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Abstract: The purpose of the paper is to study digital topological versions of typical topological
groups. In relation to this work, given a digital image (X, k), X ⊂ Zn, we are strongly required to
establish the most suitable adjacency relation in a digital product X × X, say Gk∗ , that supports both
Gk∗-connectedness of X × X and (Gk∗ , k)-continuity of the multiplication α : (X × X,Gk∗) → (X, k) for
formulating a digitally topological k-group (or DT -k-group for brevity). Thus the present paper studies
two kinds of adjacency relations in a digital product such as a Ck∗- and Gk∗-adjacency. In particular, the
Gk∗-adjacency relation is a new adjacency relation in X × X ⊂ Z2n derived from (X, k). Next, the paper
initially develops two types of continuities related to the above multiplication α, e.g., the (Ck∗ , k)- and
(Gk∗ , k)-continuity. Besides, we prove that while the (Ck∗ , k)-continuity implies the (Gk∗ , k)-continuity,
the converse does not hold. Taking this approach, we define a DT -k-group and prove that the pair
(S Cn,l

k , ∗) is a DT -k-group with a certain group operation ∗, where S Cn,l
k is a simple closed k-curve

with l elements in Zn. Also, the n-dimensional digital space (Zn, 2n,+) with the usual group operation
“+” on Zn is a DT -2n-group. Finally, the paper corrects some errors related to the earlier works in the
literature.

Keywords: digital topological version of a topological group; DT -k-group; compatible adjacency;
Ck∗-adjacency; Gk∗-adjacency; Gk∗-continuity; digital topology

1. Introduction

Motivated by the well-known fifth of 23 problems formulated by David Hilbert [1, 2], the present
paper establishes a digital topological version of a typical topological group. Since the present paper
is based on some essential notions such as a digital image, a k-path, a digital space, and so on, we first
will remind some concepts. In relation to the study of digital images X ⊂ Zn, Rosenfeld [3, 4] initially
introduced the digital k-connectivity for low dimensional digital images in Zn, n ∈ {1, 2, 3}. Let us
consider a set X ⊂ Zn, n ∈ {1, 2, 3}, as a digital image with a certain digital k-connectivity, denoted by
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(X, k), as follows: For X ⊂ Z, we have (X, 2). For X ⊂ Z2, we assume (X, k), k ∈ {4, 8}. Besides, for
X ⊂ Z3, we consider (X, k) with k ∈ {6, 18, 26}.
Hereinafter, for our purposes, for {a, b} ⊂ Z with a ⪇ b, the set [a, b]Z is assumed to be the set
{s ∈ Z | a ≤ s ≤ b}.

Motivated by the above Rosenfeld’s approach, a generalization of these adjacencies for low
dimensional digital images was proposed to study a high dimensional digital image, as follows [5]:
For a natural number t with 1 ≤ t ≤ n, we say that the distinct points in Zn

p = (pi)i∈[1,n]Z and q = (qi)i∈[1,n]Z

are k(t, n)-adjacent if at most t of their coordinates differ by ±1 and the others coincide. Based on this
statement, the k(t, n)-adjacency relations of Zn, n ∈ N, were formulated in [5, 6], as follows:

k := k(t, n) =
t∑

i=1

2iCn
i ,where Cn

i =
n!

(n − i)! i!
, (1.1)

where the notation “ :=” is used to introduce a new terminology.
For instance,

(n, t, k) ∈


(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80),
(5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4, 210), (5, 5, 242), and
(6, 1, 12), (6, 2, 72), (6, 3, 232), (6, 4, 472), (6, 5, 664), (6, 6, 728).

 (1.2)

For a set X ⊂ Zn, n ∈ N, with one of the k-adjacency of (1.1), we call (X, k) a digital image. For a
digital image (X, k), assume two points x, y ∈ X. Then we say that a finite sequence (x0, x1, · · · , xm) ⊂
X ⊂ Zn, n ∈ N, is a k-path if xi is k-adjacent to x j, where j = i + 1, i ∈ [0,m − 1]Z.

Let us recall the notion of a digital space [7], as follows: A digital space is a kind of a relation set
(X, π), where X is a nonempty set and π is a binary symmetric relation on X such that X is π-connected,
where we say that X is π-connected if for any two elements x and y of X, there is a finite sequence
(xi)i∈[0,l]Z of elements in X such that x = x0, y = xl and (x j, x j+1) ∈ π for j ∈ [0, l − 1]Z.

Assume a digital image (X, k) with a certain group structure on X, say (X, ∗), where X ⊂ Zn. Then a
digital topological version of a topological group, called a digitally topological k-group (DT -k-group
for brevity) and denoted by (X, k, ∗), is logically defined as the combination of a group and a digital
k-adjacency structure. Then, we strongly need to establish the most suitable adjacency of a digital
product X×X, say Gk∗ , derived from the given k-adjacency of (X, k) to support both Gk∗-connectedness
of X × X and (Gk∗ , k)-continuity of the multiplication α : (X × X,Gk∗)→ (X, k). Indeed this is essential
for formulating a DT -k-group structure of (X, k, ∗). To achieve this initiative, we can consider some
adjacencies of a digital product X × X that need not be typical k-adjacencies of Z2n in (1.1). In detail,
given a digital image (X, k), X ⊂ Zn, the most important thing is that we need to establish a certain
adjacency of the Cartesian product X × X that is suitable for formulating a DT -k-group structure based
on both a group (X, ∗) and a digital image (X, k).

Given a digital image (X, k), after introducing two kinds of adjacencies such as a Ck∗- and
Gk∗-adjacency relation in X × X (see Definitions 3.2 and 4.4 in the present paper), the present paper
further develops the notions of (Ck∗ , k)- and (Gk∗ , k)-continuity related to the multiplication
(X × X,Gk∗)→ (X, k). Note that the new adjacency relation Gk∗ in X × X ⊂ Z2n need not belong to the
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set {k := k(t, n) | t ∈ [1, 2n]Z} that is the set of typical k-adjacencies of Z2n (see (1.1)). Based on this
approach, we can propose a digital version of a typical topological group derived from a certain group
(X, ∗) and a digital image (X, k). Indeed, both the LC-property in [8] and the C-compatible k-adjacency
of a digital product in [9] can contribute to the establishment of a DT -k-group. Given two digital
images (Xi, ki), i ∈ {1, 2}, a C-compatible k-adjacency of a Cartesian product in [9] and a
Ck∗-adjacency in the present paper play important roles in studying product properties of some digital
topological invariants relating to the research of digital covering spaces and digital homotopy
theory [8,10]. It was motivated by the Cartesian product adjacency of a graph product in typical graph
theory [11]. However, it is clear that these two versions have their own features that need not be
equivalent to each other (see Remark 3.2). Moreover, given two digital images (Xi, ki) in Zni , i ∈ {1, 2},
it was proved that not every X1 × X2 ⊂ Z

n1+n2 has a Ck∗-adjacency (see Example 3.1 and Remarks 3.4
and 3.6). Hence, the present paper proposes a new adjacency relation in X1 × X2 and it develops two
types of continuities for multiplications that are strongly used to formulate DT -k-groups. In relation
to this work, we may raise some issues and queries, as follows:
• Is there a digital image (X, k) with a certain group structure on X ?
• Given a digital image (X, k) with a certain group structure, what relation among elements in the
Cartesian product X × X is the most suitable for establishing a DT -k-group structure on (X, k) ?
Then we are strongly required to have a certain relation making the Cartesian product X × X
connected with respect to the newly-established relation in X × X.
• With a newly-developed adjacency of X × X, how can we establish a DT -k-group structure on X
derived from the given digital image (X, k) ?
In case this relation is successfully formulated, it can support to get the earlier works in the literature
corrected and vivid from the viewpoints of digital topology and digital geometry.
Next, given two digital images (Xi, ki), Xi ⊂ Z

ni , i ∈ {1, 2}, suppose a digital product X1 × X2 with a
typical k′- or a Gk∗-adjacency addressing the above queries, say (X1 × X2, k′) referred to in (1.1) or
(X1 × X2,Gk∗), derived from the given digital images (Xi, ki), Xi ⊂ Z

ni , i ∈ {1, 2}. Then, we naturally
pose the following queries.
• How to introduce the notion of (Gk∗ , ki)-continuity of a map from (X1 × X2,Gk∗) to (Xi, ki) ?
• What differences are there among the typical (k′, ki)-continuity, the (Ck∗ , ki)-continuity, and the
(Gk∗ , ki)-continuity ?
• Let S Cn,l

k be a simple closed k-curve with l elements in Zn. Then, how to establish a group structure
on S Cn,l

k ?
Furthermore, given S Cn,l

k , we further have the following question.
• How can we formulate a DT -k-group of S Cn,l

k ?
After developing several new notions, we will address the above mentioned topics.

This paper is organized as follows. Section 2 provides some basic notions that will be used in the
paper. In Section 3, given a digital image (X, k), X ⊂ Zn, after establishing a Ck∗-adjacency of the
digital product X × X, we define the notion of (Ck∗ , k)-continuity of a map from (X × X,Ck∗) to (X, k).
Then, we intensively investigate some properties of (Ck∗ , k)-continuity of a map from (X × X,Ck∗) to
(X, k). In Section 4, given a digital image (X, k), after establishing a new Gk∗-adjacency of the digital
product X×X, we define the notion of (Gk∗ , k)-continuity of a map from (X×X,Gk∗) to (X, k). Also, we
compare among the typical (k′, k)-continuity, the (Ck∗ , k)-continuity, and the (Gk∗ , k)-continuity, where
k′ is a adjacency of X × X ⊂ Z2n referred to in (1.1). Section 5 introduces the notion of a DT -k-group
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and proves that a simple closed k-curve, denoted by S Cn,l
k , has a group structure with a certain group

operation, denoted by ∗, and finally proves that the combined set (S Cn,l
k , ∗) := (S Cn,l

k , k, ∗) consisting
of both the group structure and the digital k-connectivity is a DT -k-group. In particular, given a DT -
k-group (S Cn,l

k , ∗), we can make each element x ∈ S Cn,l
k as an identity element depending on our needs

after relabeling elements of S Cn,l
k (in detail, see Remark 5.4(1)). Also, we prove that (Zn, 2n,+) is

a DT -2n-group. Section 6 corrects some errors in the literature. Section 7 refers to some remarks
and a further work. In the paper we will start with only a nonempty and k-connected digital image
(X, k). In case a digital image (X, k) is not k-connected, it can invoke some trivial cases when studying
k-continuous mappings [12]. Besides, given a set X, we usually use the notation X♯ to denote the
cardinality of the given set X. In addition, since the paper has many notations, for the convenience
of readers, using a certain beginning part of each section, we will give a block summarizing some
notations which will used in each section.

2. Preliminaries

To develop the notion of a DT -k-group, the adjacencies of Zn, n ∈ N, referred to in (1.1), are strongly
required (see Sections 3–6).
In this section, we will use the following notations with several times.
(1) S Cn,l

k : A simple closed k-curve with l elements in Zn, n ∈ N \ {1}.
(2) dk: A function from (X, k) to N ∪ {0} inducing a metric on (X, k) (see (2.2) and (2.3)).
(3) Nk(p, 1): A digital k-neighborhood of the given point p in (X, k).
(4) N0: The set of even natural numbers (see (2.1) and Example 5.1).

Let us now recall some terminology to develop two adjacencies of a digital product. For a digital
image (X, k), two points x, y ∈ X are k-connected (or k-path connected) if there is a finite k-path from x
to y in X ⊂ Zn [13]. We say that a digital image (X, k) is k-connected (or k-path connected) if any two
points x, y ∈ X is k-connected (or k-path connected). In a digital image (X, k), it is clear that the two
notions of k-connectedness and k-path connectedness are equivalent. Also, a digital image (X, k) with
a singleton is assumed to be k-connected for any k-adjacency. Given a k-adjacency relation of (1.1),
a simple k-path from x to y on X ⊂ Zn is assumed to be the sequence (xi)i∈[0,l]Z ⊂ X ⊂ Zn such that
xi and x j are k-adjacent if and only if either j = i + 1 or i = j + 1 [13] and x0 = x and xl = y. The
length of this simple k-path, denoted by lk(x, y), is the number l. More precisely, lk(x0, x) is the length
of a shortest simple k-path from x0 to x. In case there is no k-path between given distinct points x, y
in (X, k), we say that lk(x, y) = ∞. Besides, a simple closed k-curve with l elements in Zn, denoted by
S Cn,l

k , 4 ≤ l ∈ N [5, 10, 13, 14], is a sequence (xi)i∈[0,l−1]Z in Zn, where xi and x j are k-adjacent if and
only if |i − j| = ±1(mod l) [13]. Indeed, the number l of S Cn,l

k depends on the situation [10] in (2.1)
below. In Zn, we obtain

(1) in the case k = 2n(n , 2), we have l ∈ N0 \ {2};
(2) in the case k = 4(n = 2), we obtain l ∈ N0 \ {2, 6};
(3) in the case k = 8(n = 2), we have l ∈ N \ {1, 2, 3, 5};
(4) in the case k = 18(n = 3), we obtain l ∈ N \ {1, 2, 3, 5}; and
(5) in the case k := k(t, n) such that 3 ≤ t ≤ n,

we have l ∈ N \ {1, 2, 3}.


(2.1)
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For instance, we have S C3,5
26 , S C2,7

8 , and so on.
As a matter of fact, the length lk(x, y) induces a metric function dk on a k-connected digital image

(X, k) [5, 14]. To be specific, assume a function on a k-connected digital image (X, k), as follows:

dk : (X, k) × (X, k)→ N ∪ {0} (2.2)

such that

dk(x, x′) :=

0, if x = x′, and
lk(x, x′), if x , x′ and x is k-connected with x′.

 (2.3)

Owing to (2.2) and (2.3), the map dk is obviously a function [5, 14] satisfying dk(x, x′) ≥ 1
whenever x , x′. Hence it is clear that for a k-connected digital image (X, k), the map dk of (2.2) is a
metric function on (X, k) [10, 14]. Thus, we can represent a digital k-neighborhood of the point x0

with radius 1 [5, 8] in the following way [14]

Nk(x0, 1) = {x ∈ X| dk(x0, x) ≤ 1}. (2.4)

This k-neighborhood will be strongly used to develop the notions of a Ck∗- and a Gk∗-adjacency of
a digital product in Sections 3 and 4 and comparing several adjacencies of digital products in Sections
3–6. To map every k0-connected subset of (X, k0) into a k1-connected subset of (Y, k1), the paper [4]
established the notion of digital continuity. The digital continuity can be represented by using a digital
k-neighborhood in (2.4), as follows:

Proposition 2.1. [5,14] Let (X, k0) and (Y, k1) be digital images on Zn0 and Zn1 , respectively. A function
f : X → Y is (k0, k1)-continuous if and only if for every x ∈ X, f (Nk0(x, 1)) ⊂ Nk1( f (x), 1).

In Proposition 2.1, in case n0 = n1 and k0 = k1, we say that it is k0-continuous.

3. Ck∗-adjacencies of digital products and an establishment of the (Ck∗ , k′)-continuity

This section studies the notion of a Ck∗-adjacency of a digital product that will be strongly used to
develop a digitally topological k-group (or DT -k-group in this paper) in Section 5. Next, we initially
establish the notion of (Ck∗ , ki)-continuity of a map from (X1 × X2,Ck∗) to (Xi, ki), i ∈ {1, 2}. More
precisely, given two digital images (Xi, ki), i ∈ {1, 2}, first we develop the so-called Ck∗-adjacency
relation in the digital product X1 × X2 derived from the given (Xi, ki), i ∈ {1, 2}, so that we obtain a
relation set (X1 × X2,Ck∗) (see Proposition 3.7).
In this section, we will often use the following notations.
(1) C-compatible k-adjacency (see Definition 3.1).
(2) Ck∗-adjacency relation (see Definition 3.2) in a digital space (X1 × X2,Ck∗).
(3) NCk∗ (p): The set of the elements of Ck∗-neighbors of the given point p in a digital space (X1×X2,Ck∗)
(see (3.5) and (3.6)).
(4) NCk∗ (p, 1): A Ck∗-neighborhood of the given point p in a digital space (X1 × X2,Ck∗) (see (3.5).
(5) X♯: The cardinal number of the given set X. Indeed, to avoid some confusion with the absolute
value used in Sections 2 and 5 (in particular, see the proof of Theorem 5.8), we will use the notation
X♯.
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Since this work is associated with both the C-compatible k-adjacency in [9] and the LC-property
in [8] of a digital product, let us recall them as follows: Motivated by the Cartesian product of graphs
in [11], various properties of digital products were used in studying digital homotopic properties and
digital covering spaces [8, 9]. Using the digital k-neighborhood of (2.4), we define the following:

Definition 3.1. [9] For two digital images (Xi, ki) on Zni , ki := k(ti, ni), i ∈ {1, 2}, consider the Cartesian
product X1 × X2 ⊂ Z

n1+n2 . We say that a k-adjacency of X1 × X2 is strongly Cartesian compatible (C-
compatible, for brevity) with the given ki-adjacency, i ∈ {1, 2}, if every point (x1, x2) in X1 × X2 satisfies
the following property:

Nk((x1, x2), 1) = (Nk1(x1, 1) × {x2}) ∪ ({x1} × Nk2(x2, 1)), (3.1)

where the k-adjacency is one of the typical k-adjacency of Zn1+n2 stated in (1.1).

As for the C-compatible k-adjacency of Definition 3.1, we can take some k-adjacency of X1 × X2

depending on the situation, where k := k(t, n1 + n2) for some t ∈ [max{t1, t2}, n1 + n2]Z [9]. At the
moment, note that
(1) not every X1 × X2 always has a compatible k-adjacency (see Example 3.1) and further,
(2) not every number t ∈ [max{t1, t2}, n1+n2]Z is used to formulate a compatible k-adjacency of X1×X2

(see Example 3.1).
(3) However, in case there is a C-compatible k-adjacency of X1 ×X2, at least the number t = max{t1, t2}

supports the establishment of the C-compatible k(t, n1 + n2)-adjacency of X1 × X2.
For instance, consider the Cartesian product S C2,l

4 × S C2,l
4 ⊂ Z

4 has the only one C-compatible k-
adjacency, where k = k(1, 4) = 8 instead the other adjacencies of Z4.
Motivated by this feature, based on Definition 3.1, we now define the following adjacency which is
stronger than the adjacency of Definition 3.1.

Definition 3.2. For two digital images (Xi, ki) in Zni , ki := k(ti, ni), i ∈ {1, 2}, assume the Cartesian
product X1 × X2 ⊂ Z

n1+n2 with a C-compatible k-adjacency. After that, we consider only the case

k := k(t, n1 + n2), t = max{t1, t2}. (3.2)

Equivalently, distinct points p := (x1, x2) and q := (x′1, x
′
2) in X1 × X2 ⊂ Z

n1+n2 , p is k-adjacent to q if
and only if either x1 is k1-adjacent to x′1 and x2 = x′2,

or x2 is k2-adjacent to x′2 and x1 = x′1.


After that, we take only the case of k∗ := k such that k := k(t, n1 + n2), t = max{t1, t2}.
Then we say that this k-adjacency is a Ck∗-adjacency of X1 × X2 ⊂ Z

n1+n2 derived from the given two
digital images (Xi, ki), i ∈ {1, 2}.

As for the Ck∗-adjacency of X1 × X2 of Definition 3.2, we can concretely say that a compatible
k(t, n1+n2)-adjacency of X1×X2 satisfying the property of (3.2) is equal to the Ck∗-adjacency of X1×X2

such that k∗ = k(t, n1 + n2) and t = max{t1, t2}. We now use the notation (X1 × X2,Ck∗) as a relation set
to denote the digital product X1 × X2 with a Ck∗-adjacency. From Definition 3.2, we obtain the relation
set (X1 × X2,Ck∗) derived from the given two digital images (Xi, ki) in Zni , ki := k(ti, ni), i ∈ {1, 2},
depending on the situation.
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To represent a Cartesian product of the two digital images S Cni,li
ki
, i ∈ {1, 2}, as a matrix, we use the

notation (see (2.1))

S Cn1,l1
k1

:= (ai)i∈[0,l1−1]Z and S Cn2,l2
k2

:= (b j) j∈[0,l2−1]Z .

Then, take the Cartesian product S Cn1,l1
k1
× S Cn2,l2

k2
⊂ Zn1+n2 that can be represented as the following

matrix:
S Cn1,l1

k1
× S Cn2,l2

k2
:= (ci, j)(i, j)∈[0,l1−1]Z×[0,l2−1]Z , for brevity, (ci, j) (3.3)

where ci, j := (ai, b j).

Remark 3.3. Assume (Xi, ki) on Zni , ki := k(ti, ni), i ∈ {1, 2}. Then we observe the following:
(1) In case there is a compatible k-adjacency of X1 × X2, there is always a Ck∗-adjacency of X1 × X2

such that

k = k∗ and k∗ := k(t, n1 + n2), t = max{t1, t2}. (3.4)

(2) As an example, consider S C2,4
8 × S C2,4

8 . While there are three types of C-compatible k-adjacencies,
k ∈ {32, 64, 80}, there is the only C32-adjacency on S C2,4

8 ×S C2,4
8 because the only number 32 = k(2, 4)

satisfies Definition 3.2.

Let us compare the typical Cartesian product adjacency in [11] and the current Ck∗-adjacency.

Remark 3.4. Each of the compatible k-adjacency and a Ck∗-adjacency is a little bit different from the
Cartesian product adjacency in graph theory in [11]. More precisely, given any two graphs G1,G2, we
always have a Cartesian product adjacency of a graph product G1 × G2 [11]. However, as stated in
Definitions 3.1 and 3.2, for two digital images (Xi, ki), i ∈ {1, 2}, not every X1 × X2 has a Ck∗-adjacency
or a compatible k-adjacency of the given digital product (see also Example 3.1(4) below).

Definition 3.5. For two digital images (Xi, ki) in Zni , i ∈ {1, 2}, assume the Cartesian product X1×X2 ⊂

Zn1+n2 with a certain Ck∗-adjacency. Given a point p := (x1, x2) ∈ X1 × X2, we define the following sets
around the point p ∈ (X1 × X2,Ck∗), as follows:NCk∗ (p) := {q ∈ X1 × X2 | q is Ck∗-adjacent to p}, and

NCk∗ (p, 1) := NCk∗ (p) ∪ {p}.

 (3.5)

In Definition 3.5, we call the set NCk∗ (p, 1) a Ck∗-neighborhood of the point p ∈ X1 × X2. Using
(3.5), we can represent a Ck∗-adjacency relation between distinct points p and q, as follows: Given an
X1 × X2 with a Ck∗-adjacency, for distinct points p and q in X1 × X2, we observe that

p is Ck∗-adjacent with q if and only if q ∈ NCk∗ (p). (3.6)

In view of Definition 3.2, we observe that not every digital product has a Ck∗-adjacency, as follows:

Example 3.1. (1) ([a, b]Z × [c, d]Z,C4),
(2) (S C2,l

4 × [a, b]Z,C6),
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(3) (S C2,l
4 × S C2,l

4 ,C8), (S C2,6
8 × S C3,4

26 ,C130), and (S C2,4
8 × S C2,l

8 ,C32), and
(4) none of S C2,l

4 × S C2,6
8 ⊂ Z

4 and S C2,6
8 × S C2,6

8 ⊂ Z
4 has a Ck∗-adjacency.

In detail, consider the digital product S C2,4
4 × S C2,6

8 ⊂ Z
4 in Example 3.1(4), where

S C2,4
4 := (ai)i∈[0,3]Z , a0 := (0, 0), a1 := (1, 0), a2 := (1, 1), a3 := (0, 1) and

S C2,6
8 := (b j)i∈[0,5]Z , b0 := (0, 0), b1 := (1,−1), b2 := (2,−1),

b3 := (3, 0), b4 := (2, 1), b5 := (1, 1).

 (3.7)

Then any k-adjacency of Z4 of (1.2) is not eligible to be a Ck∗-adjacency for S C2,4
4 × S C2,6

8 ⊂ Z
4. In

detail, take the point c1,2 := (a1, b2) ∈ S C2,4
4 × S C2,6

8 . Then we obtain

N32(c1,2, 1) = (S C2,4
4 × {b2}) ∪ ((S C2,4

4 \ {a3}) × {b1}) ∪ {c1,3} (3.8)

whose cardinality is 8, i.e., (N32(c1,2, 1))♯ = 8.
However, we have (N4(a1, 1) × {b2}) ∪ ({a1} × N8(b2, 1)) =

({a0, a1, a2} × {b2}) ∪ ({a1} × {b1, b2, b3})

 (3.9)

whose cardinality is 5.
Hence N32(c1,2, 1) is not equal to (N4(a1, 1) × {b2}) ∪ ({a1} × N8(b2, 1)). Owing to the point c1,2 ∈

S C2,4
4 ×S C2,6

8 , the digital product S C2,4
4 ×S C2,6

8 does not have a C32-adjacency. As a matter of fact, any
typical digital adjacency of Z4 in (1.2) need not be a Ck∗-adjacency of S C2,4

4 ×S C2,6
8 , k∗ ∈ {8, 32, 64, 80}

(see (1.2)) because any k∗-adjacency of Z4 cannot support the property (3.1) for S C2,4
4 × S C2,6

8 .

By Definition 3.5, Remark 3.3, and Example 3.1, we obviously obtain the following:

Remark 3.6. (1) Not every point p ∈ X1 × X2 has an NCk∗ (p, 1). For instance, S C2,4
4 × S C2,6

8 has
several elements p such that NC32(p, 1) does not exist (see (3.8) and (3.9)). Besides, the other numbers
k∗ ∈ {8, 64, 80} does not satisfy the property (3.1) either.
(2) Given two digital images (Xi, ki), i ∈ {1, 2}, only in case that a digital product X1 × X2 has a Ck∗-
adjacency, for a point p := (x1, x2) ∈ X1 × X2, using the properties of (3.1) and (3.5), we obtain

(NCk∗ (p, 1))♯ = (Nk1(x1, 1))♯ + (Nk2(x2, 1))♯ − 1. (3.10)

(2) Consider two digital images (Xi, ki) in Zni , i ∈ {1, 2}, where ki := k(ti, ni) (see (1.1)). Assume
ki = 2ni, i.e., ti = 1, i ∈ {1, 2}. Then the digital product X1 × X2 ⊂ Z

n1+n2 always has a Ck∗-adjacency
where k∗ := k(1, n1 + n2) = 2(n1 + n2) [9]. For instance, see the case (S C2,8

4 × S C2,8
4 ,C8). Besides, only

the C2n-adjacency of Zn exists in terms of the two (Zn1 , 2n1) and (Zn2 , 2n2), where n = n1 + n2,
ni ∈ N, i ∈ {1, 2}.
(3) The adjacency relation Ck∗ of the relation set (X1 × X2,Ck∗) is symmetric.

Based on the product adjacency relation in X1×X2 ⊂ Z
n1+n2 stated in Definition 3.2, the papers [8,9]

studied various properties of digital products with Ck∗-adjacencies. Indeed, a digital product with a
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Ck∗-adjacency (X1 × X2,Ck∗) is a kind of relation set that is symmetric in X1 × X2. Thus we examine if
(X1 × X2,Ck∗) is a kind of digital space. To do this work, we introduce some terminology, as follows:

Based on the Ck∗-adjacency of a digital product, motivated by the classical notions in a typical digital
image in [13] (see the previous part in Section 2), we now have the following: Given two digital images
(Xi, ki), Xi ⊂ Z

ni , i ∈ {1, 2}, assume a digital product X1 × X2 ⊂ Z
n1+n2 with a certain Ck∗-adjacency, i.e.,

(X1 × X2,Ck∗). We say that two points z,w ∈ X1 × X2 are Ck∗-connected (or Ck∗-path connected) if there
is a finite Ck∗-path (z0, z1, · · · , zm) ⊂ X1 × X2 from z to w on X1 × X2 such that z0 = z and zm = w, where
we say that a Ck∗-path from z to w in X1 × X2 means a finite sequence (z0, z1, · · · , zm) ⊂ X1 × X2 such
that zi is Ck∗-adjacent to z j if j = i + 1, i ∈ [0,m − 1]Z or i = j + 1, j ∈ [0,m − 1]Z. A singleton with
Ck∗-adjacency is assumed to be Ck∗-connected. Given a Ck∗-adjacency relation in X1 × X2, a simple
Ck∗-path from z to w in X1 × X2 is assumed to be the Ck∗-path (zi)i∈[0,l]Z ⊂ X1 × X2 ⊂ Z

n1+n2 such that
zi and z j are Ck∗-adjacent if and only if either j = i + 1, i ∈ [0, l − 1]Z or i = j + 1, j ∈ [0, l − 1]Z and
z0 = x and zl = y. Also, a simple closed Ck∗-curve with l elements in X1 × X2, denoted by S Cn,l

Ck∗
, is a

sequence (zi)i∈[0,l−1]Z in X1 × X2, where zi and z j are Ck∗-adjacent if and only if |i − j| = ±1(mod l).

Proposition 3.7. Given ki-connected digital images (Xi, ki), Xi ⊂ Z
ni , i ∈ {1, 2}, (X1×X2,Ck∗) is a digital

space.

Proof: By Remark 3.6(3), since the Ck∗-adjacency relation in X1 × X2 is obviously symmetric, we
only examine if (X1 × X2,Ck∗) is Ck∗-connected. Take any distinct points p := (x1, x2) and q := (x′1, x

′
2)

in X1 × X2. Then, without loss of generality, we may assume the case x1 ⪇ x′1 and x2 ≤ x′2 or the case
x1 ≤ x′1 and x2 ⪇ x′2. For our purposes, we now take the first case, i.e., x1 ⪇ x′1 and x2 ≤ x′2. Then
consider the differences | x1 − x′1| ⪈ 0 and | x2 − x′2| ≥ 0. According to these finite differences, we can
take a finite set

{p := p1, p2, p3, · · · , pn := q} ⊂ X1 × X2 (3.11)

such that pi is Ck∗-adjacent to pi+1 in X1 × X2, i ∈ [1, n − 1]Z and

p, q ∈
⋃

i∈[1,n]Z

NCk∗ (pi, 1) ⊂ X1 × X2. (3.12)

Owing to (3.11) and (3.12), we can conclude that (X1 × X2,Ck∗) is Ck∗-connected. □

In case there is a Ck∗-adjacency of X1 × X2 derived from (Xi, ki), Xi ⊂ Z
ni , i ∈ {1, 2}, let us now

introduce the notion of (Ck∗ , k′)-continuity of a map f : (X1 × X2,Ck∗)→ (Y, k′).

Definition 3.8. Given two digital images (Xi, ki), Xi ⊂ Z
ni , i ∈ {1, 2}, assume a digital product (X1 ×

X2,Ck∗) and a digital image (Y, k′). A function f : (X1 × X2,Ck∗) → (Y, k′) is (Ck∗ , k′)-continuous at a
point p := (x1, x2) if for any point q ∈ X1 × X2 such that q ∈ NCk∗ (p) (denoted by p ↔Ck∗ q), we obtain
f (q) ∈ Nk′( f (p), 1) (denoted by f (p)⇔k′ f (q)). In case the map f is (Ck∗ , k′)-continuous at each point
p ∈ X1 × X2, we say that the map f is (Ck∗ , k′)-continuous.

This continuity will play a crucial role in establishing a DT -k-group in Section 5.

Proposition 3.9. Assume a Cartesian product X1 × X2 ⊂ Z
n1+n2 with a Ck∗-adjacency and a typical

digital image (Y, k′). A map f : (X1 × X2,Ck∗)→ (Y, k′) is (Ck∗ , k′)-continuous at a point p ∈ X1 × X2 if
and only if

f (NCk∗ (p, 1)) ⊂ Nk′( f (p), 1), (3.13)
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Proof: By Definition 3.8, the proof is completed. □

Example 3.2. Let (X, 2n) be a 2n-connected subset of (Zn, 2n). Then each of the typical projection
maps Pi : (X × X,C4n)→ (X, 2n) is a (C4n, 2n)-continuous map, i ∈ {1, 2}.

Remark 3.10. Consider digital images (Xi, ki) in Zni , i ∈ {1, 2}, and (Y, k′) in Zm. Given a map from
X1×X2 to Y, the (Ck∗ , k′)-continuity of a map not always exist because the existence of NCk∗ (p, 1) ⊂ X1×

X2 depends on the situation. However, given the (Ck∗ , k′)-continuity of a map, the (Ck∗ , k′)-continuity is
equal to the (k∗, k′)-continuity of the given map.

According to Remark 3.10, since the existence of a Ck∗-adjacency for a digital product depends on
the situation, we now propose the following result that is the Ck∗-adjacency version of the C-compatible
k-adjacency studied in [9] (see Theorem 3.8 of [9]) and Remark 3.3(1), as follows:

Theorem 3.11. Given S Cni,li
ki
, i ∈ {1, 2}, ki := k(ti, ni) from (1.1), assume ki , 2ni, i ∈ {1, 2} and t1 ≤ t2.

Then we obtain the following cases supporting a Ck∗-adjacency for S Cn1,l1
k1
× S Cn2,l2

k2
.

(Case 1) Consider the case t1 = t2 and t1 , n1, i.e., k1 , 3n1 − 1. For each element
y j ∈ S Cn2,l2

k2
:= (y j) j∈[0,l2−1]Z , assume the number of different coordinates of every pair of the

consecutive points y j and y j+1(mod l2) in S Cn2,l2
k2

is constant as the number t2 instead of “at most t2”.
Then the product S Cn1,l1

k1
× S Cn2,l2

k2
has a Ck∗-adjacency such that k∗ := k(t1, n1 + n2).

(Case 2) In case t1 = n1, i.e., k1 = 3n1 − 1, assume that for each element y j ∈ S Cn2,l2
k2

:= (y j) j∈[0,l2−1]Z ,
the number of different coordinates of every pair of the consecutive points y j and y j+1(mod l2) is constant
as the number t2 instead of “at most t2”. Then the product S Cn1,l1

k1
× S Cn2,l2

k2
has a Ck∗-adjacency such

that k∗ := k(t2, n1 + n2).
(Case 3) In case ti = ni, i ∈ {1, 2}, i.e., ki = 3ni − 1 (or ti < [0, ni − 1]Z), then we can consider two cases:
(Case 3-1) Assume that for each element y j ∈ S Cn2,l2

k2
:= (y j) j∈[0,l2−1]Z , the number of different

coordinates of every pair of the consecutive points y j and y j+1(mod l2) is constant as the number t2

instead of “at most t2”. Then the product S Cn1,l1
k1
× S Cn2,l2

k2
has a Ck∗-adjacency such that

k∗ := k(t2, n1 + n2).
(Case 3-2) Assume that for each element xi ∈ S Cn1,l1

k1
:= (xi)i∈[0,l1−1]Z , the number of different

coordinates of every consecutive points xi and xi+1(mod l1) in S Cn1,l1
k1

is constant as the number n1

instead of “at most n1” and for each element y j ∈ S Cn2,l2
k2

:= (y j) j∈[0,l2−1]Z , the number of different
coordinates of every pair of the consecutive points y j and y j+1(mod l2) is constant as the number t2

instead of “at most t2”.
Then the product S Cn1,l1

k1
× S Cn2,l2

k2
has a Ck∗-adjacency such that k∗ := k(t2, n1 + n2) (see Definition

3.2).

Proof: After comparing with the assertion of Theorem 3.8 of [9], based on Definitions 3.1 and
3.2, we need to only prove the (Case 3-2). Owing to Remark 3.3(1), since the C-compatible k∗ :=
k(t2, n1 + n2)-adjacency implies a Ck∗-adjacency, this assertion holds. □

By Remark 3.6(2), we obtain the following:

Corollary 3.12. In Theorem 3.11, in case ki = 2ni, i ∈ {1, 2}, there is only a C2n1+2n2-adjacency of
S Cn1,l1

k1
× S Cn2,l2

k2
.
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4. Developments of a Gk∗-adjacency relation in a digital product X1 × X2 derived from two
digital images (Xi, ki), i ∈ {1, 2}, and the (Gk∗ , k′)-continuity

This section initially develops a Gk∗-adjacency relation in a digital product and establishes the notion
of (Gk∗ , ki)-continuity of a map from a digital product (X1 × X2,Gk∗) to (Xi, ki), i ∈ {1, 2}. These notions
will be strongly used to develop a DT -k-group in Section 5.
In this section, we will use the following notations with several times.
(1) Gk∗-adjacency (see Definition 4.1).
(2) MS C18: The minimal simple 18-curve with 6 elements in Z3 with 26-contractibility (see (4.2)).
(3) NGk∗ (p): The set of the elements of Gk∗-neighbors of the given point p in a digital space (X1×X2,Gk∗)
(see (4.3)).
(4) NGk∗ (p, 1): A Gk∗-neighborhood of the given point p in a digital space (X1 × X2,Gk∗) (see (4.4)).
Given two digital images (Xi, ki) in Zni , i ∈ {1, 2}, using the Gk∗-adjacency relation in a digital product
X1 × X2 (see Definition 4.1 below) derived from the given (Xi, ki), i ∈ {1, 2}, we obtain the relation set
(X1 × X2,Gk∗). Then, we first establish the notion of (Gk∗ , ki)-continuity of a map from (X1 × X2,Gk∗)
to (Xi, ki), i ∈ {1, 2}. This approach is a generalization of the (Ck∗ , ki)-continuity of a map from (X1 ×

X2,Ck∗) to (Xi, ki), i ∈ {1, 2}, studied in Section 3. Let us establish the new Gk∗-adjacency relation
of a digital product that will be strongly used for formulating a DT -k-group in Section 5. Using the
condition (3.2), we can define the following:

Definition 4.1. Assume two digital images (Xi, ki := ki(ti, ni)), Xi ⊂ Z
ni , i ∈ {1, 2}. For distinct points

p, q ∈ X1×X2, we say that the point p := (x1, x2) ∈ X1×X2 ⊂ Z
n1+n2 is related to q := (x′1, x

′
2) ∈ X1 × X2

if (1) in case x2 = x′2, x1 is k1-adjacent to x′1, and

(2) in case x1 = x′1, x2 is k2-adjacent to x′2.

 (4.1)

After that, considering this relation under the k∗ := k-adjacency of Zn1+n2 , where k := k(t, n1 + n2), t =
max{t1, t2}, we say that these two related points p and q are Gk∗-adjacent in X1 × X2 derived from
the given (Xi, ki := ki(ti, ni)), Xi ⊂ Z

ni , i ∈ {1, 2}. Besides this adjacency is called a Gk∗-adjacency of
X1 × X2 ⊂ Z

n1+n2 derived from the given two digital images (Xi, ki), i ∈ {1, 2}. In addition, we use the
notation (X1 ×X2,Gk∗) to denote this digital product X1 ×X2 with the Gk∗-adjacency (or a digital space
(X1 × X2,Gk∗)).

Remark 4.2. (1) In Definition 4.1, in case the given two points p and q are Gk∗-adjacent in X1 × X2,
they should be k∗ := k(t, n1+n2)-adjacent such that they satisfy only the condition of (4.1) of Definition
4.1, i.e., t = max{t1, t2} and the adjacency k∗ is one of the digital connectivity of Zn1+n2 stated in (1.1).
This implies that a Gk∗-adjacency relation may not be equal to a k∗-adjacency one between two points
in X1 × X2. Namely, the Gk∗-adjacency relation in X1 × X2 is a new one in X1 × X2 that need not be
equal to a certain k-adjacency relation in Zn1+n2 of (1.1).
(2) Comparing the Gk∗-adjacency relation in X1 × X2 and the adjacency relation of a product graph
in [11], we obviously make a distinction from each other.

We use the pair (X1 × X2,Gk∗) to denote this digital product X1 × X2 with a Gk∗-adjacency. Owing to
Definition 4.1, the Gk∗-adjacency is always determined by (or derived from) the given ki-adjacency of
(Xi, ki := ki(ti, ni)), Xi ⊂ Z

ni , i ∈ {1, 2}. After comparing among the adjacency relations of Definitions

Electronic Research Archive Volume 30, Issue 6, 2356–2384.



2367

3.2 and 4.1, and the typical k-adjacency of X1 × X2 ⊂ Z
n1+n2 , we can make a distinction among them,

as follows:

Remark 4.3. (1) The Gk∗-adjacency relation of Definition 4.1 is broader than the Ck∗-adjacency of
Definition 3.2. More precisely, as stated in Definition 3.2, given two digital images (Xi, ki := k(ti, ni))
on Zni , i ∈ {1, 2} (see Definition 3.2), not every X1 × X2 has a Ck∗-adjacency. However, according to
Definition 4.1, we always have a Gk∗-adjacency relation in the digital product X1 × X2 ⊂ Z

n1+n2 .
(2) Two k∗-adjacent points in X1 × X2 ⊂ Z

n1+n2 need not be Gk∗-adjacent. However, the converse holds.
By Definition 4.1, two Gk∗-adjacent points in X1 × X2 ⊂ Z

n1+n2 are k∗-adjacent.
(3) We strongly stress on the number k∗ := k(t, n1 + n2) of a Gk∗-adjacency relation. Note that the
number t is equal to max{t1, t2} to determine the number k∗ := k(t, n1 + n2) for the Gk∗-adjacency of
X1 × X2, where ki := ki(ti, ni)), i ∈ {1, 2}. Namely, the number k∗ of a Gk∗-adjacency absolutely depends
on the given (Xi, ki := ki(ti, ni)), i ∈ {1, 2} and the number t = max{t1, t2}. For instance, consider
S C2,4

8 × S C2,6
8 . Then we have only the G32-adjacency relation in the digital product S C2,4

8 × S C2,6
8 .

As a special case of Definition 4.1, we define the following:

Definition 4.4. Given a digital image (X, k := k(t, n)), X ⊂ Zn, the number k∗ := k(t, 2n) for a Gk∗-
adjacency of X × X is determined by the number t of (X, k := k(t, n)) such that any two Gk∗-adjacent
points in X × X should only satisfy the condition (4.1) of Definition 4.1.

This Gk∗-adjacency of X × X with the condition of k∗ := k(t, n) plays a crucial role in establishing a
DT -k-group in Section 5 (see Definition 5.5).

Remark 4.5. (1) In Definition 4.4, the number k∗ of Gk∗ is assumed in X × X ⊂ Z2n that is different
from the number k of the k-adjacency of the given digital image (X, k := k(t, n)), X ⊂ Zn.
(2) Given two digital images (Xi, ki), i ∈ {1, 2}, according to the situation, i.e., either (X1, k1) , (X2, k2)
(see Definition 4.1) or (X1, k1) = (X2, k2) (see Definition 4.4), we will follow Definitions 4.1 or 4.4 when
taking a choice of Gk∗ .
(3) In view of Definition 4.4, given (X, k := k(t, n)), there is at least k∗ := k(t, 2n) establishing a Gk∗-
adjacency of X × X (see Remark 4.3(1)). For instance, assume S C2,6

8 := (b j) j∈[0,5]Z in (3.7) (see also
Figure 3(a)). Let ci, j := (bi, b j) ∈ S C2,6

8 × S C2,6
8 . Then consider the point c2,2 in S C2,6

8 × S C2,6
8 . While

the point c1,1 := (b1, b1) is typically 32-adjacent to c2,2, it is not G32-adjacent to c2,2. However, any
G32-adjacent elements in S C2,6

8 × S C2,6
8 ⊂ Z

4 are 32-adjacent.

In the case of S Cn,l
k × S Cn,l

k , we have some features of a Gk∗-adjacency compared to a Ck∗-one.
To be specific, while S C2,6

8 × S C2,6
8 has at least a G32-adjacency, it does not have any Ck∗-adjacency,

k∗ ∈ {32, 64, 80}.

Example 4.1. (1) Given (Z, 2), (Z2,G4) exists.
(2) (S Cn,l

k × [a, b]Z,Gk∗) exists, where k∗ = k(t, n + 1) is determined by the number t of k := k(t, n). For
instance, we obtain (S C2,8

4 × [0, 1]Z) with G6-adjacency (see Figure 1(a)) and (S C2,6
8 × [0, 1]Z) with

G18-adjacency (see Figure 1(b)).
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Figure 1. Configuration of the G6-adjacency of S C2,8
4 × [0, 1]Z and the G18-adjacency S C2,6

8 ×

[0, 1]Z. In (a), each of the points p0, p2 and p8 is G6-adjacent to the point p1. In (b), each of
the points q1, q3 and q7 is G18-adjacent to the point q2.

Lemma 4.6. Given two S Cni,li
ki
, i ∈ {1, 2}, there is always a Gk∗-adjacency of the digital product S Cn1,l1

k1
×

S Cn2,l2
k2

, where k∗ := k(t, n1 + n2), t = max{t1, t2} and ki := ki(ti, ni), i ∈ {1, 2}. However, this Gk∗-
adjacency need not be equal to a Ck∗-adjacency.

Proof: By Definition 4.1, with the hypothesis, we always have a Gk∗-adjacency of S Cn1,l1
k1
× S Cn2,l2

k2

(see also Remark 4.3). To be specific, the Gk∗-adjacency of S Cn1,l1
k1
× S Cn2,l2

k2
is determined by the

number t = max{t1, t2}, where k∗ := k(t, n1 + n2).
However, as mentioned in Remark 4.3, since not every S Cn1,l1

k1
× S Cn2,l2

k2
has a Ck∗-adjacency, the Gk∗-

adjacency of S Cn1,l1
k1
× S Cn2,l2

k2
need not imply the Ck∗-adjacency of it. For instance, as mentioned in

Remark 4.5(3), while we have a G32-adjacency for S C2,6
8 × S C2,6

8 , any k∗-adjacency, k∗ ∈ {32, 60, 80},
cannot be a Ck∗-adjacency of it. □

In view of Definitions 3.2, 4.1, and 4.4, and Remark 4.3, after comparing the Gk∗-adjacency with the
Ck∗-adjacency relation, we observe that a Gk∗-adjacency relation is relatively weaker and softer than a
Ck∗-one. As a generalization of Lemma 4.6, we obtain the following:

Corollary 4.7. In case there is a Ck∗-adjacency of X1 × X2 derived from (Xi, ki) on Zni , i ∈ {1, 2}, a
Ck∗-adjacency of X1 × X2 implies a Gk∗-adjacency of X1 × X2 of Definition 4.1. However, in general, a
Gk∗-adjacency in X1 × X2 of Definition 4.1 need not imply a Ck∗-adjacency in X1 × X2.

As a special case of S C3,6
18 , let us recall the digital image MS C18 ⊂ Z

3 that is 26-contractible [8, 9]
(see Figure 2). For instance, we may take the set with an 18-adjacency as follows:

MS C18 :=

b0 = (0, 0, 0), b1 = (1,−1, 0), b2 = (1,−1, 1),
b3 = (2, 0, 1), b4 = (1, 1, 1), b5 = (1, 1, 0).

 (4.2)

Then, MS C18 is 26-contractible [8, 9]. Owing to this feature, the set MS C18 has been often called a
minimal simple closed 18-curve in Z3 [8]. In Example 4.2 below, we will take a Gk∗-adjacency relation
in MS C18 × MS C18. Motivated by Theorem 3.11 and Lemma 4.6, and Definitions 3.2 and 4.1, we
obtain the following:

Corollary 4.8. Given two S Cni,li
ki
, i ∈ {1, 2}, assume that there is a Ck∗-adjacency of the digital product

S Cn1,l1
k1
× S Cn2,l2

k2
derived from the given S Cni,li

ki
, i ∈ {1, 2}, where k∗ := k(t, n1 + n2), t = max{t1, t2} and

ki := ki(ti, ni), i ∈ {1, 2}. Then the Ck∗-adjacency in the digital product S Cn1,l1
k1
× S Cn2,l2

k2
is equivalent to

the Gk∗-adjacency in S Cn1,l1
k1
× S Cn2,l2

k2
.
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Example 4.2. (1) S C2,4
8 × S C2,6

8 ⊂ Z
4 has both a C32-adjacency and a G32-adjacency.

(2) MS C18×MS C18 ⊂ Z
6 does not have any Ck∗-adjacency such that k∗ ∈ {72, 232, 472, 664, 728} (see

Figure 2 and (1.2)).
(3) MS C18 × MS C18 ⊂ Z

6 has a G72-adjacency (see Figure 2 and (1.2)).

3
b

2
b

4
b

1b

5b

0
b  MSC

18

Figure 2. Configuration of MS C18 in [8].

Let us further characterize the Gk∗-adjacency relation using a certain neighborhood of a point of X1×

X2. Based on the Gk∗-adjacency of Definition 4.1, we now establish the following Gk∗-neighborhood of
a given point of X1 × X2.

Definition 4.9. Given two digital images (Xi, ki := k(ti, ni)), Xi ⊂ Z
ni , i ∈ {1, 2}, assume the Cartesian

product X1 × X2 ⊂ Z
n1+n2 with a Gk∗-adjacency. For a point p ∈ X1 × X2, we define

NGk∗ (p) := {q ∈ X1 × X2 | q is Gk∗-adjacent to p} (4.3)

and
NGk∗ (p, 1) := NGk∗ (p) ∪ {p}. (4.4)

Then we call NGk∗ (p, 1) a Gk∗-neighborhood of p.

Corollary 4.10. In view of (4.4), for a digital product with a Gk∗-adjacency (X1 × X2,Gk∗) and a point
p := (x1, x2) ∈ X1 × X2, we have the following:

NGk∗ (p, 1) = (Nk1(x1, 1) × {x2}) ∪ ({x1} × Nk2(x2, 1)). (4.5)

Based on Definition 4.4, we have the following:

Example 4.3. (1) Given a finite digital line ([0, l]Z, 2), assume the set X := [0, l]Z × [0, l]Z ⊂ Z2. Then
we can take the Gk∗-adjacency on X ⊂ Z2 derived from ([0, l]Z, 2) such that k∗ := k(1, 2), i.e., k∗ = 4.
Besides, each of these NGk∗ (p, 1) ⊂ X is equal to the N4(p, 1) ⊂ X.
(2) In S C2,6

8 × S C2,6
8 (see the elements of S C2,6

8 in (3.7) and Definition 4.4), we obtain

NG32(c2,2, 1) , N32(c2,2, 1),

because
(NG32(c2,2, 1))♯ = 5 and (N32(c2,2, 1))♯ = 6. (4.6)

(3) No NC32(c2,2, 1) exists because S C2,6
8 × S C2,6

8 does not have C32-adjacency (see the points c1,1 and
c2,2 of S C2,6

8 × S C2,6
8 ).
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Based on Remark 4.3 and the property of (4.4), we obtain the following:

Remark 4.11. Owing to the structure of (4.3), with the hypothesis stated in Definition 4.9, we obtain
the following:
(1) NGk∗ (p, 1) always exists in X1 × X2, where the number t of k := k(t, n1 + n2) is equal to the number
“max{t1, t2}”.
(2) NGk∗ (p) need not be equal to N∗k∗(p), where N∗k∗(p) := {q ∈ X1 × X2 | q is k∗-adjacent to p}, where
the number k∗ is the digital connectivity of X1 × X2 stated in (1.1).
(3) Not every Nk∗(p, 1) is always equal to NGk∗ (p, 1), p ∈ X1 × X2.

Let us characterize NGk∗ (p) with some examples.

Example 4.4. Let us consider the digital images X1 := S C2,6
8 := (b j) j∈[0,5]Z in (3.7) (see also Figure

3(a)) and (X2 := [0, 1]Z, 2). Then, for a point p1 := (b1, 0) ∈ X1×X2 (see Figure 3(b)), we can consider
an NG18(p1, 1) (see Figure 3(c)) in the digital product (X1 × X2,G18) (see Figure 3(b)). Then, for the
point p1 := (b1, 0) = (1,−1, 0), we obtain the following (see Figure 3(c)):

NG18(p1, 1) = {p0, p1, p2, p6 := (b1, 1)},

where p0 := (b0, 0), p2 := (b2, 0) (see Figure 3(b)). Then, we obviously observe that while the point
p7 := (b2, 1) is 18-adjacent to p1, it is not G18-adjacent to p1 (compare the objects in Figure 3(c) and
(d)).

Remark 4.12. Given two digital images (Xi, ki := k(ti, ni)), i ∈ {1, 2}, assume a Gk∗-adjacency at a
point p := (x1, x2) ∈ X1 × X2. Then, we have the following identity

(NGk∗ (p, 1))♯ = (Nk1(x1, 1))♯ + (Nk2(x2, 1))♯ − 1.
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Figure 3. Given two digital images X1 := S C2,6
8 in (a) (see also (3.7)) and X2 := [0, 1]Z, the

digital product X1 × X2 with a G18-adjacency is assumed as the object of (b). Besides, for
the point p1 ∈ X1 × X2 in (b), the set NG18(p1, 1) is described in (c). Based on this approach,
we observe NG18(p1, 1) , N18(p1, 1) because NG18(p1, 1) = {p0, p1, p2, p6 := (b1, 1)} and
N18(p1, 1) = NG18(p1, 1) ∪ {p7 := (b2, 1)} in (d) (see Remark 4.12).
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Owing to the symmetric relation of a Gk∗-adjacency, we can obtain the following: Given two
digital images (Xi, ki) in Zni , i ∈ {1, 2}, assume the Cartesian product X1 × X2 ⊂ Z

n1+n2 with a certain
Gk∗-adjacency. We say that two points z,w ∈ X1 × X2 are Gk∗-connected (or Gk∗-path connected) if
there is a finite Gk∗-path (z0, z1, · · · , zm) ⊂ X1 × X2 from z to w on X1 × X2 such that z0 = z and zm = w,
where we say that a Gk∗-path from z to w in X1 × X2 means a finite sequence (z0, z1, · · · , zm) ⊂ X1 × X2

such that zi is Gk∗-adjacent to z j if j = i + 1, i ∈ [0,m − 1]Z or i = j + 1, j ∈ [0,m − 1]Z. We say that a
digital product (X1 × X2,Gk∗) is Gk∗-connected (or Gk∗-path connected) if any two points
z,w ∈ X1 × X2 are Gk∗-connected (or Gk∗-path connected). A singleton with Gk∗-adjacency, it is
assumed to be Gk∗-connected. Given a Gk∗-adjacency relation in X1 × X2, a simple Gk∗-path from z to
w in X1 × X2 is assumed to be the Gk∗-path (zi)i∈[0,l]Z ⊂ X1 × X2 such that zi and z j are Gk∗-adjacent if
and only if either j = i + 1, i ∈ [0, l − 1]Z or i = j + 1, j ∈ [0, l − 1]Z and z0 = x and zl = y. Also, a
simple closed Gk∗-curve with l elements in X1 × X2 ⊂ Z

n1+n2 , denoted by S Cn,l
Gk∗
, 4 ≤ l ∈ N, is a

sequence (zi)i∈[0,l−1]Z in X1 × X2, where zi and z j are Gk∗-adjacent if and only if |i − j| = ±1(mod l).

In view of these notions, we can take the following:

Remark 4.13. Given an (X1 × X2,Gk∗) derived from (Xi, ki), i ∈ {1, 2}, we have the following:
(1) While a Gk∗-path implies a k∗-path, the converse does not hold, where the k∗-adjacency is one of
the typical adjacency of (1.1).
(2) S Cn,l

Gk∗
need not be equal to S Cn,l

k∗ . For instance, based on the digital products (S C2,8
8 × [0, 1]Z,G18)

and (S C2,8
8 × [0, 1]Z, 18), let us consider two digital images with a G18- and an 18-adjacency such as

S C3,8
G18

and S C3,8
18 , respectively. As shown in Figure 4, assume a digital product S C2,8

8 ×[0, 1]Z with a G18-
adjacency (see Figure 4(a) and Figure 3(a)). It is clear that the set S C3,8

G18
:= (x0, x1, · · · , x7) in Figure

4(b) is an S C3,8
18 , where x0 := p0, x1 := p1, x2 := p2, x3 := p3, x4 := p8, x5 := p9, x6 := p10, x7 := p11.

However, S C3,8
18 in (c) is not an S C3,8

G18
(see the objects in Figure 4 (a) and (c)).
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Figure 4. Based on the digital product S C2,8
8 ×[0, 1]Z with a G18-adjacency (see (a)) or an 18-

adjacency (see (a)), comparison between S C3,8
G18

:= (x0, x1, · · · , x7) in Figure 4(b) and an S C3,8
18

in (c), where x0 := p0, x1 := p1, x2 := p2, x3 := p3, x4 := p8, x5 := p9, x6 := p10, x7 := p11 in
(b) and S C3,8

18 := (q0, q1, · · · , q7) in (c). To be specific, while S C3,8
18 in (b) is an S C3,8

G18
, S C3,8

18

in (c) is not an S C3,8
G18

because the points q1 and q2 in (c) are not G18-adjacent.
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Given a Gk∗-adjacency relation in a Cartesian product, we also have a certain digital space [7]
associated with a Gk∗-adjacency relation, as follows:

Proposition 4.14. Given ki-connected digital images (Xi, ki), Xi ⊂ Z
ni , i ∈ {1, 2}, the relation set (X1 ×

X2,Gk∗) is a digital space.

Proof: Since the relation Gk∗-adjacency in X1 × X2 is symmetric, we examine if (X1 × X2,Gk∗) is
Gk∗-connected. Take any distinct points p := (x1, x2) and q := (x′1, x

′
2) in X1 × X2. Then, without loss

of generality, we may assume the case x1 ⪇ x′1 and x2 ≤ x′2 or the case x1 ≤ x′1 and x2 ⪇ x′2. For
the purpose of this study, we may take the first case, i.e., x1 ⪇ x′1 and x2 ≤ x′2. Then consider the
differences | x1− x′1| ⪈ 0 and | x2− x′2| ≥ 0. According to the size of these finite differences, we can take
a finite set

{p := p1, p2, p3, · · · , pn := q} ⊂ X1 × X2 (4.7)

such that pi is Gk∗-adjacent to pi+1 in X1 × X2, i ∈ [1, n − 1]Z and

p, q ∈
⋃

i∈[1,n]Z

NGk∗ (pi, 1) ⊂ X1 × X2 (4.8).

Owing to (4.7) and (4.8), we can conclude that (X1 × X2,Gk∗) is Gk∗-connected. □
Based on the relation set (X1 × X2,Gk∗), we obtain the following:

Lemma 4.15. Assume the digital space (X1 × X2,Gk∗) derived from two digital images (Xi, ki), Xi ⊂

Zni , i ∈ {1, 2}. Then, for a point p ∈ X1 × X2, we always obtain NGk∗ (p, 1) ⊂ Nk∗(p, 1). However,
NGk∗ (p, 1) need not be equal to Nk∗(p, 1), i.e., (NGk∗ (p, 1))♯ ≤ (Nk∗(p, 1))♯.

Proof: For any point q ∈ NGk∗ (p, 1), according to the property (2.4) and Remark 4.3 and 4.11,
we obtain q ∈ Nk∗(p, 1). However, in view of Example 4.4 as a counterexample, we can disprove
Nk∗(p, 1) ⊂ NGk∗ (p, 1). Naively, consider the digital product (S C2,8

8 ×X2,G18) in Example 4.4. Then we
can confirm NG18(p, 1) ⊊ N18(p, 1) (see Figure 3(c) and (d)). □

Based on Definition 4.1, we obtain the following:

Proposition 4.16. Given two digital images (Xi, ki), Xi ⊂ Z
ni , i ∈ {1, 2}, assume a Cartesian product

X1×X2 with a Ck∗-adjacency. Then, for a point p ∈ X1×X2, while q ∈ NCk∗ (p, 1) implies q ∈ NGk∗ (p, 1),
the converse does not hold.

Proof: With the hypothesis, it is clear that q ∈ NCk∗ (p, 1) implies q ∈ NGk∗ (p, 1). However, the
converse does not hold with the following counterexample. Consider the digital product
S C2,4

4 × S C2,6
8 := (ci, j), where ci, j := (ai, b j) and S C2,4

4 := (ai)i∈[0,3]Z and S C2,6
8 := (b j) j∈[0,5]Z in (3.7).

Then, for the point c2,2, we obviously have NG32(c2,2, 1) (see Definition 4.1) that consists of five
elements. However, no NC32(c2,2, 1) exists because the element c2,2 does not have any C32-adjacent to a
point in the product S C2,4

4 × S C2,6
8 ⊂ Z

4. □

Corollary 4.17. Based on Definition 4.1, assume two digital images (Xi, ki), Xi ⊂ Z
ni , i ∈ {1, 2}, and the

Cartesian product X1 × X2 ⊂ Z
n1+n2 . Not every point p ∈ X1 × X2 always has an NCk∗ (p, 1). However,

in case there is a Ck∗-adjacency on X1 × X2, we obtain

Nk∗(p, 1) = NCk∗ (p, 1) = NGk∗ (p, 1).

Namely, each of the Ck∗- and the Gk∗-adjacency is equal to the typical k∗-adjacency of (1.1).
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Proof: By Definitions 3.5 and 4.1 and the properties (3.5) and (4.4), the proof is completed. □

Based on the Gk∗-adjacency of a digital product, let us introduce the concept of (Gk∗ , k′)-continuity
of a map f : (X1 × X2,Gk∗)→ (Y, k′).

Definition 4.18. Given two digital images (Xi, ki), Xi ⊂ Z
ni , i ∈ {1, 2}, consider the digital space

(X1 × X2,Gk∗) and a digital image (Y, k′). A function f : (X1 × X2,Gk∗)→ (Y, k′) is (Gk∗ , k′)-continuous
at a point p := (x1, x2) if for any point q ∈ X1 × X2 such that q ∈ NGk∗ (p) (denoted by p ↔Gk∗ q), we
obtain f (q) ∈ Nk′( f (p), 1) (denoted by f (p) ⇔k′ f (q)). In case the map f is (Gk∗ , k′)-continuous at
each point p ∈ X1 × X2, we say that the map f is (Gk∗ , k′)-continuous.

The (Gk∗ , k′)-continuity of Definition 4.18 can be represented by using both a Gk∗-neighborhood and
a digital k′-neighborhood, as follows:

Proposition 4.19. Consider a Cartesian product X1 × X2 ⊂ Z
n1+n2 with a Gk∗-adjacency and a typical

digital image (Y, k′). A map f : (X1 × X2,Gk∗) → (Y, k′) is (Gk∗ , k)-continuous at the point p ∈ X1 × X2

if and only if
f (NGk∗ (p, 1)) ⊂ Nk′( f (p), 1). (4.9)

A map f : (X1 × X2,Gk∗) → (Y, k′) is (Gk∗ , k)-continuous if and only if for every point p ∈ X1 × X2 we
have

f (NGk∗ (p, 1)) ⊂ Nk′( f (p), 1).

As a special case of Proposition 4.19, based on Definition 4.4, we can consider the following:

Corollary 4.20. Given a digital image (X, k), X ⊂ Zn. Consider a Cartesian product X × X ⊂ Zn1+n2

with a Gk∗-adjacency. Consider a map f : (X × X,Gk∗)→ (X, k). For a point p := (x1, x2) ∈ X × X, the
map f is (Gk∗ , k)-continuous at the point p if and only if

f (NGk∗ (p, 1)) ⊂ Nk( f (p), 1). (4.10)

A map f : (X × X,Gk∗) → (X, k) is (Gk∗ , k)-continuous at every point p ∈ X × X, then the map f is
(Gk∗ , k)-continuous.

Example 4.5. (1) Assume a digital product (S C2,6
8 × [0, 1]Z) := {pi | i ∈ [0, 11]Z} with a G18-adjacency.

Consider the map
g : (X,G18)→ (Z, 2)

defined by (see Figure 5(1))g({p0, p11}) = {0}, g({p1, p6}) = {1}, g({p2, p7}) = {2},
g({p3, p8}) = {3}, g({p4, p9}) = {2}, g({p5, p10}) = {1}.


Then the map g is a (G18, 2)-continuous map.
(2) Assume a digital product (S C2,6

8 × [0, 1]Z) with a G18-adjacency and a subset X := {xi | i ∈ [0, 7]Z}
(see Figure 5(2)(a)) and Y := {yi | i ∈ [0, 7]Z} (see Figure 5(2)(b)) with an 18-adjacency which is
different from (X,G18). Consider the map f : (X,G18)→ (Y, 18) defined by f (xi) = yi, i ∈ [0, 7]Z. Then
the map f is a (G18, 18)-continuous map because f (NG18(xi, 1)) ⊂ N18( f (xi), 1).
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Figure 5. (1) Configuration of the (G18, 2)-continuity of the given map g of (1). (2)
Configuration of the (G18, 18)-continuity of the given map f from X := {xi | i ∈ [0, 7]Z} in
(a) to the set Y := {yi | i ∈ [0, 7]Z} in (b) defined by f (xi) = yi, i ∈ [0, 7]Z (see Example 4.5).

Corollary 4.21. Let (X, 2n) be a 2n-connected subset of (Zn, 2n). Then each of the typical projection
maps Pi : (X × X,G4n)→ (X, 2n) is a (G4n, 2n)-continuous map, i ∈ {1, 2}, such that the G4n-adjacency
is equal to the typical 4n-adjacency.

With some hypothesis of the Gk∗-adjacency of X × X, the (Gk∗ , k)-continuity of Corollary 4.20 will
play a crucial role in establishing a certain continuity of a multiplication for formulating a DT -k-group
(see Definition 5.5). Let us compare the (Gk∗ , k′)-continuity and the typical (k, k′)-continuity.

Theorem 4.22. While the (Gk∗ , k′)-continuity implies the typical (k∗, k′)-continuity, the converse does
not hold.

Proof: By Definition 4.18 and Lemma 4.15, the proof is completed. □

Corollary 4.23. While the (Ck∗ , k′)-continuity implies the (Gk∗ , k′)-continuity, the converse does not
hold.

Proof: By Propositions 3.9, 4.16, and 4.19, and Corollary 4.20 the proof is completed. □

Corollary 4.24. In case there is a Ck∗-adjacency of X1×X2, the (Ck∗ , k′)-, the (Gk∗ , k′)-, and the (k∗, k′)-
continuity are equivalent to the other.

Proof: By Corollary 4.17, the proof is completed. □
In view of Definitions 3.2 and 4.1, we obtain the following:

Remark 4.25 (Advantages of the Gk∗-adjacency of a digital product). Given two digital images (X, k1)
and (Y, k2), there is always a Gk∗-adjacency derived from the two given digital images. However, an
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existence of Ck∗-adjacency of a digital product X ×Y depends on the situation. Thus the Gk∗-adjacency
of a digital product will be used in establishing a digital topological version of a typical topological
group in Section 5. Furthermore, since the Gk∗-adjacency is a generalization of the Ck∗-adjacency of
a digital product, some strong utilities of the Gk∗-adjacency can be considered in establishing DT-k-
group structures (see Definition 5.5).

5. A development of a DT -k-group with the most suitable adjacency for a digital product X × X
from (X, k)

This section introduces the notion of a DT -k-group derived from a digital image (X, k) with a
certain group structure (X, ∗). Before proceeding with this work, given a digital image (X, k), we now
recall some differences between the Ck∗-adjacency and the Gk∗-adjacency of a digital product X × X
mentioned in Remarks 4.3 and 4.3. Naively, a Gk∗-adjacency of a digital product X × X is a
generalization of a Ck∗-adjacency of it (see Remark 4.25). As mentioned in Remark 4.5(3), given a
digital image (X, k := k(t, n)), X ⊂ Zn, we always have at least a certain Gk∗-adjacency of a digital
product X × X, where k∗ := k(t, 2n) is determined by the number t of (X, k := k(t, n)). Hence, in
relation to the establishment of a DT -k-group, we will follow only this Gk∗-adjacency of a digital
product X × X unless stated otherwise.
In this section, we will use the following notations with several times.
(1) (S Cn,l

k , ∗): A digitally k-group with the given binary operation ∗ on S Cn,l
k (see Proposition 5.3).

(2) (Zn, 2n,+): A digitally 2n-group with the given binary operation + on Zn (see Theorem 5.8)).
(3) N1: The set of odd natural numbers (see Example 5.1).

Remark 5.1. When studying DT-k-groups (X, k, ∗), for a digital image (X, k := k(t, n)), X ⊂ Zn, we will
recall the following notions from Definitions 3.8 and 4.18 that will be essentially used in this section,
e.g., the Gk∗- and Ck∗-adjacency of a digital product X × X ⊂ Z2n and the related continuities.
(1) We will take only the Gk∗-adjacency of a digital product X ×X such that k∗ := k(t, 2n) is determined
by the number t of (X, k := k(t, n)), so that this Gk∗-adjacency always exists. Furthermore, for each
point p ∈ X × X, NGk∗ (p, 1) is uniquely determined (see Definitions 3.5 and 4.9 and the properties
of (3.1) and (4.5), Example 4.2(3), and Remark 4.11(1)). Hence this Gk∗-adjacency, k∗ := k(t, 2n), is
enough to establish the notion of a DT-k-group derived from a digital image (X, k) with a certain group
structure (X, ∗).
(2) In relation to a digital space (X × X,Ck∗) derived from (X, k := k(t, n)), X ⊂ Zn (see Proposition
3.7), we also take only k∗ := k(t, 2n), where the number t of k∗ := k(t, 2n) is exactly equal to the number
t of (X, k := k(t, n)).
(3) Based on this approach, we will take a Gk∗ (resp. Ck∗)-neighborhood of a given point in a digital
space (X × X,Gk∗) (resp. (X × X,Ck∗)). Hence, the (Gk∗ , k) (resp., (Ck∗ , k))-continuity of Definition 4.18
(resp. Definition 3.8) is considered (see also Definition 4.4) for formulating a DT-k-group using only
the k∗ := k(t, 2n)-adjacency, where k∗ := k(t, 2n) is induced by the number t of (X, k := k(t, n)).

Lemma 5.2. The set Z2n, n ∈ N, has a G4n-adjacency derived from (Zn, 2n) such that this G4n-adjacency
is equal to the C4n-one derived from (Zn, 2n), i.e., G4n = 4n = C4n.
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Proof: By Definitions 3.2 and 4.1, and Corollary 4.17, the proof is completed. To be specific, take
a point p := (p1, p2) ∈ Zn × Zn = Z2n. Since

NG4n(p, 1) = (N2n(p1, 1) × {p2}) ∪ ({p1} × N2n(p2, 1))

and this NG4n(p, 1) is equal to NC4n(p, 1), the proof is completed. □
Let us establish a group structure on the digital image S Cn,l

k .

Proposition 5.3. Given an S Cn,l
k := (xi)i∈[0,l−1]Z for any k-adjacency of Zn, we have a group structure

on S Cn,l
k with the following operation ∗.

∗ : S Cn,l
k × S Cn,l

k → S Cn,l
k

given by
∗(xi, x j) = xi ∗ x j = xi+ j(mod l). (5.1)

Then we denote by (S Cn,l
k , ∗) the above group.

Proof: First, the operation “∗” is well-defined on S Cn,l
k as a binary operation for establishing a

group structure on S Cn,l
k . Second, based on the property (5.1), the operation “∗” is associative. Third,

the element x0 is the identity element and for two elements xi, x j ∈ S Cn,l
k

xi ∗ x j = x0 if and only if j = l − i(mod l). (5.2)

Hence, each element xi(, x0) uniquely has xl−i as the inverse element and the element x0 has the inverse
itself. □

Example 5.1. (1) Given S Cn,l
k := (xi)i∈[0,l−1]Z with l ∈ N0, there are only two elements such as x0 and

x l
2

in S Cn,l
k such that (x0)−1 = x0 and (x l

2
)−1 = x l

2
, where x−1 means the inverse element of x (see the

two elements x0, x3 of S C2,6
8 ).

(2) Given S Cn,l
k := (xi)i∈[0,l−1]Z with l ∈ N1, there is only one element such as x0 in S Cn,l

k whose inverse
is itself (see the element x0 of S C3,5

26 ).

Remark 5.4. (1) Given an S Cn,l
k := (xi)i∈[0,l−1]Z , according to our needs, we can relabel the elements

of S Cn,l
k to obtain a new type of S Cn,l

k := (yi)i∈[0,l−1]Z . Then the element y0 is the identity element of the
group (S Cn,l

k := (yi)i∈[0,l−1]Z , ∗).
(2) The group (S Cn,l

k , ∗) in Proposition 5.3 is abelian.

Based on the Gk∗-adjacency of X × X and the (Gk∗ , k)- as well as the (Ck∗ , k)-continuity stated in
Remark 5.1(1) and (3), we now define the following.

Definition 5.5. A digitally topological k-group, denoted by (X, k, ∗) and called a DT-k-group for
brevity, is a digital image (X, k := k(t, n)) combined with a group structure on X ⊂ Zn using a certain
binary operation ∗ such that for (x, y) ∈ X2 the multiplication

α : (X2,Gk∗)→ (X, k) given by α(x, y) = x ∗ y is (Gk∗ , k)-continuous (5.3)

and the inverse map

β : (X, k)→ (X, k) given by β(x) = x−1 is k-continuous, (5.4)

where the number k∗ := k(t, 2n) of the Gk∗-adjacency of (5.3) is determined by only the number t of the
k := k(t, n)-adjacency of the given digital image (X, k := k(t, n)).
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In Definition 5.5, as for the Gk∗-adjacency of X × X, we strongly recall the requirement in Remark
5.1(1) and (3).

Remark 5.6. In view of Definition 5.5, a DT-k-group, (X, k, ∗) has the two structures such as the digital
image (X, k) and the certain group structure (X, ∗) satisfying the properties of (5.3) and (5.4).

By Corollary 4.17, we have the following:

Corollary 5.7. In case there is a Ck∗-adjacency of X×X, i.e., a digital space ∃ (X×X,Ck∗), the condition
“(Gk∗ , k)-continuous” of (5.3) of Definition 9 can be replaced by “(Ck∗ , k)-continuous” because a Ck∗-
adjacency of X × X implies a Gk∗-adjacency of it (see Corollaries 4.6 and 4.25). For instance, for the
case S C2,4

8 , S C2,4
8 × S C2,4

8 can be assumed to be a digital space (S C2,4
8 × S C2,4

8 ,C32). Thus we have
a digital space (S C2,4

8 × S C2,4
8 ,G32) (see Remark 4.3(1)). Hence the condition “(G32, 8)-continuous”

of (5.3) of Definition 5.5 may be replaced by “(C32, 8)-continuous” or “(32, 8)-continuous” because
G32 = 32 = C32.

Theorem 5.8. (Zn, 2n,+) is a DT-2n-group.

Proof: First, (Zn,+) is a group with the following operation [15]. For two elements
p := (p1, · · · , pn), q := (q1, · · · , qn) ∈ Zn, we define+ : Zn × Zn → Zn given by

p + q := (p1 + q1, · · · , pn + qn).

 (5.5)

Then, the operation “+” is a binary operation on Zn supporting the group (Zn,+) because it is
associative, and it has the identity element 0n := (0, · · · , 0) with n-tuples and the inverse element of an
element p, denoted by p−1, is equal to −p [15].
Using Example 3.2, Definitions 3.8 and 4.18, and Propositions 3.9 and 4.19 and Corollary 4.20, let us
propose the DT -2n-group structure of (Zn, 2n,+). To be specific, by Lemma 5.2, we have both a G4n-
and a C4n-adjacency of Zn × Zn induced by the given (Zn, 2n) such that G2n = C2n = 2n. Hence, by
Corollary 4.17, we may take G4n = 4n to support the (G4n, 2n)-continuity of the multiplication (see
(3.13) and (4.9))

α : Zn × Zn → Zn (5.6)

given by α(p, q) := p + q defined in (5.5).
To be precise, take any distinct points P := (p, q), Q := (p′, q′) in Zn × Zn such that

Q ∈ NG4n(P, 1) = N4n(P, 1) (see Lemma 5.2).

More precisely, assume the two points P,Q such thatQ = (p′, q′) ∈ NG4n(P, 1) = N4n(P, 1) ⊂ Z2n,

where NG4n(P, 1) = (N2n(p, 1) × {q}) ∪ ({p} × N2n(q, 1)).

 (5.7)

Then we may consider the two cases: The following four points that are components of the given
two points P,Q ∈ Zn,

p := (xi)i∈[1,n]Z , q := (y j) j∈[1,n]Z , p
′ := (x′i)i∈[1,n]Z , and q′ := (y′j) j∈[1,n]Z ,
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satisfy one of the following two cases.
(1) For the points p and p′ in Zn, owing to (5.7), there is only one i0 ∈ [1, n]Z such that

xi0 , x′i0 with |xi0 − x′i0 | = 1,
for i ∈ [1, n]Z \ {i0}, xi = x′i , and
y j = y′j for any j ∈ [1, n]Z.

 (5.8)

(2) For the points q and q′ in Zn, there is only one j0 ∈ [1, n]Z such that
y j0 , y′j0 with |y j0 − y′j0 | = 1,

for j ∈ [1, n]Z \ { j0}, y j = y′j, and

xi = x′i for any i ∈ [1, n]Z.

 (5.9)

Let us investigate these two cases more precisely.
(Case 1) Based on the above case (1), consider the mapping of the two points P and Q by the above
map α, i.e., α(P) = α(p, q) := p + q = (xi + yi)i∈[1,n]Z and

α(Q) = α(p′, q′) := p′ + q′ = (x′i + y′i)i∈[1,n]Z .

 (5.10)

Owing to the properties of (5.8) and (5.9), the property (5.10) implies that

α(Q) ∈ N2n(α(P), 1) because |α(P) − α(Q)| = 1,

implying that the map α is (G4n, 2n)-continuous at the point P ∈ Zn × Zn (see Definition 4.18 and
Corollary 4.20).
(Case 2) With the above case (2), after considering the mapping of the two points P and Q by the above
map α in (5.10), using a method similar to the approach of (Case 1), we obtain

|α(P) − α(Q)| = 1 so that α(Q) ∈ N2n(α(P), 1),

implying that the map α is (G4n, 2n)-continuous at the point P ∈ Zn × Zn (see Definitionv4.18 and
Corollary 4.20).

For instance, let us show the DT -4-group structure of (Z2, 4,+), as follows: Assume the two points

P := (p, q) and Q := (p′, q′) in Z2 × Z2,

such that
Q ∈ NG8(P, 1) = N8(P, 1) ⊂ Z4,

where p := (xi)i∈[1,2]Z , q := (y j) j∈[1,2]Z , p′ := (x′i)i∈[1,2]Z , and q′ := (y′j) j∈[1,2]Z . Then, we consider the
following two cases as mentioned above.

As for the (Case 1) above, in case there is only one i0 ∈ [1, 2]Z such that xi0 , x′i0 with |xi0 − x′i0 | = 1
and for i ∈ [1, 2]Z \ {i0}, we have xi = x′i , and y j = y′j, j ∈ {1, 2} (see (5.8) and (5.9)). Then consider the
mapping of the two points P and Q by the above map α such that
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α(P) = α(p, q) := p + q = (xi + yi)i∈[1,2]Z and
α(Q) = α(p′, q′) := p′ + q′ = (x′i + y′i)i∈[1,2]Z .


Then we obtain

|α(P) − α(Q)| = 1 so that we have α(Q) ∈ N4(α(P), 1).

Hence the map α is (G8, 4)-continuous at the point P ∈ Z2 × Z2 (see Corollary 4.20).

As for the (Case 2) above, in case there is only one j0 ∈ [1, 2]Z such that y j0 , y′j0 with |y j0 − y′j0 | = 1
and for j ∈ [1, 2]Z \ { j0}, we have y j = y′j, and xi = x′i , i ∈ {1, 2} (see (5.8) and (5.9)). Then, after
considering the mapping of the two points P and Q by the above map α using a method similar to the
approach above, we obtain

|α(P) − α(Q)| = 1 so that we obtain α(Q) ∈ N4(α(P), 1) ⊂ Z2,

implying that the map α is (G8, 4)-continuous at the point P ∈ Z2 × Z2 (see Corollary 4.20).
By Lemma 5.2, this (G8, 4)-continuity of α is exactly equal to (8, 4)-continuity of it.
Besides, there is also the 2n-continuity of the inverse map

β : Zn → Zn

given by

β(p) = −p.

Naively, for any point p ∈ Zn, by Proposition 2.1, we obtain

β(N2n(p, 1)) ⊂ N2n(β(p), 1),

implying that (Zn, 2n,+) is a DT -2n-group. □

Regarding the continuity of (5.6), note that the points (x, x) and (y, y) are not G2n-adjacent in Zn×Zn,
where x := (0, 0, · · · , 0) and y := (1, 0, · · · , 0) in Zn (see Definition 4.1).

Remark 5.9. In Theorem 5.8, by Lemma 5.2, the (G4n, 2n)-continuity of the map α of (5.6) is exactly
equal to (4n, 2n)-continuity of α (see the (Case 1) and (Case 2) in the proof of Theorem 5.8). For
instance, consider a multiplication from (Z2,G4) → (Z, 2) (see Figure 6). Then it is clear that it
is (G4, 2)-continuous (see Figure 6), which supports a DT-2-group of (Z, 2,+). To be specific, for
convenience, for each i ∈ Z, let Xi := {(x, y) | y = −x+ i, x, y ∈ Z} ⊂ Z2. Then the G4-adjacency is equal
to the C4-adjacency so we obtain each of G4- and C4-adjacency is equal to the 4-adjacency of Z2. For
instance, consider the multiplication α : (Z2,G4) → (Z, 2) is defined as α(Xi) = i. Then the map α is
clearly (G4, 2)-continuous.
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Figure 6. Configuration of the (G4, 2)-continuity of the multiplication from (Z2,G4)→ (Z, 2)
related to being the DT -2-group of (Z, 2,+), where P = (0, 0) and Q = (0, 1) (see Remark
5.9).

Based on Definition 4.4 and (3.13) and (4.9), Remark 4.25, and Corollary 4.20, let us establish a DT -
k-group structure of (S Cn,l

k , ∗) derived from a Gk∗-adjacency of the digital product (S Cn,l
k × S Cn,l

k ,Gk∗).

Proposition 5.10. (S Cn,l
k , ∗) is a DT-k-group for any k-adjacency of Zn.

Proof: By Proposition 5.3, (S Cn,l
k , ∗) is a group, where k := k(t, n). Let us assume a Gk∗-adjacency

on the Cartesian product S Cn,l
k × S Cn,l

k such that k∗ := k(t, 2n).
Naively, we obtain the relation set (see Proposition 4.14)

(S Cn,l
k × S Cn,l

k ,Gk∗), (5.11)

where the number k∗ := k(t, 2n) of the Gk∗-adjacency is determined by the number t of k := k(t, n)
from S Cn,l

k . For the purpose of this study, given S Cn,l
k := (xi)i∈[0,l−1]Z , assume the set S Cn,l

k × S Cn,l
k as an

(l × l)-matrix as follows:
[ci, j], where ci, j := (xi, x j) ∈ S Cn,l

k × S Cn,l
k .

Based on the structure of (5.11), let us further assume the mapα : S Cn,l
k × S Cn,l

k → S Cn,l
k given by

α(xi, x j) := xi ∗ x j := xi+ j(mod l).

 (5.12)

Consider each pointp := ci, j := (xi, x j) ∈ NGk∗ (p, 1) = {ci, j, ci±1(mod l), j, ci, j±1(mod l)}

⊂ S Cn,l
k × S Cn,l

k .

 (5.13)
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Then, owing to the existence of a Gk∗-adjacency on the Cartesian product S Cn,l
k × S Cn,l

k , for any p =
(xi, x j) ∈ S Cn,l

k × S Cn,l
k (see Remark 5.1(1)), we obviously have the set NGk∗ (p, 1) (see (5.13)) such that

α(NGk∗ (p, 1)) ⊂ Nk(α(p), 1) = Nk(xi+ j(mod l), 1),

implying the (Gk∗ , k)-continuity of the map α (see Corollary 4.20).
Next, let us assume the mapβ : S Cn,l

k → S Cn,l
k given by, for any element xi ∈ S Cn,l

k

β(xi) := (xi)−1 = xl−i(mod l).

 (5.14)

Then we now prove that the map β is also k-continuous. To be precise, for any element xi ∈ S Cn,l
k , take

the set Nk(xi, 1). Then, owing to the map β, by Proposition 2.1, we have

β(Nk(xi, 1)) ⊂ Nk(β(xi), 1) = Nk(xl−i(mod l), 1),

implying that the map β is k-continuous. □

Regarding the continuity of (5.12), note that the points (x0, x0) and (x1, x1) are not Gk∗-adjacent in
S Cn,l

k × S Cn,l
k (see Definition 4.1). By Corollaries 4.17, 4.20, and 5.7, we obtain the following:

Corollary 5.11. In case the digital product S Cn,l
k × S Cn,l

k has a Ck∗-adjacency (see Theorem 3.11), i.e.,
∃ (S Cn,l

k × S Cn,l
k ,Ck∗), (S Cn,l

k , ∗) is a DT-k-group using the Ck∗-adjacency. Then, the multiplication of
α related to this DT-k-group of (S Cn,l

k , ∗) is (k∗, k)-continuous.

Proof: By Corollaries 4.18 and 5.7, and Proposition 5.10, the proof is completed. □

In a DT -k-group (X, k, ∗), in case the group (X, ∗) is abelian, we say that the DT -k-group (X, k, ∗) is
abelian.

Remark 5.12. (1) There are various types of S Cn,l
k , e.g., S C3,6

18 that is not 26-contractible and MS C18,
that lead to DT-k-groups of them.
(2) The DT-k-group (S Cn,l

k , ∗) in Proposition 5.10 is abelian

Example 5.2. (1) (S C2,4
4 , ∗) is an abelian DT-4-group.

(2) (S C2,6
8 , ∗) is an abelian DT-8-group.

(3) (S C3,5
26 , ∗) is an abelian DT-26-group.

(4) (MS C18, ∗) is an abelian DT-18-group.

Remark 5.13. A finite digital plane (X, k), X ⊂ Zn, need not be a DT-k-group.

6. Remarks on the earlier approach to a digital topological version of a topological group in the
literature of [16]

Motivated by the typical topological group [12, 17], the paper [16] tried to formulate a digital
version of a topological group called a “topological k-group”. Then, the paper [16] used the notion of
a minimal k-adjacency derived from the conditions of (6.1) below for supporting a kind of continuity
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of a multiplication associated with a topological k-group. This approach is quite different from the
current one in the present paper. Furthermore, in case we follow the approach in [16], we will come
across some fatal errors or the obtained results are trivial cases. Besides, the paper [16] referred to
several examples and some properties related to a topological k-group. However, since the paper [16]
started with a very insufficient, incorrect, and rough adjacency for a digital product, the obtained
results related to the study of a topological k-group (see Section 4 of [16]) are mainly incorrect. More
precisely, the paper [16] used the so-called the minimal adjacency of a digital product [16] that is
incorrect or trivial, as follows:
Given two digital images (Xi, ki := k(ti, ni)) in Zni , i ∈ {1, 2}, the paper [16] defined the so-called
“minimal adjacency”, k∗, for a Cartesian product X1 × X2, and denote by (X × X, k∗). Then the
k∗-adjacency was derived from the following approach.

Given the Cartesian product X1 × X2 ⊂ Z
n1+n2 , the paper [16] says that two points (x1, x2), (x′1, x

′
2) in

X1 × X2 are “minimal k∗-adjacent” to each other if they satisfy “one of the following conditions”
(1) (x1, x2) is equal to (x′1, x

′
2), or

(2) x1 is k1-adjacent to x′1 and x2 = x′2, or
(3) x2 is k2-adjacent to x′2 and x1 = x′1, or
(4) x1 is k1-adjacent to x′1 and x2 is k2-adjacent to x′2.


(6.1)

In particular, first of all, we recall the conditions (2)–(4) are exactly equal to the conditions for
establishing a normal k-adjacency of a digital product in [5]. Hence we need to cite it appropriately.
Besides, based on the conditions of (6.1) formulating a minimal k∗-adjacency in [16] to establish a
topological k-group, the paper [16] requires “one of the four conditions” to establish the so-called
“minimal k∗-adjacency” of a digital product. Unfortunately, the approach using one the conditions of
(6.1) leads to either trivial or incorrect results with the following reason. Based on the adjacency
determined by the conditions of (6.1) suggested in [16], for our purposes, let us assume t1 ≤ t2 in
(Xi, ki := k(ti, ni)) in Zni , i ∈ {1, 2}. Then, let us examine if the requirement of “one of the four
conditions” of (6.1) is meaningful as a condition for establishing a topological k-group.

Remark 6.1. (1) Let us assume only the first condition (1) of (6.1). Then we have a reflexive relation in
the digital product, implying that the adjacency invokes a discrete case up to k-adjacency of a digital
product. Namely, every point has only the reflexive self-adjacency that invokes a discrete relation in
X1 × X2 from the viewpoint of digital k-connectivity. Indeed, a discrete relation in a digital image is
useless because every self-map of the digital product with any k-adjacency of (1.1) is continuous.
(2) In case we follow only the second condition (2) of (6.1), it might not satisfy the continuity of a
multiplication of α : X × X → X (see the case of MS C18). For instance, in the case of MS C18,
even though the notion of a “minimal adjacency of a digital product” in [16], according to [16], we
may take a 72-adjacency of the digital product MS C18 × MS C18 ⊂ Z

6 for the (72, 18)-continuity
of the multiplication MS C18 × MS C18 → MS C18. Then we obviously see that this multiplication
MS C18 × MS C18 → MS C18 cannot be (72, 18)-continuous (see Proposition 2.1).
(3) In case we take only one of the conditions (3)–(4) of (6.1), it also might not satisfy the continuity of
a multiplication of α : X × X → X (see the case of MS C18 with the method used in (2) above).
Thus the approach using the condition of (6.1) cannot be suitable for establish a topological k-group.
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Unlike the approach in [16], by Proposition 5.10, using the G72-adjacency of MS C18×MS C18 ⊂ Z
6,

the pair (MS C18, ∗) is an abelian 18-connected topological 18-group. However, it is not related to
the conditions stated in (6.1). In view of Definition 4.4, the set of elements that are G72-adjacent in
MS C18 × MS C18 is a proper subset of elements that are 72-adjacent in MS C18 × MS C18.

Example 6.1. The DT-18-group (MS C18, ∗) using (5.12) guarantees the assertion of Remark 6.1.

7. Some remarks and a further work

After developing several notions such as a Ck∗- and a Gk∗-adjacency of a digital product X × X
derived from a given digital image (X, k) and a Ck∗- and a Gk∗-neighborhood of a point in (X × X,Ck∗)
and (X×X,Gk∗) respectively, we established two types of continuities of a multiplication (X×X,Ck∗)→
(X, k) or (X × X,Gk∗)→ (X, k). Based on this approach, we finally formulated a DT -k-group. Besides,
the paper gave various examples of DT -k-groups with some special kinds of binary operations.
As a further work, we can classify DT -k-groups in terms of a certain isomorphism from the viewpoint
of DT -k-group theory.
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