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Abstract: In this paper, we propose an adaptive neural network surrogate method to solve the implied
volatility of American put options, respectively. For the forward problem, we give the linear comple-
mentarity problem of the American put option, which can be transformed into several standard Ameri-
can put option problems by variable substitution and discretization in the temporal direction. Thus, the
price of the option can be solved by primal-dual active-set method using numerical transformation and
finite element discretization in spatial direction. For the inverse problem, we give the framework of
the general Bayesian inverse problem, and adopt the direct Metropolis-Hastings sampling method and
adaptive neural network surrogate method, respectively. We perform some simulations of volatility in
the forward model with one- and four-dimension to compare the point estimates and posterior density
distributions of two sampling methods. The superiority of adaptive surrogate method in solving the
implied volatility of time-dependent American options are verified.

Keywords: adaptive neural network surrogate method; primal–dual active-set method; far–field
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1. Introduction

With the widespread application of inverse problem (IP) in many fields such as finance, physics,
chemistry, and geophysics, researchers have become more and more interested in how to solve it effi-
ciently and accurately. The core of IP is to estimate inputs or some unknown parameters from some
observations in mathematical models, which usually consist of parameters that can be estimated from
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observations. Correspondingly, the model from parameters to the observations is called the forward
problem. In this paper, we mainly study the IP in the financial field, in particular, the implied volatility
of time-dependent American put option.

To the option investors, implied volatility is a very important indicator of the options, and reflects
the investors’ expectation of the volatility of the underlying assets in the future. This indicator can be
obtained by taking the option price as a known condition and inverting it into the corresponding Black-
Scholes (BS) model. Therefore, our forward problem is to solve the option price of American put
option with time-dependent volatility, and the corresponding IP is to estimate the posterior distribution
from the observations of the forward model.

As for our forward problem, the major difficulty we encounter is the time-dependent volatility in
the BS equation, thus we cannot directly use the existing methods based on finite element technique
to solve this American put option. In order to draw from the well known methods for solving various
American options, the problem needs to be preprocessed. Firstly, we discretize the forward problem
in the temporal direction, then the original model is transformed into multiple American put option
pricing problems with fixed volatility. We apply the far-field technique to truncate the solution region
to ensure the solution region is a finite field. After that, we can adopt some existing numerical methods,
such as primal-dual active-set (PDAS) method [1–3] and perfectly matched layer method [4, 5] after
finite element method (FEM). Furthermore, we can also solve this BS equation by difference technique
directly in both temporal and spatial direction, such as projected successive overrelaxation method [6].

For the IP, accurate and efficient estimation of the implied volatility is a current topic of great
practical significance in finance. There are two major challenges of our problem: a). to estimate the
implied volatility accurately and efficiently; b). to design the efficient algorithm in order to speed
up the computation on the premise of ensuring a certain degree of calculation accuracy. As for the
first issue, the estimation of the implied volatility is closely related to the forward model obtained by
numerical approximation, the number of observations, and the errors introduced by the observations.
Hence, it is very important to find an efficient approach to evaluate the uncertainty of the implied
volatility in IP. Bayesian inference is a popular statistical method for IP that can not only obtain the
corresponding estimation of the parameters to be solved, but also elaborate on the uncertainty of the
parameters in the IP [7–10]. And this approach is a natural method by adding additional information,
such as prior distribution of the parameter to supplement the observation model, in which the param-
eter is regarded as a random variable to highlight the characteristic of its uncertainty. Then we can
obtain the posterior distribution via the Bayesian formula, from which much information about the
parameters, such as the mean, variance, and distribution, can be obtained. Thus, for the BIP, solving
the parameter is equivalent to solving its posterior distribution. The simplest and fastest method for
BIP is the explicit calculus method, such as the conjugate prior method [11, 12]. When the poste-
rior distribution can not be characterized in the closed form because of the complexity of the forward
model, various numerical approaches can be adopted, e.g., acceptance-rejection method [13], impor-
tance sampling method [14], and Markov Chain Monte Carlo (MCMC) method [15]. In particular,
Metropolis-Hastings (MH) method in MCMC is applied in this paper. The goal of MCMC method
is to generate samples from the posterior distribution of unknown parameters, where the posterior
distribution is represented by the product of the prior distribution and the likelihood function. Never-
theless, the likelihood sampling can be time consuming while the forward problem is computationally
expensive, when dealing with non-linear or high-dimensional models. Therefore, we would like to
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reduce the time cost in the sampling process of forward model, which can be called online time. In
many recent works, replacing the original forward model with a cheap surrogate model of offline con-
structed is a popular approach [16, 17]. Meanwhile, it can be theoretically proved that the surrogate
model converges to the true forward one in the prior-weighted L2 norm, and the approximated posterior
distribution converges to the true posterior distribution at least two times faster [18].

As regards the second difficulty, the high-dimensional parameter space and the computationally
expensive model pose a great challenge for the MCMC method and other sampling approaches to be
adopted. To address the curse of dimensionality in the approximation of the solutions of different
equations, neural network (NN) has received much attention in the past decades [19, 20]. Therefore,
we consider to choose the NN surrogate technique. Yet, a prior-based NN model may not be accurate
for the online computation as the posterior distribution tends to focus on a small portion of what
the prior support, and the developed posterior-based surrogate methods in some important regions
of the posterior distribution. In order to improve the computational cost of estimating the posterior
distribution, we develop an adaptive NN surrogate method (ANNSM) [21], of which the idea is that
the sampling process begins with a low-precision and cheap computation surrogate model to speed up
the online computation by MCMC method. In this approach, we correct the low-precision surrogate
model adaptively via the true forward model, then can obtain a new high-precision surrogate one which
is regarded as the low-precision one in a new iteration. The iterations will be performed repeatedly till
the maximum number of iterations is reached. In our paper, the surrogate model is generated by NN.

The rest of this paper is organized as follows. In section 2, we give the detailed solution process
about time-dependent American put option by PDAS method after variable substitutions and discretiza-
tion in temporal and spatial direction, respectively. In section 3, interpolation is carried out using the
obtained option prices on the fixed observation points in the fixed regions. Then ANNSM are pro-
posed to solve the implied volatility parameters. The numerical experiment results using ANNSM
against DMHSM for one- and multi-dimensional implied volatility are presented in section 4. And the
computational superiority of ANNSM is verified. In section 5, the concluding remarks are given.

2. Setup of the forward problem

In this section, we first introduce the linear complementary problem (LCP) for American put op-
tion, where the volatility is a time-dependent function. With a conventional variable substitution, the
backward pricing problem with variable coefficient is transformed into a forward one. Secondly, by ap-
plying the backward Euler method in the temporal direction, the forward problem can be decomposed
into some American put option pricing problems each of which has constant volatility. Thirdly, we
use another numeraire transformation to obtain a series of bounded LCPs after the far-field truncation
technique. Based on finite element method (FEM) in spatial direction, the associated discrete form is
presented. At the end of this section, the PDAS method is adopted to solve the option price.

2.1. Bounded linear complementary problem

In order to simplify the following problems, we introduce some notations first. Let r and S be the
interest rate and the price of the underlying asset, respectively. The arbitrary time and the volatility
function is denoted by t and σ(t), respectively. T and K stand for the maturity date and the strike price,
respectively. We assume that the underlying asset pays no dividends in this paper. Then, the LCP of
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time-dependent American put option price V = V(S , t;σ) can be described as follows:{
LV(S , t;σ)

(
V(S , t;σ) − f (S )

)
= 0, (S , t) ∈ [0,+∞) × [0,T ),σ ∈ Θ,

LV(S , t;σ) ≤ 0, V(S , t;σ) ≥ f (S ), (S , t) ∈ [0,+∞) × [0,T ),σ ∈ Θ,
(2.1)

with the final condition V(S ,T ) = f (S ), and the boundary conditions V(0, t;σ) = f (0) and
lim

S→+∞

(
V(S , t;σ) − f (S )

)
= 0, where the payoff function f (S ) = (K − S )+, and the operator

LV(S , t;σ) =
∂V
∂t
+

1
2
σ2(t)S 2∂

2V
∂S 2 + rS

∂V
∂S
− rV . It needs to note that σ = (σ1, . . . , σd)T is the

parameter vector belonging to the parameter space Θ ⊂ Rd. The volatility function is expressed as a
linear combination of the following d parameters and the basis functions

σ(t) =
d∑

i=1

σiai(t). (2.2)

The original problem (2.1) is a backward partial difference equation (PDE). We apply a traditional
variable transformation

τ = T − t, P(S , τ; σ̃) = V(S , t;σ), σ̃(τ) = σ(t), (2.3)

then the backward problem becomes a forward issue L̃P(S , τ; σ̃)
(
P(S , τ; σ̃) − f (S )

)
= 0, (S , τ) ∈ [0,+∞) × (0,T ], σ̃ ∈ Θ,

L̃P(S , τ; σ̃) ≥ 0, P(S , τ; σ̃) ≥ f (S ), (S , τ) ∈ [0,+∞) × (0,T ], σ̃ ∈ Θ,
(2.4)

where the simplified operator L̃P(S , τ; σ̃) =
∂P
∂τ
−

1
2
σ̃2(τ)S 2∂

2P
∂S 2 −rS

∂P
∂S
+rP. Here, σ̃ = (σ̃1, . . . , σ̃d)T

and σ̃(τ) =
d∑

i=1
σ̃iãi(τ). The initial and the corresponding boundary conditions in problem (2.4) are

given as P(S , 0) = f (S ), P(0, τ; σ̃) = f (0) and lim
S→+∞

(
P(S , τ; σ̃) − f (S )

)
= 0. Since the coefficient of

forward LCP (2.4) varies with time t, we would like to discretize the volatility in the temporal direction
as soon as possible, so as to decompose this problem into several American put option pricing problems
with constant volatility before applying the existing methods of solving the American option pricing
problems. Furthermore, we need to emphasize that the options are traded more frequently near the
maturity date T . Therefore, we ought to adopt a geometric grid partition in the temporal direction

Γ : 0 = τM+1 < τM < · · · < τ2 < τ1 = T,

τm =

(M + 1 − m
M

)2
T, m = 1, . . . ,M + 1.

(2.5)

For m = 1, . . . ,M, the local step size of each temporal element Γm := (τm, τm+1) is denoted by △τm =

τm+1 − τm. By the temporal discretization, the problem (2.4) becomes M LCPs of American put option
pricing problems with fixed volatility. Let Pm(S ; σ̃) := P(S , τm; σ̃), m = 1, . . . ,M stand for the price
of forward LCP with τm, then by using the backward Euler method (BEM) in the temporal direction,
the problems are simplified as follows: L̂Pm(S ; σ̃)

(
Pm(S ; σ̃) − f (S )

)
= 0, S ∈ (0,+∞), σ̃ ∈ Θ,

L̂Pm(S ; σ̃) ≥ 0, Pm(S ; σ̃) ≥ f (S ), S ∈ (0,+∞), σ̃ ∈ Θ,
(2.6)

Electronic Research Archive Volume 30, Issue 6, 2335–2355.



2339

where the corresponding operator L̂Pm(S ; σ̃) = (1− r△τm)Pm+
1
2
△τmσ̃

2
mS 2∂

2Pm

∂S 2 + r△τmS
∂Pm

∂S
−Pm+1.

PM+1(S ) = f (S ), lim
S→+∞

(
Pm(S ; σ̃) − f (S )

)
= 0, and Pm(0) = f (0) represent the initial and boundary

conditions, respectively. So far, we have transformed the original forward problem (2.1) into the pricing
problems of the basic American put option.

By using another numeraire transformation

vm(x; σ̃) =
eαm x

K
Pm(S ; σ̃), x = ln

(S
K

)
, αm =

2r − σ̃2
m

2σ̃2
m
, (2.7)

the coefficients of the first order derivative terms in problem (2.6) equal 0. In addition, for m =
1, . . . ,M, these problems turn into the following formulations

(
am(x)vm+1 + bmvm + cm∂

2vm

∂x2

)(
vm − hm) = 0, x ∈ (−∞,+∞)

am(x)vm+1 + bmvm + cm∂
2vm

∂x2 ≥ 0, vm ≥ hm, x ∈ (−∞,+∞)
(2.8)

with the conditions vM+1(x) = hM+1(x), lim
x→±∞

(
vm(x; σ̃) − hm(x)

)
= 0, where the transformed payoff

function hm(x) = eαm x(1 − ex)+. Furthermore, the coefficients am(x) := −e(αm−αm+1)x, bm := 1 − r△τm(1 +

αm) +
1
2
△τmσ̃

2
mαm(1 + αm), and cm =

1
2
△τmσ̃

2
m.

We use the far-field truncation technique to deal with these unbounded problems (2.8), so as to
obtain bounded problems under the premise of ensuring the accuracy [22].

Let L represent the truncated length sufficiently large to guarantee the accuracy. Thus the bounded
LCPs are as follows:

(BLCPs)


(
am(x)vm+1 + bmvm + cm∂

2vm

∂x2

)
(vm − hm) = 0, x ∈ [−L, L]

am(x)vm+1 + bmvm + cm∂
2vm

∂x2 ≥ 0, vm ≥ hm, x ∈ [−L, L]
(2.9)

with the conditions vM+1(x) = hM+1(x) and vm(±L; σ̃) = hm(±L). Therefore, we have converted the
original LCP (2.1) on a unbounded domain into M BLCPs on a bounded domain, on which we can
adopt known numerical algorithms to solve the option prices.

2.2. Design of numerical algorithms

Before applying FEM, we first convert the BLCPs (2.9) into the variational inequalities through a
lemma. Let I := [−L, L]. And for m = 1, . . . ,M, we define the space H1

m(I) = {um ∈ H1(I) : um(x) ≥
hm(x), um(±L) = hm(±L)}, then

Lemma 1. (cf. [23]) If vm ∈ H1(I), then vm are the solutions of the BLCPs (2.9) if and only if vm are
the solutions of the following variational inequalities

(VIs)
Find vm ∈ H1

m(I), s.t. vM+1(x) = hM+1(x) and
(am(x)vm+1 + bmvm, um − vm) − (cmvm

x , u
m
x − vm

x ) ≥ 0, ∀ um ∈ H1
m(I).

(2.10)
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For the above problem (2.10), we apply a uniform grid partition in the spatial direction

Λ : −L = x1 < x2 < · · · < xN < xN+1 = L,

xn =

(
n − 1 −

N
2

)
h, n = 1, . . . ,N + 1. h =

2L
N
.

(2.11)

Here, Λn := (xn−1, xn) represent the spatial elements. We use piecewise linear finite element to formu-
late the discretization scheme of the problems (2.10). For any m = 1, . . . ,M, we define the function set
as S 1

m(I) := {vm ∈ H1
m(I) | vm(xn; σ̃) ≥ hm(xn), vm(x; σ̃) |In∈ P1, n = 2, . . . ,N}, where P1 denotes the

set of polynomials of degree less than or equal to 1. Therefore, the discretized approximation of the
VIs (2.10) can be formulated as follows

For m = 1, . . . ,M, f ind vm
h ∈ S 1

m(I), s.t. vM+1
h (x) = hM+1

I (x) and
(am(x)vm+1

h + bmvm
h , u

m
h − vm

h ) − cmd(vm
h , u

m
h − vm

h ) ≥ 0,∀um
h ∈ S 1

m(I),
(2.12)

where vm
h and um

h stand for the numerical solution and test function of mth layer, respectively. hM+1
I (x)

represents the piecewise linear interpolation of hM+1(x) in S 1
M+1(I), and the bilinear function d(u, v) :=

(ux, ux − vx). We denote the set of basis functions of S 1
m(I) by {φ1, . . . , φN+1}, where

φ1(x) =


x2 − x

h
, x ∈ [x1, x2),

0, else,

φl(x) =


x − xl−1

h
, x ∈ [xl−1, xl),

xl+1 − x
h
, x ∈ [xl, xl+1), l = 2, . . . ,N,

0, else,

φN+1(x) =

 0, else,
x − xN+1

h
, x ∈ [xN−1, xN).

Therefore, we obtain the finite element form of solutions and the test functions below

vm
h (x) =

N∑
l=2

vm
l φl(x) + hm(−L)φ1(x) + hm(L)φN+1(x),

um
h (x) =

N∑
l=2

um
l φl(x) + hm(−L)φ1(x) + hm(L)φN+1(x).

(2.13)

Our goal is to find the coefficients vm
l , l = 2, . . . ,N, m = 2, . . . ,M, so that to obtain the option price.

For convenience, we abbreviate vm
h (x) as vm and um

h (x) as um. By substituting the above equations (2.13)
into the problem (2.12), it can be reformulated as

(Um − Vm)T ((bm A − cmB)Vm + ÃmVm+1 + Fm) ≥ 0, ∀ Um ≥ Hm. (2.14)

Here, the matrix A =
(
(φk, φ j)

)
, B =

(
(φ
′

k, φ
′

j)
)
, and Ãm =

(
(am(x)φk, φ j)

)
, k, j = 2, · · · ,N are (N − 1) ×

(N − 1) tridiagonal matrices. Other unknown quantities in the above problem (2.14) are shown below

Um = (um
2 , . . . , u

m
N)T ,

Vm = (vm
2 , . . . , v

m
N)T ,

Hm =
(
hm(x2), . . . , hm(xN)

)T
,

Fm =
(
hm(−L)

(
am(x)(φ1, φ2) + bm(φ1, φ2) − cm(φ

′

1, φ
′

2)
)
, 0,

. . . , 0, hm(L)
(
am(x)(φN+1, φN) + bm(φN+1, φN) − cm(φ

′

N+1, φ
′

N)
))T
.
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To simplify the problem (2.14), let Dm := bm A − cmB and Wm := −ÃmVm+1 − Fm. Then the final
matrix-vector form to be solved is

(Um − Vm)T (DmVm −Wm) ≥ 0, ∀ Um ≥ Hm, m = 1, 2, · · · ,M. (2.15)

When
h2

△τ
is small enough, the matrix Dm is a positive definite matrix. Therefore, we can solve the

forward problem (2.15) via the PDAS method. The complete algorithm of solving this problem using
PDAS method is as follows:

Algorithm 1 The whole algorithm of solving the option prices via PDAS method.

1: Initial parameters setting: M, N, r, T, K, L, ε = 10−6, δ = 106, λ = 0N−1,1.
2: Partition: n := 1 : N + 1, m := 1 : M + 1, h = 2L

N ,
3: x :=

(
n− 1 − N

2

)
h, τ :=

(M+1−m
M

)2T , △τ = τ(2 : M + 1) − τ(1 : M),
4: S := K exp(x), t := T − τ, σ = σ(t) = σ̃(τ).
5: Calculate: α = (2r − σ2)./(2σ2), a = − exp

(
α(1 : M) − α(2 : M + 1)

)
x,

6: b = 1 − r△τ.(1 + α) + 1
2△τ.σ

2.(α + α2), c = △τ.σ2/2.
7: Given the quantity to be evaluated and the conditions:
8: Vh, v, H ∈ RM+1,N+1,
9: H(m, :) = exp(α(m)x).max

(
1 − exp(x), 0

)
, m = 1, . . . ,M + 1,

10: v(M + 1, :) = H(M + 1, :), v(:, 1) = H(:, 1), v(:,N + 1) = H(:,N + 1).
11: Calculate the matrices: A, B.
12: for m = M : −1 : 1, do
13: Calculate Dm,Ãm, Fm, Wm.
14: Solve v(m, 2 : N) by PDAS method:
15: vm

pre := 0N−1,1, vm
cur := max

(
v(m + 1, 2 : N)T ,H(m, 2 : N)T ).

16: while ∥vm
cur − vm

pre∥∞ > ε, do
17: vm

pre = vm
cur.

18: IS = {k ∈ S : λ(k) + δ
(
H(m, k) − Vm

pre(k)
)
≤ 0},

19: AS = {k ∈ S : λ(k) + δ
(
H(m, k) − Vm

pre(k)
)
> 0},

20: S = {1, . . . ,N}.
21: vm

cur(AS) = H(m, AS)T ,
22: λ(AS) = 0,
23: Dmvm

cur − λ =Wm.
24: end while
25: v(m, 2 : N) =

(
vm

cur
)T , V = K exp

(
− α(m)x

)
.v(m, :).

26: end for
27: Vh(M + 1, :) = K exp

(
α(M + 1)x

)
.v(M + 1, :).

28: Vh = Vh(M + 1 : −1 : 1, :).

So far, we have obtained the time-dependent American put option price by PDAS approach. For
the sake of simplicity in later sections, our discretized forward problem can be condensed into a math-
ematic model

Vh = G
(
σ
)
, (2.16)
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where σ = (σ1, . . . , σd)T is the parameter vector, and G : Rd → RM+1,N+1 is the discretized operator by
FEM and BEM, mapping from the parameters σ1, . . . , σd ∈ R to the observable.

3. Bayesian inverse problem

In the previous section, we obtain the option price by some techniques. Now, we consider its
inverse problem, that is, finding the implied volatility by Bayesian inference. We first give a brief
introduction to the BIP. And we give the specific process of DMHSM to solve our IPs. Since DMHSM
cause tremendous amount of computation when tackling with non-linear forward model and multi-
dimensional volatility function, we develop ANNSM.

3.1. Framework of Bayesian inverse problems

With regards to the model discussed in the previous section, we now proceed to study its IP, that is,
to solve the implied volatility via Bayesian inference. To apply the Bayesian technique, the numerical
option price would be preprocessed. We only choose the bounded rectangular region near the optimal
exercise boundary, so that most of the important information of the option is covered. After that, we
discretize this region to get some fixed observation points. Through the linear interpolation, we obtain
the option price at these fixed observation points. Meanwhile, the measurement noises come from the
observations. Hence, the problem can be reformulated as follows

yd = g(σ) + δ, (3.1)

where observation data is denoted by yd ∈ R
D with sampling noise δ ∈ RD. Here, g : Rd → RD is the

discretized observation operator. The aim of the IP is to estimate the unknown parameters σ1, . . . , σd,
i.e., the parameter vector σ from noisy observations yd. In order to adapt our problem to the framework
of the BIP, we combine the model (2.16) with the observation model (3.1) to redefine a forward model
below

d = F(σ), (3.2)

where F is the forward problem operator defined by the parameter vector σ. The parameter vector σ
should be characterized by a prior distribution π(σ) when using the Bayesian technique. Correspond-
ingly, the posterior distribution π(σ; yd), that is, the distribution of the parameter σ conditioned on the
data yd, follows from the Bayes’ rule:

π(σ; yd) ∝ L(σ; yd, F)π(σ). (3.3)

Here, L(σ; yd, F) stands for the likelihood function. Assume the density function of the noises δ ∼ πδ
is given, and usually supposed to be Gaussian. Then, the specific form of L(σ; yd, F) can be shown as

L(σ; yd, F) = πδ
(
yd − F(σ)

)
.

In Bayesian inference, the posterior distribution L(σ; yd, F) is the Bayesian solution of the inverse
problem.
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3.2. Bayesian inverse problem based on Metropolis-Hastings sampling

Since our forward problem is non-linear, the posterior distribution is very difficult to be character-
ized in the closed form. Therefore, we usually use numerical sampling methods, e.g., acceptance-
rejection sampling [13], importance sampling [14], and MCMC sampling [15]. The acceptance-
rejection sampling and importance sampling is usually suitable for one- or two-dimension simple prob-
lems. The former method is the basis of MCMC. Hence, we shall use a special kind of MCMC method:
MH sampling method. MH approach is a sampling scheme for getting access to a sequence of random
samples from the distribution, where direct sampling is hard. The obtained sequence can be used to
approximate the posterior distribution π(σ; yd), and then to calculate such things as the expectation of
parameter vector σ, and so on. MH method generates a random walk using a proposal density q and
an acceptance-rejection method for some proposed moves. The details of MH sampling is given by the
following pseudo-code.

Algorithm 2 MH sampling algorithm.
Input: The forward problem operator F, a proposal density q(· ;σ),
Input: The number of sampling n1, and a starting point σ0;
Output:

{
σ1, . . . ,σn1

}
.

1: for j = 0 : 1 : n1 − 1, do
2: Select candidate point σ∗ from the proposal density q(· ;σ j),
3: Draw u from uniform distributionU[0, 1],
4: Evaluate the acceptance probability via the forward problem operator F

5: α(σ j,σ
∗) = min

{
π(σ∗; yd)q(σ j;σ∗)
π(σ j; yd)q(σ∗;σ j)

, 1
}

,

6: if u < α(σ j,σ
∗) then

7: Accept σ∗ by setting σ j+1 = σ
∗,

8: else
9: Reject σ∗ by setting σ j+1 = σ j.

10: end if
11: end for

We resort to the DMHSM to sample enough points. In general, choosing samples of at least the same
order of magnitude as 104 will achieve enough accurate. Then we obtain the approximate posterior
distribution π(σ; yd), so as to solve the BIP directly.

3.3. Bayesian inverse problem based on surrogated method

As the forward problem operator F is a non-linear and can be a high-dimensional one, it is time
consuming to calculate the posterior distribution π(σ; yd) via DMHSM. Therefore, surrogate models
have received much attention in recent works [24,25]. This method allows us to generate a few collec-
tion of model samplings, which includes the parameter vector σ and the forward model F(σ). Then,
we can construct a surrogate forward model F̃ by samplings. Based on this surrogate operator F̃, we
can obtain a surrogate posterior distribution

π̃(σ; yd) ∝ L(σ; yd, F̃)π(σ). (3.4)
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It is advantageous that the surrogate operator F̃ is cheap to be evaluated. Therefore, we can use the
same samplings with less time and similar precision. To this end, methods such as polynomial chaos
expansions is available [26].

We should point out that this surrogate is constructed on the prior distribution, not on the posterior
distribution. However, our goal is to satisfy high precision in the posterior density field. Another thing
worth mentioning is that to obtain a high accuracy posterior density estimate, we need enough sam-
plings and huge amount of computation. The accuracy of the whole samplings of the surrogate model
on the prior distribution can not be guaranteed. Therefore, we come up with an adaptive surrogate
model, transitioning from a high precision prior distribution with sampling data to a high accuracy
posterior distribution. For this surrogate approach, we reconstruct the surrogate model after some
sampling points in several loops, and the details of this adaptive surrogate approach is given by the
following algorithm 3.

In practice, it is possible to encounter high-dimensional parametric space and cases, where the
forward model F is high-dimensional and nonlinear, and thus much computation is needed. Therefore,
the number of samplings used to build the surrogate model will increase dramatically. In order to
handle this curse of dimensionality problem, we introduce NN, which is a popular technique in many
fields. Basically, NN can be described as an input-output map H : RD → Rd, which has input or
training data σ, the output d, and M̃ hidden layers. We give a general formulation of NN as follows:

A(l+1) := σ
(
W(l)A(l) + b(l)), l = 0, . . . , M̃ − 1,

d := NN(σ) =W(M̃) A(M̃) + b(M̃),
(3.5)

where σ(·) represents the activate function, W(l) ∈ R and b(l) are the weight matrix and the biases
vector of the lth layer in NN, respectively. θ := {W, b} are jointly called the unknown parameters of
NN. There are some choices of activate function, e.g., rectified linear unit (ReLU), sigmoid, hyperbolic
tangent (tanh). While the architecture of NN is given, we can resort to some optimization techniques
to determine the unknown parameters θ := {W, b} by virtue of the training data. Furthermore, we can
define the loss function as follows:

J(θ;σ, d) =
1

Ñ

Ñ∑
n=1

∥dn − NN(σn; θ)∥2 + λ∥θ∥2, (3.6)

where Ñ, λ, and ∥θ∥2 denote the sampling number, the regularization constant, and the regularization
function, respectively. Then the minimization problem can be described as

arg min
θ

J(θ;σ, d). (3.7)

There are various optimal algorithms for NN, for instance, gradient descent (GD) [27], stochastic
gradient descent (SGD) [28], Adam [29], and so on.

In this paper, our goal to use NN is twofold: the first one is to establish an initial surrogate forward
model, and the second one is to establish an non-linear network for generating high precision surrogate
model on the posterior distribution. As for the first issue, we would like to generate a NN, of which the
inputs are some parameter samplings {σi}, and the output is a low-precision surrogate forward model
F̃1 on the prior distribution. As regard the other one, we want to generate a NN so that the inputs
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Algorithm 3 Adaptive surrogate model with MH sampling algorithm.
Input: The number of iterations I and the sampling number of each iteration s,
Input: The sampling number of updating surrogate model Q,
Input: The error threshold ϵ, the radius of updating R, and a proposal density q,
Input: A starting sampling point σ0 and the empty sampling set S;
Output: The whole collection S after adaptive surrogate sampling.

1: Initial setting: the forward problem operator F as the high precision model,
2: and an approximation operator F̃ as the initial surrogate model.
3: for k = 1, . . . , I do
4: Extract s − 1 samples {σ1, . . . ,σs−1} from the approximate posterior density
5: via F̃ using the Algorithm 2.
6: Select candidate point σ∗ ∼ q(· ;σs−1), and evaluate the acceptance
7: probability by the high precision model F:

8: α(σs−1,σ
∗) = min

{
π(σ∗; yd)q(σs−1;σ∗)
π(σs−1; yd)q(σ∗;σs−1)

, 1
}

,

9: if Uniform [0, 1] < α(σs−1,σ
∗) then, accept σ∗ and set σ̃ = σ∗,

10: else reject σ∗ and set σ̃ = σs−1.
11: end if
12: Calculate the error of high-accuracy model and surrogate model at σ̃:
13: e(σ̃) = ∥F(σ̃) − F̃(σ̃)∥∞,
14: if e(σ̃) > ϵ then, draw Q random points {σ̂i} in a ball O(σ̃,R),
15: Reconstruct a surrogate model F̂ by using the parameter vectors σ and
16: the high-accuracy operator F(σ),
17: Let F̃ = F̂ to generate a new surrogate model;
18: end if
19: Evaluate the acceptance probability by the surrogate model F̃:

20: α1(σs−1,σ
∗) = min

{
π̃(σ∗; yd)q(σs−1;σ∗)
π̃(σs−1; yd)q(σ∗;σs−1)

, 1
}

,

21: if Uniform [0, 1] < α1(σs−1,σ
∗) then, accept σ∗ and set σs = σ

∗,
22: else reject σ∗ and set σs = σs−1.
23: end if
24: Let σ0 = σs, and S = S

⋃
{σ1, . . . ,σs}.

25: end for
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are the low-precision model F̃1 and some parameter samplings {σi}, and the corresponding output is a
high-precision surrogate forward model on the posterior distribution. In this way, we give the concrete
form of the ANNSM to improve the accuracy of the surrogate model based on the prior distribution to
on the posterior distribution, and to obtain the high precision posterior density, so as to solve the BIP.
This approach greatly eliminates the computational burden of MH algorithm when solving non-linear
and high-dimensional BIP, or even IPs, so that we can overcome the obstacles that large scale problems
cannot be calculated due to direct MH sampling.

4. Numerical simulations

In this section, we shall exhibit some simulations about the DMHSM and the ANNSM. For solving
the implied volatility of option to illustrate the excellent performance of our proposed algorithm.

To setup the forward problem, we choose r = 0.03, T = 1, K = 1, and let the truncated length after
the transformations L = 1.6, so that the truncated region is large enough. The spatial and temporal
partitions for the discretized problem are M = 150 and N = 100, respectively. What we need to
emphasize is that although the observation field is not the entire discretized region, it contains important
information, such as the region containing the points near the optimal exercise boundary. We only
observe data by a few fixed points in the field. We assume that the field is divided isometrically in
the transformed coordinate scale, and the number of subintervals in the partitions in the spatial and
temporal directions are both selected as 15, then the total number of observation points is 256. In
addition, the observation field and observation points are completely fixed regardless of the change of
the forward problem. However, as the form of volatility changes, the solutions of the forward problem
also change accordingly, so we need to carry out linear interpolation using the result of the forward
problem to get the solution value at the fixed observation point.

We solve the BIP by using DMHSM and ANNSM, both of which use 50, 000 sample points. We
first set the prior distribution π(σ) ∼ Nd(−2 × 1d, 0.5 × Id) or Nd(−2 × 1d, 0.1 × Id) when different
cases, and the proposal density q(· ;σ) ∼ Nd(σ, 0.0252 × Id) or Nd(σ, 0.0052 × Id), respectively. In
addition, the sampling noise δ obeys ND(0D, 0.012 × ID). Meanwhile, we initialize the architecture of
two structures of NN, one is the low-precision surrogate model, and the other is the high precision
surrogate model. For the surrogate model with low precision, we choose the NN is structured with 4
hidden layers, each of which has 40 neurons, and the corresponding activation function is ReLU. For
the high precision surrogate model, the NN is structured with 1 hidden layer, which has 150 neurons,
and the activation function is tanh. Adam is selected as the optimization algorithm for training these
two NNs.

Let the number of iterations I = 500, the sampling number of each iteration s = 100, and the
sampling number of updating model Q = 10. The error threshold value and the radius of updating
are set to be ϵ = 10−3 and R = 0.1, respectively. In order to ensure the stability assumption and
independence assumption between samples in the MH sampling method in all experiments, we take
one sample point out of dozens to hundreds points in the last fifty percent of the complete sampling
set. For each simulation, we first obtain the complete sets of two sampling methods, then draw the
atuocorrelation function (ACF) images about DMHSM, so as to determine how many sample intervals
can ensure the independence between samples, and then calculate the posterior means as the point
estimates. We are going to examine the volatility of forward problem with d = 1, 4. The simulations
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are all preformed by MATLAB R2020b on a computer with Intel Core i7 CPU of 3.2 GHz.

4.1. Simulations for d=1

For the formulation of one-dimensional volatility are specifically given as

σ(t) = σa(t). (4.1)

Here, for testing, the basis function in the (4.1) are selected as a(t) = 1, t + 1, and 0.5et. Furthermore,
the parameter σ of the volatility in the forward problem are given as 0.15, 0.25, and 0.4, respectively.
Firstly, we can get the sets of sample points for DMHSM and ANNSM, and draw the corresponding
posterior density distributions in Figures 1–3.
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Figure 1. The posterior density distributions for two sampling methods with a(t) ≡ 1. σ =
0.15 (left), σ = 0.25 (middle), σ = 0.4, (right).
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Figure 2. The posterior density distributions for two sampling methods with a(t) = t + 1.
σ = 0.15 (left), σ = 0.25 (middle), σ = 0.4, (right).
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Figure 3. The posterior density distributions for two sampling methods with a(t) = 0.5et.
σ = 0.15 (left), σ = 0.25 (middle), σ = 0.4, (right).

As can be seen from Figures 1–3, the most important evaluation index under the Bayesian frame-
work, the posterior distributions obtained by ANNSM basically coincide with that obtained by
DMHSM.
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Then, we can plot the ACF figures about the samplings of DMHSM for three different basis func-
tions and parameters of the volatility in Figures 4–6.
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Figure 4. The ACFs for DMHSM with a(t) ≡ 1. σ = 0.15 (left), σ = 0.25 (middle), σ = 0.4,
(right).
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Figure 5. The ACFs for DMHSM with a(t) = t + 1. σ = 0.15 (left), σ = 0.25 (middle),
σ = 0.4, (right).
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Figure 6. The ACFs for DMHSM with a(t) = 0.5et. σ = 0.15 (left), σ = 0.25 (middle),
σ = 0.4, (right).

From Figures 4–6, the sample intervals for point estimations under different cases can be determined
successively. For the case a(t) ≡ 1, the interval is given as 20. For the second case of a(t), we give
the interval as 25 when σ = 0.15, 0.25, and 40 when σ = 0.4. For the case a(t) = 0.5et, the interval is
determined as 15, 20, and 30 when σ = 0.15, 0.25, and 0.4, respectively.

Accordingly, the corresponding posterior mean estimates by adopting the DMHSM and ANNSM
can be obtained in Tables 1–3. Meanwhile, we record the computational times of 9 different cases.

In Tables 1–3, computational time is consist of offline part and online part. Offline time is the CPU
time on constructing NN and initialing the low-precision NN. Meanwhile, the online time is time cost
on sampling. From these tables, we can compare the infinite modulus error estimates between the
point estimations of two methods are both at least on the order of 10−4. Moreover, we suppose the
given volatility parameter σ is the true estimation of BIP, then the relative error is controlled within
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Table 1. The simulation results about σ = 0.15.
DMHSM ANNSM

time(s) mean std(10−2) time(s) mean std(10−2)
a(t) = 1 0+2274.5513 0.1498 0.5269 6.4278 + 81.6427 0.1504 0.5290
a(t) = t + 1 0+2757.8252 0.1498 0.2566 6.6501 + 79.9537 0.1497 0.2594
a(t) = 0.5et 0+2192.2261 0.1494 0.5482 6.6115 + 82.4704 0.1497 0.5527

Table 2. The simulation results about σ = 0.25.
DMHSM ANNSM

time(s) mean std(10−2) time(s) mean std(10−2)
a(t) = 1 0+2302.7515 0.2496 0.2484 6.6830 + 85.6897 0.2493 0.2522
a(t) = t + 1 0+2703.3304 0.2496 0.1855 6.8906 + 84.9542 0.2502 0.1799
a(t) = 0.5et 0+2207.4071 0.2497 0.4168 6.4266 + 88.7849 0.2496 0.4053

Table 3. The simulation results about σ = 0.4.
DMHSM ANNSM

time(s) mean std(10−2) time(s) mean std(10−2)
a(t) = 1 0+2530.4697 0.4001 0.5509 6.5745 + 87.3927 0.3999 0.5606
a(t) = t + 1 0+2852.7398 0.4002 0.1580 6.4610 + 83.3859 0.3999 0.1580
a(t) = 0.5et 0+2351.6545 0.3998 0.3162 6.7749 + 89.6623 0.3998 0.3126

0.5%, and the estimates of two sampling methods agree well. Moreover, we can conclude that the
calculation speed of the ANNSM is 2 order of magnitude faster than that of DMHSM while ensuring
the calculation accuracy.

In conculsion, the superiority of ANNSM is verified.

4.2. Simulations for d=4

Similar to the previous subsection, we now consider the multi-parameters case, i.e., the parameter
is a vector. The specific expression of four-dimensional volatility is given as

σ(t) =
4∑

i=1

σiai(t). (4.2)

Here, we choose two cases of the basis functions in the (4.2) for simulations:

Case 1 : a1(t) ≡ 1, a2(t) = t, a3(t) = t2, a4(t) = et,

Case 2 : a1(t) ≡ 1, a2(t) = t, a3(t) = 3−t, a4(t) = et.

In addition, the parameter vector σ = (σ1, σ2, σ3, σ4) of the volatility in the forward problem are
chosen as

Parameter choice 1 : σ = (0.15, 0.15, 0.15, 0.15),
Parameter choice 2 : σ = (0.10, 0.12, 0.12, 0.10).
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At first, the sets of sample points for two sampling methods can be obtained, and we can draw the
corresponding posterior density distributions in Figures 7 and 8.

From Figures 7 and 8, we can conclude that although the results for each component in mutli
dimensions are not as good as those in one dimension, the posterior distributions obtained by ANNSM
are in general agreement with those obtained by DMHSM to a large extent. We shall compare the
posterior mean estimates of two methods further.

We draw the ACF figures about the samplings of DMHSM for two different basis functions and
parameter vector choices of the volatility in Figures 9–12.
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Figure 9. The ACFs for DMHSM with σ = (0.15, 0.15, 0.15, 0.15) and Case 1. The first
component (top left), the second component (top right), the third component (bottom left),
and the last component (bottom right).
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Figure 10. The ACFs for DMHSM with σ = (0.15, 0.15, 0.15, 0.15) and Case 2. The first
component (top left), the second component (top right), the third component (bottom left),
and the last component (bottom right).
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Figure 11. The ACFs for DMHSM with σ = (0.10, 0.12, 0.12, 0.10) and Case 1. The first
component (top left), the second component (top right), the third component (bottom left),
and the last component (bottom right).

According to Figures 9–12, the sample intervals for point estimations under different cases can be
determined roughly. For the case 1, the intervals are given as (500,660,280,680) when taking the first
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Figure 12. The ACFs for DMHSM with σ = (0.10, 0.12, 0.12, 0.10) and Case 2. The first
component (top left), the second component (top right), the third component (bottom left),
and the last component (bottom right).

choice of parameter vector, and (240,180,220,200) when choosing the second choice. For the second
case, we give the interval as (150,175,120,120), and (130,150,150,130), respectively. Therefore, we
can calculate the results of implied volatility in BIP via DMHSM and ANNSM. The computational
times and point estimates are presented below.

Table 4. The simulation results about σ = (0.15, 0.15, 0.15, 0.15).

DMHSM ANNSM

time(s) mean std(10−2) time(s) mean std(10−2)

Case 1 0 (0.1453,0.1474 (1.4381,1.2240 7.1874 (0.1452,0.1418, (1.2847,1.5626,
+2607.0712 0.1423,0.1562) 1.2235,0.7756) +166.2326 0.1430,0.1569) 1.2818,0.7722)

Case 2 0 (0.1472,0.1420, (1.2118,1.4148, 7.2411 (0.1477,0.1405, (1.2199,1.3419,
+2699.2626 0.1426,0.1554) 1.2854,0.7176) +178.2390 0.1430,0.1567) 1.1697,0.7407)

Table 5. The simulation results about σ = (0.10, 0.12, 0.12, 0.10).

DMHSM ANNSM

time(s) mean std(10−2) time(s) mean std(10−2)

Case 1 0 (0.1063,0.1170, (0.8309,1.0124, 7.7575 (0.1058,0.1186, (0.7529,1.0916,
+2509.2691 0.1228,0.0958) 1.0071,0.5405) +151.1831 0.1210,0.0958) 1.1852,0.5178)

Case 2 0 (0.1057,0.1193, (0.8054,1.0050, 7.0501 (0.1059,0.1203, (0.8387,1.1048,
+2465.8601 0.1197,0.0962) 0.9356,0.5240) +144.2718 0.1210,0.0951) 0.9143,0.5437)

From Tables 4 and 5, we can draw two conclusions: one is that the L∞ error estimates between
the results of DMHSM and ANNSM are at least on the order of 10−3. Furthermore, the relative error
is controlled within 6.5%. The other one is that the calculation speed of ANNSM is 1 order of mag-
nitude faster than that of DMHSM when the calculation accuracy is also guaranteed. Therefore, the
advantages of high accuracy and less time consuming of ANNSM for four-dimensional BIP is proved.

5. Conclusions

In this paper, we have developed an ANNSM to solve the BIP of implied volatility of time-
dependent American option. Firstly, we give the linear complementarity problem of this American
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put option. Then, the original problem is transformed into several standard American put option prob-
lems through variable substitution and discretization in temporal direction. Furthermore, the price of
these standard American put options can be solved by primal-dual active-set method after numerical
transformation and finite element discretization in spatial direction. Secondly, we solve the inverse
problem by Bayesian inference about implied volatility under the premise that the option price is
known and the fixed observations can be carried out in a finite region by interpolation. The general
background of BIP is introduced. We consider to use the surrogate model because of the nonlinearity
and high-dimensionality of BIP, and further propose ANNSM combined with NN. Finally, we perform
numerical simulations with one- and four-dimensional IPs to compare the accuracy and calculation
speed between DMHSM and ANNSM, respectively. And from the point estimates and posterior dis-
tributions, the superiority of ANNSM in solving implied volatility of time-dependent American option
is verified.

Acknowledgement

The work of K. Zhang was supported by the NSF of China under the grant No. 11871245, and by
the Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,
Jilin University (93K172018Z01). The work of Jingzhi Li was partially supported by the NSF of China
(No. 11971221) and (No. 11731006), the Shenzhen Sci–Tech Fund (No. JCYJ20190809150413261)
and (No. JCYJ20170818153840322), and Guangdong Provincial Key Laboratory of Computational
Science and Material Design (No. 2019B030301001).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. M. Bergounioux, K. Ito, K. Kunisch, Primal–dual strategy for constrained
optimal control problem, SIAM J. Control Optim., 37 (1999), 1176–1194.
https://doi.org/10.1137/S0363012997328609c

2. Y. Gao, J. Li, Y. Song, C. Wang, K. Zhang, Alternating direction based method for optimal
control problem constrained by Stokes equation, J. Inverse Ill–posed Probl., 29 (2021), 249–266.
https://doi.org/10.1515/jiip-2020-0101

3. M. Hintermuller, K. Ito, K. Kunisch, The primal–dual active set strategy as
a semi–smooth newton method, SIAM J. Control Optim., 13 (2003), 865–888.
https://doi.org/10.1137/S1052623401383558

4. H. Song, K. Zhang, Y. Li, Finite element and discontinuous Galerkin methods with perfect
matched layers for American option, Numer. Math-Theory Methods Appl., 10 (2017), 829–851.
https://doi.org/10.4208/nmtma.2017.0020

5. K. Zhang, H. Song, J. Li, Front–fixing FEMs for the pricing of American options based on a PML
technique, Appl. Anal., 94 (2015), 903–931. https://doi.org/10.1080/00036811.2014.907563

Electronic Research Archive Volume 30, Issue 6, 2335–2355.

http://dx.doi.org/https://doi.org/10.1137/S0363012997328609c
http://dx.doi.org/https://doi.org/10.1515/jiip-2020-0101
http://dx.doi.org/https://doi.org/10.1137/S1052623401383558
http://dx.doi.org/https://doi.org/10.4208/nmtma.2017.0020
http://dx.doi.org/https://doi.org/10.1080/00036811.2014.907563


2354

6. K. Ishihara, Projected successive overrelaxation method for finite–element solutions to the
Dirichlet problem for a system of nonlinear elliptic equations, J. Comput. Appl. Math., 38 (1991),
185–200. https://doi.org/10.1016/0377-0427(91)90170-O

7. D. Calvetti, E. Somersalo, Inverse problems: from regularization to Bayesian inference, Wiley
Interdiscip Rev. Comput. Stat., 10 (2018), e127. https://doi.org/10.1002/wics.1427

8. G. Ju, C. Chen, R. Chen, J. Li, K. Li, S. Zhang, Numerical simulation for 3D flow in flow channel
of aeroengine turbine fan based on dimension splitting method, Electron. Res. Archive, 28 (2020),
837–851. https://doi.org/10.3934/era.2020043

9. M. Li, L. Zhu, J. Li, K. Zhang, Design optimization of interconnected porous structures
using extended triply periodic minimal surfaces, J. Comput. Phys., 425 (2021), 109909.
https://doi.org/10.1016/j.jcp.2020.109909

10. A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numerica, 19 (2010), 451–559.
https://doi.org/10.1017/S0962492910000061

11. C. Robert, G. Casella, Monte Carlo Statistical Methods, Springer–Verlag, New York, 2013.
https://doi.org/10.1007/978-1-4757-4145-2

12. M. Xiong, L. Chen, J. Ming, J. Shin, Accelerating the Bayesian inference of inverse problems
by using data–driven compressive sensing method based on proper orthogonal decomposition,
Electron. Res. Archive, 29 (2021), 3383–3403. https://doi.org/10.3934/era.2021044

13. B. D. Flury, Acceptance–rejection sampling made easy, SIAM Rev., 32 (1990), 474–476.
https://doi.org/10.1137/1032082

14. R. E. Liesenfeld, Importance sampling in structural systems, Struct. Saf., 6 (1989), 3–10.
https://doi.org/10.1016/0167-4730(89)90003-9

15. D. Van Ravenzwaaij, P. Cassey, S. D. Brown, A simple introduction to Markov Chain Monte
CCarlo sampling, Psychon. Bull. Rev., 25 (2018), 143–154. https://doi.org/10.3758/s13423-016-
1015-8

16. D. Galbally, K. Fidkowski, K. Willcox, O. Ghattas, Non–linear model reduction for uncertainty
quantilcation in large-scale inverse problems, Int. J. Numer. Methods Eng., 81 (2010), 1581–
1608. https://doi.org/10.1002/nme.2746

17. Y. M. Marzouk, H. N. Najm, Dimensionality reduction and polynomial chaos accelera-
tion of Bayesian inference in inverse problems, J. Comput. Phys., 228 (2009), 1862–1902.
https://doi.org/10.1016/j.jcp.2008.11.024

18. L. Yan, Y. Zhang, Convergence analysis of surrogate-based methods for Bayesian inverse prob-
lems, Inverse Probl., 33 (2017), 125001. https://doi.org/10.1088/1361-6420/aa9417

19. J. Berner, P. Grohs, A. Jentzen, Analysis of the generalization error: empirical risk minimization
over deep artifcial neural networks overcomes the curse of dimensionality in the numerical ap-
proximation of Black-Scholes partial differential equations, SIAM J. Math. Data Sci., 2 (2020),
631–657. https://doi.org/10.1137/19M125649X

20. P. Grohs, F. Hornung, A. Jentzen, P. V. Wurstemberger, A proof that artificial neural networks
overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial
differential equations, arXiv preprint, (2019), arXiv: 1809.02362.

Electronic Research Archive Volume 30, Issue 6, 2335–2355.

http://dx.doi.org/https://doi.org/10.1016/0377-0427(91)90170-O
http://dx.doi.org/https://doi.org/10.1002/wics.1427
http://dx.doi.org/https://doi.org/10.3934/era.2020043
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109909
http://dx.doi.org/https://doi.org/10.1017/S0962492910000061
http://dx.doi.org/https://doi.org/10.1007/978-1-4757-4145-2
http://dx.doi.org/https://doi.org/10.3934/era.2021044
http://dx.doi.org/https://doi.org/10.1137/1032082
http://dx.doi.org/https://doi.org/10.1016/0167-4730(89)90003-9
http://dx.doi.org/https://doi.org/10.3758/s13423-016-1015-8
http://dx.doi.org/https://doi.org/10.3758/s13423-016-1015-8
http://dx.doi.org/https://doi.org/10.1002/nme.2746
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2008.11.024
http://dx.doi.org/https://doi.org/10.1088/1361-6420/aa9417
http://dx.doi.org/https://doi.org/10.1137/19M125649X


2355

21. J. Li, Y. M. Marzouk, Adaptive construction of surrogates for the Bayesian solution of inverse
problems, SIAM J. Sci. Comput., 36 (2014), A1163–A1186. https://doi.org/10.1137/130938189

22. A. D. Homes, H. Yang, A front–fixing finite element method for the valuation of American
options, SIAM J. Sci. Comput., 30 (2008), 2158–2180. https://doi.org/10.1137/070694442

23. H. Song, Q. Zhang, R. Zhang, A fast numerical method for the valuation of Ameri-
can lookback put options, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 302–313.
https://doi.org/10.1016/j.cnsns.2015.03.010

24. T. Deveney, E. Mueller, T. Shardlow, A deep surrogate approach to efficient Bayesian inversion
in PDE and integral equation models, arXiv preprint, (2019), arXiv:1910.01547.

25. Y. Li, J. M. G. Taylor, M. R. Elliott, A Bayesian approach to surrogacy assessment using principal
stratification in clinical trials, Biometrics, 66 (2010), 523–531. https://doi.org/10.1111/j.1541-
0420.2009.01303.x

26. L. Yan, T. Zhou, Adaptive multi–fidelity polynomial chaos approach to
Bayesian inference in inverse problems, J. Comput. Phys., 381 (2019), 110–128.
https://doi.org/10.1016/j.jcp.2018.12.025
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