊕ V → H ⊕ V the self-adjoint operator defined by

A(w, v) = (Aw + Bv, B∗w +Cv),

where B∗ is the adjoint operator of B. In matrix form the operator A can be written as

A =

[
A B
B∗ C

]
.
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Lemma 3.9. Under above assumptions, we have

m−
( [ 0 B

B∗ C

] )
= m−(C|ker B) + dim(Im B),

where m− denotes the Morse index.

Proof. For the Hilbert space V , the following splitting holds

V = Im B∗ ⊕ ker B = Im B ⊕ ker B∗.

By choosing a suitable basis, the matrix
[

0 B
B∗ C

]
has the block form


0 0 B11 0
0 0 0 0

B∗11 0 C11 C12

0 0 C∗12 C22

 ,
where B11 : Im B∗ → Im B and B∗11 : Im B→ Im B∗ are both invertible. So, in particular

[
0 B
B∗ C

]
is similar to


0 0 B11 0
0 0 0 0

B∗11 0 0 0
0 0 0 C22

 .
Now, since

m−
( [ 0 B11

B∗11 0

] )
= dim(Im B) and m−(C|ker B) = m−(C22|ker B)

the thesis readily follows. □

Lemma 3.10. For s ∈ [0, 1], we let A(s) =
[

A (1 − s)B
(1 − s)B∗ (1 − s)C

]
Then, the following spectral flow

formula holds

sf(A(s), s ∈ [0, 1]) = m−(A(0)|W⊥) + dim(W ∩W⊥) − dim(W ∩ kerA(0)).

Proof. We start to consider the splitting W = (ker A)⊥ ⊕ ker A. So, A(s) can be written in the following
block form

A(s) =


A11 0 (1 − s)B1

0 0 (1 − s)B2

(1 − s)B∗1 (1 − s)B∗2 (1 − s)C

 ,
where A11 : (ker A)⊥ → (ker A)⊥ is invertible and B1 : V → (ker A)⊥, B2 : V → ker A.

For s ∈ [0, 1], we let

B(s) =


A11 0 0
0 0 (1 − s)B2

0 (1 − s)B∗2 (1 − s)[C − (1 − s)B∗1A−1
11 B1]

 .
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First claim. The following equality holds:

sf{A(s), s ∈ [0, 1]} = sf{B(s), s ∈ [0, 1]}. (3.9)

This equality is a direct consequence of the stratum homotopy invariant property of the spectral flow.
So, let’s start to consider the 2-parameter family of operators pointwise defined by

A(s, t) =


A11 0 t(1 − s)B1

0 0 (1 − s)B2

t(1 − s)B∗1 (1 − s)B∗2 (1 − s)[C − (1 − t)2(1 − s)B∗1A−1
11 B1]


and we observe that we have A(s, t) = K(t)∗A(s)K(t) for

K(t) =


I 0 −(1 − t)(1 − s)A−1

11 B1

0 I 0
0 0 I

 .
By a straightforward calculation it follows that dim ker A(0, t) and dim ker A(1, t) are both constants.
By using the zero axiom of the spectral flow (namely each path is contained in a fixed stratum of the
Fredholm Lagrangian Grassmannian), we get that

sf{A(0, t), t ∈ [0, 1]} = sf{A(1, t), t ∈ [0, 1]} = 0.

By invoking the stratum homotopy invariant property of the spectral flow, we get that

sf{A(s, 0), s ∈ [0, 1]} = sf{A(s, 1)s ∈ [0, 1]}

which is precisely the equality appearing at Eq (3.9).
Let

C(s) =
[

0 (1 − s)B2

(1 − s)B∗2 (1 − s)[C − (1 − s)B∗1A−1
11 B1]

]
, s ∈ [0, 1].

By taking into account the additivity property of the spectral flow under direct sum as well as of
Eq (3.9), we get that

sf{B(s), s ∈ [0, 1]} = sf{C(s), s ∈ [0, 1]}.

Now, since C(1) = 0, then we have

sf{C(s), s ∈ [0, 1]} = m−(C(0)).

By Lemma 3.9, we get that

sf{C(s), s ∈ [0, 1]} = m−(C(0)) = m−((C − B∗1A−1
11 B1)|ker B2) + dim(Im B2).

In order to conclude, we have to prove that

m−(A(0)|W⊥) = m−((C − B∗1A−1
11 B1)|ker B2) and

dim(W ∩W⊥) − dim(W ∩ kerA(0)) = dim(Im B2).

Electronic Research Archive Volume 30, Issue 8, 2833–2859.



2847

Let us consider (x1, x2, 0)T ∈ kerA(0) ∩W. Then for every (u1, u2, v)T ∈ W ⊕ V we have

〈 
A11 0 B1

0 0 B2

B∗1 B∗2 C



x1

x2

0

 ,

u1

u2

v

 〉 = ⟨A11x1, u1⟩ + ⟨B∗1x1, v⟩ + ⟨B∗2x2, v⟩ ≡ 0. (3.10)

We set v = 0. So, ⟨A11x1, u1⟩ ≡ 0 for every u1 ∈ (ker A)⊥ implies that A11x1 = 0. Consequently we
have x1 = 0. Now, Eq (3.10) becomes ⟨B∗2x2, v⟩ ≡ 0. Since v is arbitrary, then B∗2x2 = 0. Hence
W ∩ kerA(0) = {(0, x2, 0)T | B∗2x2 = 0} = ker B∗2.

If (x1, x2, y)T ∈ W⊥, then for every (u1, u2, 0)T ∈ W we have

〈 
A11 0 B1

0 0 B2

B∗1 B∗2 C



x1

x2

y

 ,

u1

u2

0

 〉 = ⟨A11x1, u1⟩ + ⟨B1y, u1⟩ + ⟨B2y, u2⟩ ≡ 0. (3.11)

We set u2 = 0. Then ⟨A11x1 + B1y, u1⟩ ≡ 0 for every u1 ∈ (ker A)⊥ implies that A11x1 + B1y = 0.
Consequently we have x1 = −A−1

11 B1y. Let u1 = 0, Eq (3.11) becomes ⟨B2y, u2⟩ ≡ 0 for every u2 ∈ ker A,
then B2y = 0. Hence W⊥ = {(−A−1

11 B1y, x2, y)T
| B2y = 0, x2 ∈ ker A} and W∩W⊥ = {(0, x2, 0)T} = ker A.

Now, we get

dim W ∩W⊥ − dim W ∩ kerA(0) = dim ker A − dim ker B∗2 = dim Im B2.

For every ξ0 = (−A−1
11 B1y, x2, y)T

∈ W⊥, we have

⟨A(0)ξ0, ξ0⟩ =
〈 

A11 0 B1

0 0 B2

B∗1 B∗2 C



−A−1

11 B1y
x2

y

 ,

−A−1

11 B1y
x2

y

 〉
= ⟨−B1y,−A−1

11 B1y⟩ + ⟨B1y,−A−1
11 B1y⟩ + ⟨B2y, x2⟩

+ ⟨−B∗1A−1
11 B1y, y⟩ + ⟨B∗2x2, y⟩ + ⟨Cy, y⟩

= ⟨(C − B∗1A−1
11 B1)y, y⟩.

Therefore, we have m−(A(0)|W⊥) = m−((C − B∗1A−1
11 B1)|ker B2). This concludes the proof. □

Lemma 3.11. We let A(s) =
[

A sB
sB∗ sC

]
, for s ∈ [0, 1] and we assume that A is invertible. Then we

have
sf(A(s), s ∈ [0, 1]) = −m−(C − B∗A−1B).

Proof. By a similar discussion as provided in the proof of Eq (3.9), we get

sf(A(s), s ∈ [0, 1]) = sf(B(s), s ∈ [0, 1]), where B(s) =
[
A 0
0 s[C − sB∗A−1B]

]
.

Since A is invertible, we infer that

sf(A(s), s ∈ [0, 1]) = sf(s(C − sB∗A−1B), s ∈ [0, 1]).
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We observe that the operator s(C − sB∗A−1B) is defined on a finite dimensional space V , and since in
this case the spectral flow is equal to the Morse index at the starting point minus the Morse index at the
end point, we get that

sf(s(C − sB∗A−1B), s ∈ [0, 1]) = −m−(C − B∗A−1B).

□

By using the previous results, we are now ready to compute the difference between two spectral
indices defined in Definition 3.3. By taking into account Eq (3.6), we denote by A(s) the realization
of Is meaning the bounded linear operator representing the bilinear form Is w.r.t. the H1

A × R scalar
product; so, we get

Is[(u, b), (v, d)] =
〈
A(s)

[
u
b

]
,

[
v
d

] 〉
.

Similarly, we define the bounded linear operators A(s), B,C(s) representing w.r.t. the H1
A × R scalar

product the three terms defining Is. So, we get

⟨A(s)u, v⟩

=

∫ 1

0

{〈
1
T

P(t)u′(t), v′(t)
〉
+ ⟨Q(t)u(t), v′(t)⟩ +

〈
QT(t)u′(t), v(t)

〉
+ ⟨TR(t)u(t), v(t)⟩

}
dt

+ s
∫ 1

0

{〈
1
T

P(t)u(t), v(t)
〉}

dt

〈
B

[
u
b

]
,

[
v
d

] 〉
=

∫ 1

0

{
−

1
T 2 ⟨P(t)x′(t), v′(t)⟩ · b +

〈
L(t) −

1
T

QT(t)x′(t), v(t)
〉
· b

}
dt

⟨C(s) b, d⟩ = (s + 1)
∫ 1

0

1
T 3 κ(t)bd dt.

In matrix form the operator A(s) can be written as

A(s) =
[
A(s) B
B∗ C(s)

]
.

Let now consider the homotopy pointwise defined by

A(s, ϵ) =

 A(s) (1 − ϵ)B

(1 − ϵ)B∗ (1 − ϵ)C(s)

 for ϵ ∈ [0, 1].

Recall the discussions below Remark 3.7 we proved that the index form Is,T is non-degenerate for
s0 large enough. Therefore, A(s0) is invertible. The next result provides a more strinking propery about
the spectrum of A(s0).

Lemma 3.12. There exists δ > 0 such that σ(A(s0)) ∩ [−δ, δ] = ∅. In particular, the operator A−1(s0)
is bounded.
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Proof. Arguing by contradiction, we assume that for every δ > 0 there exists λδ ∈ [−δ, δ] and uδ ∈
H1

A([0, 1],Rn) such that A(s0)uδ = λδuδ. Take vδ = Puδ, then we have

Is0,T (uδ, vδ) = ⟨A(s0)uδ, vδ⟩ = λδ⟨uδ, vδ⟩ ≤ λδ

∫ 1

0
∥P−1∥∥Puδ∥2dt. (3.13)

By taking into account Eq (3.8), we have

Is0,T (uδ, vδ) ≥
∫ 1

0

[
1

T 2 ∥Pu′δ∥
2 −C1∥Pu′δ∥∥Puδ∥ + (

s0

T 2 −C2)∥Puδ∥2
]

dt. (3.14)

Inequalities provided at Eq (3.13) and Eq (3.14) contradict each other for s0 sufficiently large and δ
(consequently λδ) sufficiently small. This concludes the proof. □

By the homotopy invariance property of the spectral flow, we get that

sf(A(s, 0), s ∈ [0, s0]) = sf(A(0, ϵ), ϵ ∈ [0, 1]) + sf(A(s, 1), s ∈ [0, s0])
+ sf(A(s0, 1 − ϵ), ϵ ∈ [0, 1]).

(3.15)

Let us now compute the spectral flow sf(A(s0, 1 − ϵ), ϵ ∈ [0, 1]). By using Lemma 3.12, we infer that
B∗A−1(s0)B is a bounded operator (on a one-dimensional space). So, we get

m−(C(s0) − B∗A−1(s0)B) =

1 if κ < 0
0 if κ > 0.

By Lemma 3.11, we have

sf(A(s0, 1 − ϵ), ϵ ∈ [0, 1]) = m−(C(s0) − B∗A−1(s0)B) =

1 if κ < 0
0 if κ > 0.

(3.16)

Let us now compute the spectral flow sf(A(0, ϵ), ϵ ∈ [0, 1]). By using Lemma 3.10 we have

sf(A(0, ϵ), ϵ ∈ [0, 1]) = m−(A(0, 0)|W⊥) + dim(W ∩W⊥) − dim(W ∩ kerA(0, 0))

where W = H1
A([0, 1],Rn) and V = R.

The next step is to provide an explicit description of

m−(A(0, 0)|W⊥) + dim(W ∩W⊥) − dim(W ∩ kerA(0, 0)).

The basic idea comes from [9, Section 2.1].
Let (x,T ) be a non-null critical point of Eh with orbit cylinder (xh+s,Th+s). Then for every (ξ, b) ∈

H(x) × R we have
dEh+s(xh+s,Th+s)[(ξ, b)] ≡ 0. (3.17)

By differentiating w.r.t. s both sides of Eq (3.17), we get

d2Eh(x,T )[(ξh,T ′(h)), (ξ, b)] +
∂

∂s

∣∣∣∣
s=0

dEh+s(x,T )[(ξ, b)] = 0, (3.18)
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where ξh(t) = ∂
∂s |s=0xh+s(t),T ′(h) = d

ds |s=0Th+s. Let now choose a variation {(xh,r,Th,r), r ∈ (−ϵ, ϵ)} such
that (xh,0,Th,0) = (x,T ) and ∂

∂r |r=0(xh,r,Th,r) = (ξ, b), then we have

∂

∂s

∣∣∣∣
s=0

dEh+s(x,T )[(ξ, b)] =
∂

∂s

∣∣∣∣
s=0

∂

∂r

∣∣∣∣
r=0
Eh+s(x,T )[(xh,r,Th,r)]

=
∂

∂r

∣∣∣∣
r=0

∂

∂s

∣∣∣∣
s=0
Eh+s(x,T )[(xh,r,Th,r)]

=
∂

∂r

∣∣∣∣
r=0

Th,r = b.

By taking into account Eq (3.18) we have

d2Eh(x,T )[(ξh,T ′(h)), (ξ, b)] = −b (3.19)

for every (ξ, b) ∈ H(x) × R. Taking b = 0 and (ξ, b) = (ξh,T ′(h)) respectively, we have

d2Eh(x,T )[(ξh,T ′(h)), (ξ, 0)] = 0, d2Eh(x,T )[(ξh,T ′(h)), (ξh,T ′(h))] = −T ′(h). (3.20)

Let us identify H(x) with H(x) × {0} and we denote the Hessian of Eh by ∇2Eh(x,T ). So,
ker d2Eh(x,T ) = ker∇2Eh(x,T ). We now set

H⊥(x) = {(ξ, b) ∈ H(x) × R | d2Eh(x,T )[(ξ, b), (η, 0)] = 0, ∀(η, 0) ∈ H(x)}.

The following result holds.

Lemma 3.13. Under above notations, we get

ker d2Eh(x,T ) ⊂ H(x), and H⊥(x) = ker d2Eh(x,T ) ⊕ R(ξh,T ′(h)).

Proof. We argue by contradiction. If H(x) + ker d2Eh(x,T ) = H(x) × R, then

H⊥(x) = (H(x) + ker d2Eh(x,T ))⊥ = (H(x) × R)⊥ = ker d2Eh(x,T ). (3.21)

By taking into account Eq (3.20) we get (ξh,T ′(h)) ∈ H⊥(x) and by using Eq (3.19) we know
(ξh,T ′(h)) < ker d2Eh(x,T ) which contradicts Eq (3.21).
So, H(x) + ker d2Eh(x,T ) , H(x) × R. Since dim((H(x) × R)/H(x)) = 1, then we finally get
ker d2Eh(x,T ) ⊂ H(x).

Now observe that ker d2Eh(x,T ) ⊕ R(ξh,T ′(h)) ⊂ H⊥(x) and dim(H⊥(x)/ ker d2Eh(x,T )) ≤ 1. In
particular H⊥(x) = ker d2Eh(x,T ) ⊕ R(ξh,T ′(h)). This concludes the proof. □

By invoking Lemma 3.13, we get

H⊥(x) = ker d2Eh(x,T ) ⊕ R(ξh,T ′(h)) ⊃ H(x) ∩H⊥(x) ⊃ ker d2Eh(x,T ).

If T ′(h) , 0, the R(ξh,T ′(h)) ⊊ H(x). Thus, we have H(x) ∩H⊥(x) = ker d2Eh(x,T ).
At the same time, by Lemma 3.13 we have d2Eh(x,T )|H⊥(x) = d2Eh(x,T )|R(ξh,T ′(h)). Then by

Eq (3.20), we have

m−(d2Eh(x,T )|H⊥(x)) =

1 if T ′(h) > 0
0 if T ′(h) < 0.
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Hence, we have

m−(d2Eh(x,T )|H⊥(x)) + dim(H(x) ∩H⊥(x)) − dim(H(x) ∩ ker d2Eh(x,T ))

=

1 if T ′(h) > 0
0 if T ′(h) < 0.

If T ′(h) = 0, then by Eq (3.20), we get that (ξh,T ′(h)) ∈ H(x) ∩H⊥(x). Therefore, we have

H(x) ∩H⊥(x) = ker d2Eh(x,T ) ⊕ R(ξh, 0) = H⊥(x).

As a result, we have dim(H(x) ∩H⊥(x)) − dim(H(x) ∩ ker d2Eh(x,T )) = 1, and

d2Eh(x,T )|H⊥(x) = d2Eh(x,T )|H⊥(x)∩H(x) = 0.

So, we get that if T ′(h) = 0 there holds

m−(d2Eh(x,T )|H⊥(x)) + dim(H(x) ∩H⊥(x)) − dim(H(x) ∩ ker d2Eh(x,T )) = 1.

Summing up, we have

m−(d2Eh(x,T )|H⊥(x)) + dim(H(x) ∩H⊥(x)) − dim(H(x) ∩ ker d2Eh(x,T ))

=

1 if T ′(h) ≥ 0
0 if T ′(h) < 0.

In conclusion, we get

sf(A(0, ϵ), ϵ ∈ [0, 1]) = m−(A(0, 0)|W⊥) + dim(W ∩W⊥) − dim(W ∩ kerA(0, 0))
= m−(d2Eh(x,T )|H⊥(x)) + dim(H(x) ∩H⊥(x))
− dim(H(x) ∩ ker d2Eh(x,T ))

=

1 if T ′(h) ≥ 0
0 if T ′(h) < 0

,

(3.22)

where W = H1
A([0, 1],Rn). By summarizing all the previous results, the following theorem holds.

Theorem 3.14. Under above notations the following equalities hold:

ιspec(x,T ) − ιTspec(x) = sf
(
Qs, s ∈ [0, s0]

)
− sf

(
Qs,T , s ∈ [0, s0]

)
= sf(A(s, 0), s ∈ [0, s0]) − sf(A(s, 1), s ∈ [0, s0])
= sf(A(0, ϵ), ϵ ∈ [0, 1]) + sf(A(s0, 1 − ϵ), ϵ ∈ [0, 1])

=


2 if κ < 0, T ′(h) ≥ 0
1 if κ < 0, T ′(h) < 0 or κ > 0, T ′(h) ≥ 0
0 if κ > 0, T ′(h) < 0

(3.23)

Proof. The proof readily follows by invoking Eqs (3.15)-(3.16) and Eq (3.22). This concludes the
proof. □
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Remark 3.15. We observe that the main role of orbit cylinder is to ensure the existence of vector
(ξh,T ′(h)) in Eq (3.19). A natural problem is to find out some more general conditions to insure the
existence of a vector in H⊥(x) but not in ker d2Eh(x,T ). The bifurcation theory of Hamiltonian system
could be the right direction for answering this question.

By using Proposition 3.5, the following result holds.

Corollary 3.16. If L is C 2-strictly convex on T M, then the difference between two Morse indices is
given by

ιMor(x,T ) − ιTMor(x) =

1 if T ′(h) ≥ 0
0 if T ′(h) < 0

Proof. Since L is C 2-strictly convex, then κ = ⟨Px′, x′⟩ > 0. By Proposition 3.5 and Eq (3.23), we
conclude the proof. □

Remark 3.17. Here we point out that if (x,T ) is a minimizer of system (2.4) when L is C 2-strictly
convex, then we must have ιMor(x,T ) = 0. By Corollary 3.16 there must hold T ′(h) < 0. Or vice versa,
if T ′(h) ≥ 0, then (x,T ) cannot be a minimizer.

4. Linear instability and proof of the main result

In this section we recall some well-known results about the fixed period problem. We refer the
interested reader to [20] for the complete proofs.

4.1. Hamiltonian system and geometrical index

It is well-known that under the assumption (N1) the Legendre transform

LL : T M → T ∗M, (q, v) 7→
(
q,DL(q, v)

∣∣∣
T v

(q,v)T M

)
is a local smooth diffeomorphism. The Fenchel transform of L is the autonomous Hamiltonian on T ∗M

H(q, p) = max
v∈Tq M

(
p[v] − L(q, v)

)
= p[v(q, p)] − L(q, v(q, p)),

for every (q, p) ∈ T ∗M, where the map v is a component of the fiber-preserving diffeomorphism

L −1
L : T ∗M → T M, (q, p) 7→ (q, v(q, p))

the inverse of LL.
By the above Legendre transform, the Euler-Lagrange Equation (2.5) is changed into the following

Hamiltonian equation:
z′x(t) = J∇H(zx(t)).

By trivializing the pull-back bundle x∗(T M) over T M through the frame E defined in Subsection 3,
Eq (2.6) is changed into

−
d
dt

( 1
T P(t)u′(t) + Q(t)u(t)

)
+ QT(t)u′(t) + TR(t)u(t) = 0, t ∈ (0, 1)

u(0) = Au(1), u′(0) = Au′(1).
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By setting y(t) = 1
T P(t)u′(t) + Q(t)u(t) and z(t) = (y(t), u(t))T we finally getz′(t) = JB(t)z(t), t ∈ [0, 1]

z(0) = Adz(1)
where

B(t) B
[

T P−1(t) −T P−1(t)Q(t)
−T Q(t)P−1(t) T QT(t)P−1(t)Q(t) − TR(t)

]
(4.1)

and Ad has been defined in Eq (3.4).
In the standard symplectic space (R2n, ω), we denote by J the standard symplectic matrix defined

by J =
[
0 −I
I 0

]
. Thus the symplectic form ω can be represented with respect to the Euclidean product

⟨·, ·⟩ by J as follows ω(z1, z2) = ⟨Jz1, z2⟩ for every z1, z2 ∈ R
2n.

Given M ∈ Sp(2n,R), we denote by Gr(M) = {(x,Mx)|x ∈ R2n} its graph and we recall that Gr(M)
is a Lagrangian subspace of the symplectic space (R2n × R2n,−ω × ω).

Definition 4.1. Let x be a 1-periodic solution of Eq (2.5), zx be the solution of corresponding Hamil-
tonian equation and let us consider the path

γΦ : [0, 1]→ Sp(2n,R) given by γΦ(t) B Ad[ΦE(t)]−1Dϕt
H(zx(0))ΦE(0).

We define the geometrical index of x as follows

ιgeo(x) B ιCLM(∆,Gr(γΦ(t)), t ∈ [0, 1])

where the (RHS) in Eq (4.3) denotes the ιCLM Maslov index between the Lagrangian path t 7→ Gr(γΦ(t))
and the Lagrangian path ∆ B Gr(I) defined at Appendix A and references therein.

Let x be a 1-periodic solution of Eq (2.5) and zx be the solution of corresponding Hamiltonian
equation, we can define the linearized Poincaré map of zx as follows.

Pzx : Tx(0)M ⊕ T ∗x(0)M → Tx(0)M ⊕ T ∗x(0)M is given by

Pzx(α0, δ0) B Ād

(
ζ(T ),

1
T

P̄(T )∇tζ(T ) + Q̄(T )ζ(T )
)T

for Ād B

[
Ā 0
0 Ā

]
(4.2)

where ζ is the unique vector field along x such that ζ(0) = α0 and 1
T P̄(0)∇tζ(0) + Q̄(0)ζ(0) = δ0. Fixed

points of Pzx correspond to periodic vector fields along zx.
By pulling back the linearized Poincaré map defined in Eq (4.2) through the unitary trivialization

ΦE of zx(TT ∗M) over [0, 1] we get the map

PE : Rn ⊕ Rn → Rn ⊕ Rn defined by PE(y0, u0) = Ad

(
1
T

Pu′(T ) + Qu(T ), u(T )
)T

where z(t) =
(
y(t), u(t)

)
is the unique solution of the Hamiltonian system given in Eq (4.1) such that

z(0) = (y0, u0).
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Denoting by t 7→ ψ(t) the fundamental solution of (linear) Hamiltonian system given in Eq (4.1),
then we get the geometrical index given in Definition 4.1 reduces to

ιgeo(x) B ιCLM(∆,Gr(Adψ(t)), t ∈ [0, 1]). (4.3)

Moreover, the linearized Poincaré map can be given by the symplectic matrix Adψ(1).
By choosing a suitable coordinates and trivialization we can split Adψ(t) into following form:

Adψ(t) =


1 0 0

−tT ′(h) 1 0
0 0 Px(t)

 ,
where Px(t) is a path of 2(n − 1) × 2(n − 1) symplectic matrices. It is referred to [9, Page 104-105].

Definition 4.2. Under above notations, zx is termed spectrally stable if the spectrum σ(Px(1)) ⊂ U
where U ⊂ C denotes the unit circle of the complex plane. If Px(1) is also semi-simple, then zx is
termed linearly stable.

Denote γ1(t) =
{ [ 1 0
−tT ′(h) 1

]
, t ∈ [0, 1]

}
and γ2(t) = {Px(t) | t ∈ [0, 1]}, then by invoking Eq (A.2),

then we get
ιgeo(x) = ιCLM(∆,Gr(γ1(t)), t ∈ [0, 1]) + ιCLM(∆,Gr(γ2(t)), t ∈ [0, 1])

= ιCLM(∆,Gr(γ2(t)), t ∈ [0, 1]) +

1, if T ′(h) < 0
0, if T ′(h) ≥ 0.

(4.4)

The, next result is well-known and relates the parity of the ιCLM-index to the linear instability of the
periodic orbit.

Lemma 4.3. The following implication holds

ιCLM(∆,Gr(γ2(t)), t ∈ [0, 1]) is odd ⇒ x is linearly unstable

Proof. It is referred to the proof of [20, Lemma 3.15].
□

In [20, Equation 4.25] we give the precise relationship between ιgeo(x) and ιTspec(x):

ιgeo(x) = ιTspec(x) + dim ker(A − I).

Remark 4.4. We conclude this section, by observing that even if not explicitly stated, all arguments
provided above, also work when the periodic orbit is transversally degenerate.

4.2. Proof of Main Theorem

Proof of Theorem 1.4. We prove only the (contrapositive of) the first statement in Theorem 1.4, being
the others completely analogous. Thus, we aim to prove that

if x is L-positive, orientation preserving and linearly stable ⇒ ιspec(x,T ) + n is odd.
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First of all, we have

n + ιspec(x,T ) = n + (ιspec(x,T ) − ιTspec(x)) + ιTspec(x)

= (n − dim ker(A − I)) + (ιspec(x,T ) − ιTspec(x)) + (ιTspec(x) + dim ker(A − I))

= (n − dim ker(A − I)) + (ιspec(x,T ) − ιTspec(x)) + ιgeo(x)

= (n − dim ker(A − I)) + (ιspec(x,T ) − ιTspec(x)) + (ιgeo(x) − ιCLM(∆,Gr(γ2(t))))

+ ιCLM(∆,Gr(γ2(t))).

(4.5)

Being x orientation preserving (by assumption), then det A = 1 and being A also orthogonal, then
we get that

• n even ⇒ dim ker(A − I) even
• n odd ⇒ dim ker(A − I) odd.

So, in both cases we have n − dim ker(A − I) is even. Since x is L-Positive, then κ(t) > 0. By
Equations (3.23) and (4.4), we have

• T ′(h) ≥ 0⇒ ιspec(x,T ) − ιTspec(x) odd and ιgeo(x) − ιCLM(∆,Gr(γ2(t))) even
• T ′(h) < 0⇒ ιspec(x,T ) − ιTspec(x) even and ιgeo(x) − ιCLM(∆,Gr(γ2(t))) odd .

So, in both cases we have (ιspec(x,T )− ιTspec(x))+ (ιgeo(x)− ιCLM(∆,Gr(γ2(t)))) is odd. If x is linear stable,
then by taking into account Lemma 4.3, we get that ιCLM(∆,Gr(γ2(t))) is even. Then, by Eq (4.5), we
finally get that n + ιspec(x,T ) is odd. This concludes the proof. □

5. A classical example

In this section, we will give a simple example where T ′(h) = 0 inspired by [9, Section 5].
Let (r, θ) denote the polar coordinate on R2. Suppose D B {(r, θ) | 0 < r < 4} and f (r) = −1

2 (r3 −

4r2 + 3r), then define L : T D→ R by

L(r, θ, ṙ, θ̇) =
1
2

(ṙ2 + r2θ̇2) − f (r)θ̇.

The energy function E : T D→ R is given by E(r, θ, ṙ, θ̇) = 1
2 (ṙ2 + r2θ̇2).

By a direct computation we have γ(t) B (r(t), θ(t)) satisfies the Euler-Lagrange equations if and
only if

r̈ = θ̇(rθ̇ − f ′(r)); r2θ̇ − f (r) = constant. (5.1)

From now on we only consider the circular orbit. Suppose

rk(t) = ρ(k), θk(t) = a(k)t,

where ρ(k) and a(k) are both positive constants. If γ(t) is an orbit, since the second equation of (5.1) is
automatically satisfied, then we only requir

0 = r̈ = a(k)(ρ(k)a(k) − f ′(ρ(k)))⇔ ρ(k)a(k) = f ′(ρ(k)). (5.2)
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The energy E = 1
2 (ρ2(k)a2(k)) = k, then we have

ρ(k)a(k) =
√

2k. (5.3)

We note that f ′(r) = (3r2−8r+3)/2, then by Equations (5.2)-(5.3), we have
√

2k = −(3ρ2(k)−8ρ(k)+
3)/2, namely,

ρ2(k) −
8
3
ρ(k) + 1 +

2
3

√
2k = 0.

By solving the above equation, then we get ρ(k) = 4
3 −

√
7
9 −

2
3

√
2k.

Consider k ∈ ( 1
2 − ϵ,

1
2 + ϵ), where ϵ is a sufficiently small positive number. For k = 1

2 , it is easy to
calculate that

ρ(1/2) = ρ′(1/2) = 1.

By using Eq (5.3), then we have T (k) =
2π

a(k)
=

2πρ(k)
√

2k
, then

T ′(k) = 2π
2kρ′(k) − ρ(k)

2k
√

2k
.

Therefore, T ′(1/2) = 2π(ρ′(1/2) − ρ(1/2)) = 0. By Corollary 3.16, then we get

ιMor(x,T ) − ιTMor(x) = 1.

A. A symplectic excursion on the Maslov index

The purpose of this section is to provide the symplectic preliminaries used in the paper. In Subsec-
tion A.1, we give the definition of the Maslov index. Then we compute the Maslov index of a special
symplectic path. Our basic references are [13, 14, 21, 22].

A.1. A quick recap on the ιCLM-index

Given a 2n-dimensional (real) symplectic space (V, ω), a Lagrangian subspace of V is an n-
dimensional subspace L ⊂ V such that L = Lω where Lω denotes the symplectic orthogonal, i.e.,
the orthogonal with respect to the symplectic structure. We denote by Λ = Λ(V, ω) the Lagrangian
Grassmannian of (V, ω), namely the set of all Lagrangian subspaces of (V, ω)

Λ(V, ω) B { L ⊂ V | L = Lω } .

It is well-known that Λ(V, ω) is a manifold. For each L0 ∈ Λ, let

Λk(L0) B
{

L ∈ Λ(V, ω)
∣∣∣ dim

(
L ∩ L0

)
= k

}
k = 0, . . . , n.

Each Λk(L0) is a real compact, connected submanifold of codimension k(k + 1)/2. The topological
closure of Λ1(L0) is the Maslov cycle that can be also described as follows

Σ(L0) B
n⋃

k=1

Λk(L0)
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The top-stratum Λ1(L0) is co-oriented meaning that it has a transverse orientation. To be more precise,
for each L ∈ Λ1(L0), the path of Lagrangian subspaces (−δ, δ) 7→ etJL cross Λ1(L0) transversally,
and as t increases the path points to the transverse direction. Thus the Maslov cycle is two-sidedly
embedded in Λ(V, ω). Based on the topological properties of the Lagrangian Grassmannian manifold,
it is possible to define a fixed endpoints homotopy invariant called Maslov index.

Definition A.1. Let L0 ∈ Λ(V, ω) and let ℓ : [0, 1] → Λ(V, ω) be a continuous path. We define the
Maslov index ιCLM as follows:

ιCLM(L0, ℓ(t); t ∈ [a, b]) B
[
e−εJ ℓ(t) : Σ(L0)

]
where the right hand-side denotes the intersection number and 0 < ε << 1.

For further reference and properties of the Maslov index we refer the interested reader to [21] and
references therein.

For the special symplectic path γ(t) =
[
M11(t) 0
M21(t) M22(t)

]
, t ∈ [0,T ], there is a very useful formula

to compute its Maslov index [23, Theorem 2.2]. Here we only give the simplified version. Let V be a
subspace of C2n, define

V I = {x ∈ C2n | ω(x, y) = 0 ∀y ∈ V},WI(V) = {(x, u, y, v)T ∈ C4n | (x, y)T ∈ V J, (u, v)T ∈ V}.

Then there holds

µCLM(WI(V),Gr(γ(t)))
= m+(M1,1(T )∗M2,1(T )|S (T )) − m+(M1,1(0)∗M2,1(0)|S (0)) + dim S (0) − dim S (T ),

(A.1)

where m+ denotes the Morse positive index and S (t) = {x ∈ Cn | (x,M1,1x)T ∈ V I}. Please note that in
our situation we take K,R in [23, Theorem 2.2] as I and V respectively.

Take V = {(x, x)T | x ∈ R}, then V I = V and ∆ B Gr(I) = WI(V). Let γ(t) =
{ [ 1 0

tT0 1

]
, t ∈ [0, 1]

}
where T0 is a given real constant, then we have

ιCLM

(
∆, γ(t); t ∈ [0, 1]

)
=

1, if T0 > 0;
0, if T0 ≤ 0.

(A.2)

In fact, note that in this case we have S (0) = S (T ) = R and M21(0) = 0,M21(T ) = T0, then it is just the
consequence of (A.1).
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