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Abstract: In this paper, a fast scheme for solving unsteady nonlinear convection diffusion problems
is proposed and analyzed. At each step, we firstly isolate a nonlinear convection subproblem and a
linear diffusion subproblem from the original problem by utilizing operator splitting. By Taylor expan-
sion, we explicitly transform the nonlinear convection one into a linear problem with artificial inflow
boundary conditions associated with the nonlinear flux. Then a multistep technique is provided to relax
the possible stability requirement, which is due to the explicit processing of the convection problem.
Since the self-adjointness and coerciveness of diffusion subproblems, there are so many preconditioned
iterative solvers to get them solved with high efficiency at each time step. When using the finite ele-
ment method to discretize all the resulting subproblems, the major stiffness matrices are same at each
step, that is the reason why the unsteady nonlinear systems can be computed extremely fast with the
present method. Finally, in order to validate the effectiveness of the present scheme, several numerical
examples including the Burgers type and Buckley-Leverett type equations, are chosen as the numerical
study.

Keywords: nonlinear convection diffusion problems; operator splitting; multistep technique; finite
element method; Burgers type equation; Buckley-Leverett type equation

1. Introduction

In this paper, we introduce a fast IMEX (implicit-explicit) scheme for the 2D unsteady nonlinear
convection-diffusion problems. Our model problem is as follows

ut + (P(u))x + (Q(u))y − ε(uxx + uyy) = f in Ω × (0,T ) , (1.1)

with the Dirichlet boundary condition

u(x, y, t) = b(x, y, t) on ∂Ω × (0,T ) , (1.2)
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and the initial value condition
u(x, y, 0) = a(x, y) in Ω , (1.3)

where Ω ⊂ R2 is a bounded polygonal domain with Lipschitz continuity, P(u) and Q(u) are the con-
vective field functions, ε > 0 is a given diffusion coefficient, and T is the final time.

Note that we can rewrite the system of Eqs (1.1)–(1.3) into the vector form as

ut + ∇ · (F(u)) − ε∆u = f in Ω × (0,T ) , (1.4)

with the Dirichlet boundary and initial value conditions

u(x, t) = ub(x, t) on ∂Ω × (0,T ) , u(x, 0) = u0(x) in Ω , (1.5)

where F(u) = (P(u),Q(u))T , x = (x, y)T , u = u(x, t).
Generally, some physical phenomenon, where the energy or other physical substances are trans-

ferred in physical systems as a result of diffusion and convection processes, can be described by non-
linear convection-diffusion Eqs (1.1)–(1.3). These systems are of reasonably practical significance
since they can describe varieties of physical phenomenon, which appear in a plenty of applications
and symbolize mathematical models for a great deal of physical processes in mechanics of fluids, as-
trophysics, groundwater flow, meteorology, semiconductors and reactive flows. In particular, for the
certain case when f = 0, (1.1)–(1.3) are scalar convection-diffusion equations, which usually arise in
various applications, with the range including from turbulence model [1, 2], through traffic flow [3], to
two-phase flow in a porous medium [4].

For the general nonlinear convection-diffusion Eqs (1.1)–(1.3), a group of high order finite dif-
ference numerical schemes were raised based on Euler implicit scheme by Cecchi and Pirozzi [5], a
discontinuous Galerkin finite element discretization was introduced to study the effect of numerical
integration by Sobotikova et al. [6], and a Lattice Boltzmann model was shown by Shi and Guo [7].
For the certain case F = 0, namely the nonlinear conservative laws, Karlsen et al. [8] used the idea of
operator splitting to decompose the convection part and the diffusion part of the problem, and provided
a dimensional splitting method to simplify the m-dimensional convection equation to a series of one-
dimensional equations. After that, Karlsen et al. [9] presented a corrected operator splitting method
to deal with much more complicated problems with general flux functions and initial value. Many
central schemes were also constructed to achieve high resolution of the numerical solutions; See for
instance Nessyahu and Tadmor [10], Jin and Xin [11], Kurganov and Tadmor [12]. Recently, some high
order Maximal principle-Preserving finite difference Rungeutta WENO (weighted essentially nonoscil-
latory) or DG (discontinuous Galerkin) schemes were constructed; See Jiang and Xu [13], and Xiong
et al. [14] and the references therein.

As explained by Chertock and Kurganov [15], such problems are parabolic and that’s why even for
discontinuous initial value, they can be admitted global smooth solutions. In this paper, we combine
the continuous finite element scheme and operator splitting approach to propose a fast method for solv-
ing these problems. It is obvious that the treatment of nonlinear convection term in partial differential
equations like (1.1)–(1.3) is one of the key procedures, which affects the efficiency of the numerical
methods. An important class of numerical methods about this issue is referred as the IMEX method;
See for instance Akrivis [16] for general nonlinear parabolic problems, Long and Chen [17] for non-
linear convection diffusion equations, as well as Zhang et al. [18] for the slight simple non-stationary
thermal convection problems.
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In this paper, first of all, at each time step, the initial coupled problem is decomposed into convection
and diffusion subproblems by employing the same idea of operator splitting with [8] (see also [19] for
much general parabolic problems), and much importantly, make use of a specific Taylor expansion to
deal with the nonlinear term in convection subproblems, and eventually provide an IMEX scheme for
solving the nonlinear convection diffusion problems. Besides, for the sake of relaxing the possible
poor stability condition that results from the explicit operation of the convection problem, a multistep
technique is proposed. There are some major superiorities of the present method. Firstly, at each time
step, since the self-adjointness and coerciveness of diffusion subproblems, there are a lot of forceful
preconditioned iterative solvers, like preconditioned conjugate gradient solver, which can be used to
solve them efficiently. Secondly, it is easy for us to utilize the mass lumping method to explicitly
solve the mass matrices for spatial linear elements because of the linearity of convection subsystems.
When we use the finite element method to discretize the equations, all the major stiffness matrices keep
invariable in the time stepping process, that is the reason why the present method is notably fast for
solving the unsteady nonlinear systems.

The paper is formed as follows. We propose the idea of construction of the present semi-discrete
IMEX method via operator splitting, which is shown in Section 2. After that, by means of the spatial
finite element discretization, a further representation of the algorithm of full discretization is illus-
trated. Meanwhile, the superiorities of the proposed method are illuminated by some remarks as well
as the multistep scheme. As the numerical study, several numerical experiments on Burgers type and
Buckley-Leverett type equations and discussions are presented in Section 3.

2. The IMEX scheme

In this section, we propose the semi-discrete and its corresponding fully discrete IMEX algorithms.
Without loss of generality, we uniformly split the time interval to make temporal discretization. Fix
positive integer N ≥ 1, set 0 = t0 < t1 · · · < tN−1 < tN = T , with tn = n∆t, tn+ 1

2 = tn + ∆t/2, and the step
size ∆t = T/N .

Firstly, the nonlinear convection term ∇ · (F(u)) and the linear diffusion term ε∆u are separated. We
can write it in the form of operators described below

A u = A1 u + A2 u, with A1 u = ∇ · (F(u)), A2 u = −ε∆ u.

Where, A1u is the nonlinear part of the convection diffusion equations. In order to compute the Eqs
(1.4) and (1.5), we can directly utilize numerous operator splitting methods, see, e.g., [8] by Karlsen
et al. and [19, Chapter II] by R. Glowinski and among the references. In this paper, we employ the
following time splitting technique

vt + ∇ · (F(v)) = 0, v(x, tn) = u(x, tn), (2.1)
wt − ε∆w = f , w(x, tn) = v(x, tn+1), (2.2)

on the time interval [tn, tn+1] to solve the original nonlinear system (1.4)–(1.5). When it comes to the
time splitting, the certain Euler central difference and backward schemes are utilized to discretize (2.1)
and (2.2), seperately,

vn+1 − vn

∆t
+ ∇ · (Fn+ 1

2 ) = 0, vn = un, (2.3)
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wn+1 − wn

∆t
− ε4wn+1 = f n+1, wn = vn+1, (2.4)

where F(v(x, tn+ 1
2 )) is approximated by Fn+ 1

2 , and the solution u(x, t) to the system (1.4)–(1.5) at time
instances t = tn and tn+1 are approximated by un and un+1, correspondingly.

It worth noting that the performance of the resulting algorithm, such as the stability, convergence
and efficiency, would be significantly affected by the numerical treatment of Fn+ 1

2 in the iterative
scheme (2.3)–(2.4). For instance, seting Fn+ 1

2 = (F(vn+1)+F(vn))/2 in (2.3) results in a Crank-Nicolson
scheme, and generally speaking, we still get a nonlinear resulting system. If we take Fn+ 1

2 as an explicit
linearization, i.e., Fn+ 1

2 = F(vn) = F(un), Eq (2.3) will generate a Forward Euler scheme with strong
instability generally. Without choosing Fn+ 1

2 as these two ways, we linearize Fn+ 1
2 at the time instance

t = tn by proposing a new unique Taylor expansion method. More accurately, as a result of the fact that
Eq (2.1) is discretized into (2.3), then we can access through Taylor expansion:

Fn+ 1
2 ≈ F(v(x, tn +

∆t
2

)) = F(v(x, tn)) + Fu(v(x, tn)) vt(x, tn)
∆t
2

+ O(∆t2),

here we use the definition Fu =
dF(u)

du . It is noted that throughout this paper, we assume that F(u) ∈
C1(R) in order to construct our present numerical algorithm; See Remark 1 in Reference [6] for more
details.

In term of (2.1) and (2.3) we obtain that

v(x, tn) ≈ vn = un, F(v(x, tn)) ≈ F(un), Fu(v(x, tn)) ≈ Fu(un)

and
vt(x, tn) ≈ −∇ · (F(un)),

then a linearization of Fn+ 1
2 is derived as

Fn+ 1
2 ≈ F(un) −

1
2

∆tFu(un)∇ · (F(un)).

Denoting ηn = F(un)− 1
2∆tFu(un)∇ · (F(un)), the following time splitting scheme is the newly proposed

one that we now obtain:

un+1
∗ − un

∆t
+ ∇ · ηn = 0 , (2.5)

un+1 − un+1
∗

∆t
− ε4un+1 = f n+1 . (2.6)

Meanwhile, the boundary condition for these Eqs (2.5) and (2.6) is need to be fulfilled. When solv-
ing un+1 in the subsystem (2.6), further a temporal approximation of diffusion problem (2.2), we can
naturally inherit a Dirichlet boundary condition on Γ = ∂Ω for un+1 from (1.5), namely

un+1|Γ = ub(·, tn+1). (2.7)

Since un+1
∗ in the subsystem (2.5) is a nontrivial temporal approximation of convective Eq (2.1), we

should only impose partial boundary condition. Here, a similar artificial inflow boundary condition is
introduced

un+1
∗ |Γ−n+1

= ub(·, tn+1), (2.8)
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where Γ−t is the inflow boundary named by

Γ−t = {x ∈ Γ : Fu(ub(x, t)) · n(x) < 0} ,

and the outward normal vector to Γ is expressed by n .
For simplicity in the rest of the paper, let us denote by un+1

b = ub(·, tn+1), and functional space
is defined as X = H1(Ω). Besides, terms (2.5) and (2.6) are respectively multiplied by a testing
functions v ∈ X with v|Γ−n+1

= 0 and v|Γ = 0, (as the options of boundary conditions (2.7) and (2.8))
correspondingly, and integrated by parts to obtain the variational formulations. Finally, we can describe
the time splitting method as the following:
Temporal Semi-approximation Scheme:

1. Initialize value: Let u0 = u0.
2. For any n ≥ 0, supposing un is already known, find un+1

∗ and un+1 to solve
Convection subsystem: Compute un+1

∗ ∈ X, un+1
∗ |Γ−n+1

= un+1
b , solve

(un+1
∗ , v) = (un, v) − ∆t 〈ηn · n, v〉Γ\Γ−n+1

+ ∆t (ηn,∇v) (2.9)

for any v ∈ X, with v = 0 on Γ−n+1 ;
and

Diffusion subsystem: Compute un+1 ∈ X, un+1|Γ = un+1
b , such that

(∆t)−1(un+1, v) + ε(∇un+1,∇v) = ( f n+1 + (∆t)−1un+1
∗ , v) (2.10)

for any v ∈ X, with v = 0 on Γ .
3. Let n+ = 1, until n > N, else retrun to Step 2.

Next, the finite element discretization of the above time splitting method will be discussed with a
shape-regular triangulation of Ω, which is denoted by Th and has mesh scale h = maxK∈Th diam(K).
Denote the finite element space with order k ≥ 1 as

Xh = {vh ∈ C0(Ωh) ∩ X ; vh|K ∈ Pk(K),∀K ∈ Th} ,

that is a subspace of X used to approximate the velocity. In the next segment, we simply offer a detailed
discussion under the certain circumstance k = 1, which is the continuous piece-wise linear functions
over Th. Apart from that, the standard nodal interpolation operator denoted by Ih : X → Xh is needed.

Next, the following scheme is our full (space-time) approximation approach.

Algorithm A: Space-time full approximation Scheme

1. Initialize value: Let u0
h = Ihu0.

2. For any n ≥ 0, supposing un
h is already known, find un+1

h,∗ and un+1
h by solving

Convection subsystem: Denote ηn
h = F(un

h) − 1
2 Fu(un

h)∇ · (F(un
h)); Compute un+1

h,∗ ∈ Xh, with
un+1

h,∗ |Γ−n+1
= Ihun+1

b , solve

(un+1
h,∗ , vh) = (un

h, vh) − ∆t
〈
ηn

h · n, vh
〉

Γ\Γ−n+1
+ ∆t

(
ηn

h,∇vh
)

(2.11)
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for any vh ∈ Xh, with vh = 0 on Γ−n+1;
and

Diffusion subsystem: Find un+1
h ∈ Xh with un+1

h |Γ = Ihun+1
b , such that

(∆t)−1(un+1
h , vh) + ε(∇un+1

h ,∇vh) = ( f n+1 + (∆t)−1u
n+1
h,∗ , vh) (2.12)

for any vh ∈ Xh, with vh = 0 on Γ.
3. Let n+ = 1, until n > N, else retrun to Step 2.

Remark 1. For any given time step ∆t, and for all n ≤ N, we can get some positive definite and
permanently invariant stiffness matrices for (2.12).

Remark 2. Since the stiffness matrices of (2.11) are mass matrices as well as maintain invariable for
fixed Γ−n = Γ− (n ≤ N), the subsystem can be explicitly solved. And particularly, when using linear finite
element space (k = 1), the mass-lumping technique works efficiently (see details in reference [20]).

Remark 3. Compared with the majority of existing techniques for computing (1.4)–(1.5), the dis-
tinct operation of nonlinear convection term would produce some unique superiorities of the present
approach, as depicted in Remark 2. Nevertheless, as smaller time step size is required to realize con-
vergence in this explicit linearization, the practical applications of our present approach would slightly
decline. As a matter of fact, it is a good way to apply the multistep pattern of the approach to remedy
this deficiency. Practically, when we deal with each diffusion subsystem (2.12) using time step size ∆t,
we can utilize a smaller δt = ∆t/m, to complete the convection subsystem (2.11) for m times.

More accurately, the multistep approach is summarized as follows.
Algorithm B: Multistep Scheme

1. Initialize value: Let u0
h = Ihu0.

2. For any n ≥ 0, supposing un
h is already known, find un+1

h,∗ and un+1
h by solving

Convection subsystem: Let un
h,∗ = un

h; For any i = 1, 2, · · · ,m, solve

η
n+ i−1

m
h = F(un+ i−1

m
h,∗ ) −

1
2

Fu(un+ i−1
m

h,∗ )∇ · (F(un+ i−1
m

h,∗ )),

and compute un+ i
m

h,∗ ∈ Xh, with un+ i
m

h,∗ |Γ−n+i/m
= Ihun+ i

m
b , such that

(un+ i
m

h,∗ , vh) = (un+ i−1
m

h , vh) − δt
〈
η

n+ i−1
m

h · n, vh

〉
Γ\Γ−n+i/m

+ δt
(
η

n+ i−1
m

h ,∇vh

)
(2.13)

for any vh ∈ Xh, with vh = 0 on Γ−n+i/m ;
and

Diffusion subsystem: Find un+1
h ∈ Xh with un+1

h |Γ = Ihun+1
b , and compute

(∆t)−1(un+1
h , vh) + ε(∇un+1

h ,∇vh) = ( f n+1 + (∆t)−1u
n+1
h,∗ , vh) (2.14)

for any vh ∈ Xh, with vh = 0 on Γ.
3. Let n = n + 1, until n > N, else return to Step 2.
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Remark 4. In this multistep algorithm, the inflow boundary Γ−
n+ i

m
for subsystem (2.13) is modified as

Γ−
n+ i

m
=

{
x ∈ Γ : Fu(ub(x, tn+ i

m )) · n(x) < 0
}
, which is consistent with the previous definition Γ−n .

Remark 5. Actually, our multistep method is similar with the one used in wave-like equation strategy
to compute convection advection equations (see e.g., Section 31.5 in [19] and the references therein).
Likely, considering solving convection-dominated diffusion equations, the same multistep method was
adopted and generally carried out, see for instance, References [21,22]. Moreover, we note that a mul-
tirate iterative scheme was proposed for solving poroelasticity model in a similar way of dealing with
the Stokes and diffusion systems [23], more recently the multirate finite steps methods were provided
to deal with the phenomena of different scales [24].

3. Numerical experiments

This section aims to test the performance of the present scheme, including validness, stability and
convergence. We use finite element package Freefem++ [25] to implement our scheme and carry out
numerical experiments in the following.

3.1. Burgers-type equations

This subsection focuses on the particular case F(u) = (P(u),Q(u))T = (1
2u2, 1

2u2)T , and f = 0.
Actually, these choices give rise to the equations of Burgers type.

Problem 1. The first example is a smooth problem on the unit square domain Ω = [0, 1]2, and the
exact solution is given by u(x, y, t) = 16x(1 − x)y(1 − y)(e10t − 1)/(e10 − 1). The original and boundary
conditions depend on (1.1)–(1.3) and the analytical solution. We choose T = 1, ε = 10−8.

For this example, we can prove easily that for any (x, y) ∈ ∂Ω and t ≥ 0, Fu(u(x, y, t)) = (u, u)T =

(0, 0)T , as well as Fu(u(x, y, t)) · n = 0, so the inflow boundary Γ−n is always empty for the convective
subsystem (2.11) at each time step t = tn for any positive integer n satisfied the condition tn ≤ T .

Firstly, we test the order of convergence with fixing time step ∆t = 1/216 and varying the mesh scale
from 1/4 to 1/64 step by step. In Table 1, the computational results are presented and we can observe
an optimal convergence of rate 2 for the numerical solutions under L2-norm error.

Table 1. Rates of convergence and errors for Problem 1 (∆t = 1/216 and ε = 10−8).

h ‖u − uN
h ‖L2(Ω) order

1/4 4.15880e-2 -
1/8 8.97586e-3 2.2120
1/16 2.03951e-3 2.1378
1/32 4.83367e-4 2.0770
1/64 1.23786e-4 1.9652

Next, we settle the spatial mesh with h = 1/128 and along with the time step size varying from 0.1
to 0.1/26. As it can be seen from Table 2, the Algorithm A (Single step scheme) can always derive
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the convergent results up to terminal time T . According to this table, we can clearly obtain an optimal
convergence of rate 1 under the L2-norm of the numerical solutions with regard to the time step size.

Table 2. Rates of convergence and errors for Problem 1 (h = 1/128 and ε = 10−8).

∆t ‖u − uN
h ‖L2(Ω) order

0.1 3.18725e-1 -
0.1/2 1.47547e-1 1.1112
0.1/22 7.07840e-2 1.0597
0.1/23 3.46460e-2 1.0308
0.1/24 1.71370e-2 1.0156
0.1/25 8.52210e-3 1.0078
0.1/26 4.24952e-3 1.0039

Problem 2. The second example is defined on the square Ω = [−1, 1]2, with the exact solution
u(x, y, t) = −(1 − x2)2(1 − y2)2 arctan

(
x+y+2−2t

ν

)
. The initial and boundary conditions depend on (1.1)–

(1.3) and the analytic solution. Besides, the parameters are selected as ε = 0.002, T = 1 and ν = 0.5.

Similarly with previous problem, for the Problem 2 we can check that, the inflow boundary Γ−n for
the convective subsystem (2.11) is awayls null.

In order to check the convergence order in spatial scale, a smaller fixed time step ∆t = 1/216 is
utilized for the present algorithm. As to this time step, Algorithm A can constantly get convergent
solutions up to T = 1.0, and obtain an optimal convergence of rate 2 with respect to mesh scales by
observing the numerical simulations under the L2-norm error, which are shown in Table 3.

Table 3. Rates of convergence of Algorithm A for Problem 2 (∆t = 1/216).

h ‖u − uN
h ‖L2(Ω) order

1/4 3.62638e-1 -
1/8 8.17792e-2 2.1487
1/16 1.96814e-2 2.0549
1/32 4.93634e-3 1.9953
1/64 1.23852e-3 1.9948
1/128 3.12747e-4 1.9855

Now, we show numerical results in Table 4 with fixed spatial mesh (h = 1/64), time step size from
0.1 to 0.1/25, and the same computational parameters. It displays the performance of the Algorithm
B. Our observations for this testing case focus on the following two-folds: 1) An optimal convergence
of order 1 under the convergence region with respect to the time step size is examined for the L2-norm
of the numerical simulations in time; 2) Algorithm A can get convergent solution for relatively large
time step, for instance ∆t = 0.05. Noting that for time step ∆t = 0.025, the computational solution
by Algorithm A shows apparently oscillation near the top region, which can be examined in the left
contour plot of Figure 1. Compared with that, when using Algorithm B with multistep steps of m = 4
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for convection subproblem, the smooth solution can be derived. This phenomena is observed in the
right contour plot of Figure 1.

Table 4. Rates of convergence of Algorithm B for Problem 2 (h = 1/64).

∆t ‖u − uN
h ‖L2(Ω) order

0.1 divergence -
0.1/2 1.21862e-1 -
0.1/22 4.55624e-2 1.4193
0.1/23 2.23644e-2 1.0267
0.1/24 1.11191e-2 1.0081
0.1/25 5.56048e-3 0.9998
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­0.5

0
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1

X

Y

­1 ­0.5 0 0.5 1
­1

­0.5

0

0.5

1

Figure 1. Numerical contors of u for Problem 2 with ∆t = 0.025 at T=1. Left: Algorithm B
with m = 1, Right: Algorithm B with m = 4.

Next, we apply the Algorithm B for different time step sizes to compute the numerical solutions
with fixing the multistep size m = 64, which are displayed in Table 5. We can notice that Algorithm
B always get convergent and smooth solutions for reasonable large multisteps, namely m = 64 in this
testing case. In sum, this multistep scheme behaves like an unconditional stable scheme in this aspect.
Apart from that, we also observe the optimal convergence order with regard to time step size.

Table 5. Rates of convergence of Algorithm B for Problem 2 (m = 64 and h = 1/128).

∆t ‖u − uN
h ‖L2(Ω) order

0.1 1.79769 -
0.1/2 8.97229e-1 1.0026
0.1/22 4.47486e-2 1.0036
0.1/23 2.23207e-2 1.0035
0.1/24 1.11494e-2 1.0014
0.1/25 5.58507e-3 0.9973
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Moreover, at ∆t = 0.001, the profiles of the solutions are shown in Figure 2, from which the smooth
evolution of the numerical solutions at different time can be observed. Here, only the 3D plot of the
numerical solutions at initial time and t = 0.6, 0.7, 0.8, 0.9 and terminal time t = 1.0 are shown.
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Figure 2. Computed solution of u for ∆t = 0.001 at different times, using Algorithm A for
Problem 2. Top: t = 0, 0.6; Middle: t = 0.7, 0.8; Bottom: t = 0.9, 1.0.

3.2. Buckley-leverett type equation

In this subsection, we will engage in the numerical simulations for two-dimensional Buckley-
Leverett problem, which is a conservation system used to simulate two-phase flow in porous medium.
The Buckley-Leverett problem or the Buckley-Leverett displacement describes an immiscible displace-
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ment process, such as the displacement of oil by water.

Problem 3. Consider the flux function in the form of P(u) = u + (u − 0.25)3,Q(u) = −(u + u2). The
computational domain is Ω = [−0.5, 0.5]2, and the exact solution is u(x, y, t) = 1/4 + xy. The source is
f (x, y) = y + 3x2y3 − x(1.5 + 2xy), and the parameters are selected as ε = 0.1, 0.01, T = 1.

In this problem, we choose the same flux F(u) = (P(u),Q(u)) as the one from Example 2 of Ref-
erence [8]. For this flux, an exact solution with non-homogeneous boundary condition is constructed.
Then, from these settings, since the exact solution is independent of time t, the present method can
be interpreted as a pseudo-time method for solving nonlinear elliptic problems. In the present method
(Algorithm A or B), we can easily check that Fu · n < 0 for the right and top boundaries, namely,
{(x, y) : x = 0.5,−0.5 ≤ y ≤ 0.5; or − 0.5 ≤ x ≤ 0.5, y = 0.5}.

We apply Algorithm A to capture the numerical solutions up to T = 1.0 for two different viscosity
parameters ε = 0.1 and 0.01 with fixing a much smaller time step size ∆t = 1/216. As it is shown in
Table 6, the convergence results of the second and fourth columns correspond to the viscosity ε = 0.1
and ε = 0.01, respectively. From this table, an optimal convergence of rate 2 with respect to mesh
scales is derived for the numerical simulations under L2-norm for both viscosity parameters.

Table 6. Rates of convergence of Algorithm A for Problem 3 (∆t = 1/216 and ε = 0.1, 0.01).

h ‖u − uN
h ‖L2(Ω) (ε = 0.1) order ‖u − uN

h ‖L2(Ω) (ε = 0.01) order

1/4 6.52497e-3 - 6.54057e-3 -
1/8 1.62734e-3 2.0035 1.61568e-3 2.0173
1/16 4.04613e-4 2.0079 4.00571e-4 2.0120
1/32 9.90670e-5 2.0301 9.72728e-5 2.0419
1/64 2.28654e-5 2.1152 2.18647e-5 2.1534
1/128 4.85729e-6 2.2349 5.36036e-6 2.0282

Next, the spatial mesh with h = 1/128 is fixed, and the time step size 0.1/2k (k = 1, 2, · · · , 8)
are selected to check the performance of the Algorithm A or B. Firstly, for the case ε = 0.1, Table 7
shows that the single step scheme (Algorithm A) can always get the convergence results. From this
table, the optimal first order convergence in time is verified under L2-norm in time. Secondly, for
the case ε = 0.01, as shown in the second column of Table 8, Algorithm A is convergent for k ≤ 4,
and Algorithm B is then used by doubly increasing the multistep index m each time until deriving the
convergence numerical solution at the terminal time for each k > 4. Then for these selected time step
sizes, we apply Algorithm B with fixed multistep index m = 32 to capture the numerical solutions, of
which the approximate errors under L2-norm at terminal time are listed in the three column of Table
8. We can give some observation based on this testing case: 1) An optimal convergence of rate 1
with regard to the time step size is derived for the numerical simulations under L2-norm in time for
Algorithm B with fixed index m; 2) For fixed time step size, Algorithm B with different multistep
indices (noting that Algorithm B with m = 1 reduces to Algorithm A) can get very close approximate
accuracy, which shows that the multistep scheme for convection subproblem in Algorithm B mainly
plays a significant role in improving the stability of the algorithm, not the computational accuracy.
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Table 7. Rates of convergence of Algorithm A for Problem 3 ( h = 1/128 and ε = 0.1).

∆t ‖u − uN
h ‖L2(Ω) order

0.1 2.77557e-2 -
0.1/2 1.29973e-2 1.0946
0.1/22 6.83726e-3 0.9267
0.1/23 3.50402e-3 0.9644
0.1/24 1.77204e-3 0.9836
0.1/25 8.89513e-4 0.9943
0.1/26 4.44104e-4 1.0021
0.1/27 2.20378e-4 1.0109
0.1/28 1.08297e-4 1.0250

Table 8. Rates of convergence of Algorithm B for Problem 3 (h = 1/128 and ε = 0.01).

∆t ‖u − uN
h ‖L2(Ω) ‖u − uN

h ‖L2(Ω) (m = 32) order

0.1/2 1.55939e-2 (m = 32) 1.55939e-2 -
0.1/22 8.22204e-3 (m = 16) 8.20885e-3 0.9257
0.1/23 4.33042e-3 (m = 8) 4.30033e-3 0.9327
0.1/24 2.26302e-3 (m = 4) 2.21436e-3 0.9576
0.1/25 1.26284e-3 (m = 1) 1.12487e-3 0.9771
0.1/26 6.31144e-4 (m = 1) 5.65956e-4 0.9910
0.1/27 3.14027e-4 (m = 1) 2.82513e-4 1.0024
0.1/28 1.55175e-4 (m = 1) 1.39755e-4 1.0154

Problem 4. Consider the same flux function as in Problem 3 with the computed domain selected as
Ω = [−2, 5]2. The initial value is chosen as u(x, y, 0) = 1 in (x − 0.25)2 + (y − 2.25)2 < 0.5 and
otherwise u(x, y, 0) = 0. The boundary condition is u(x, y, t) = 0, for any (x, y) ∈ ∂Ω and the right
source is f = 0. The parameters are selected as ε = 0.01, T = 1.0.

This problem with discontinuous initial data was first given in [8] by Karlsen and Risebro, where
only the convergence rates were plotted for different CFL numbers. As to this problem, similarly with
the previous problem, we can deduce that the inflow boundaries for Eq (2.5) with condition Fu · n < 0
are the right and top boundaries, namely, {(x, y) : x = −2,−2 ≤ y ≤ 5; or − 2 ≤ x ≤ 5, y = 5}.

We execute Algorithm A under the discretization parameters ∆t = 0.001 and h = 1/64 up to the
terminal time T = 1.0. The contour plot of the numerical solution at T = 1.0 is displayed in Figure
3, where the contour values with Labels 1–18 correspond to the lines located from outside to inside in
order. Besides, we displayed the three dimensional plot of the computational numerical approximations
at different times in Figure 4. From this figure, we can observe the smooth evolution of the numerical
solutions by Algorithm A, which verifies the stability of the proposed algorithm.
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Figure 3. Contour plot of computed solution at T = 0.1 of Problem 4, using Algorithm A
with ∆t = 0.001 and h = 1/64.

Figure 4. 3D plot of the computed solutions at different times of Problem 4, using Algorithm
A with ∆t = 0.001 and h = 1/64. Top: t = 0, 0.2; Middle: t = 0.4, 0.6; Bottom: t = 0.8, 1.0.

Electronic Research Archive Volume 30, Issue 6, 2165–2182.



2178

Problem 5. Consider the flux function of the form

P(u) =
u2

u2 + (1 − u)2 , Q(u) = P(u)(1 − 5(1 − u)2).

The computed domain is Ω = [−1.5, 1.5]2, the initial value is u(x, y, 0) = 1 in x2 + y2 < 0.5, and
otherwise u(x, y, 0) = 0. The source component is f = 0. The homogeneous boundary condition is also
assumed. The parameters are selected as ε = 0.01, T = 0.5.

This problem also permitted discontinuous initial data and was first given in [8] by Karlsen and
Risebroand, and since then was widely used for experimenting several numerical methods for nonlinear
convection diffusion equations, see [7,9,12–14] and also [26,27] for slightly different problem domain
or terminal time setting.

For this problem, we know that u = 0 for any (x, y) ∈ ∂Ω and t ≥ 0, and by direct calculation

Pu(u) =
2u (1 − u(2u − 1))

(u2 + (1 − u)2)2 , Qu(u) = Pu(u)(1 − 5(1 − u)2) + 10P(u)(1 − u),

hence, Fu(u) = (Pu(u),Qu(u))T = (0, 0)T , and Fu(u(x, y, t)) · n = 0, so the inflow boundary Γ−n is always
empty for the convection subsystem (2.11) at each time step t = tn < T .

Now we execute Algorithm A under the discretization parameters ∆t = 0.001 and h = 1/128 up to
the final time T = 0.5. Firstly, the contour plot of the numerical solution at T = 0.5 is displayed in
Figure 5, where the contour values with Labels 1–19 correspond to the lines located from outside to
inside in order.

Figure 5. Contour plot of computed solution at T = 0.5 of Problem 5, using Algorithm A
with ∆t = 0.001 and h = 1/128.

The three dimensional plot of the computational numerical approximations at different times are
drawn in Figure 6. From these figures, we can observe the smooth evolution of the numerical solutions
by Algorithm A, which verifies the stability of the proposed algorithm. In summary, the effectivity of
the present method is verified by good coincide of this contour with those ones in [7, 9, 12–14].

Electronic Research Archive Volume 30, Issue 6, 2165–2182.



2179

Figure 6. 3D plot of the computed solution at different times of Problem 5, using Algorithm
A with ∆t = 0.001 and h = 1/128. Top: t = 0, 0.1; Middle: t = 0.2, 0.3; Bottom: t = 0.4, 0.5.

4. Conclusions

We have introduced a new IMEX approach for computing the unsteady nonlinear convection-
diffusion problems. Convection and diffusion subsystems can be both dealt with independently, and
moreover, the stiffness matrix of the subsystems keep invariant along time marching. We can use
many efficient preconditioned iterative solvers to calculate the diffusion subsystems because of its self-
adjointness and coerciveness, like preconditioned Conjugate Gradient solver; at the same time, the
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mass matrices are permitted in convection subsystems, as well as can be explicitly and fast computed
when using spatial linear elements. We also provide a multistep technique to relax the instability, that
mostly results from the explicit operation of the convection equations. All the above make the present
approach a fast scheme for computing the unsteady nonlinear systems. In the end, we carry out a
number of numerical simulations to evaluate the stability and validation of the algorithm. As for the
spatial finite element approximation, some special triangulations like the Shishkin-type meshes [28]
and Bakhvalov meshes [29,30], or adaptive grid method [31] along time marching can be incorporated
with the present time-splitting scheme for the small diffusion coefficient in the future. Also the exten-
sions of the present method to the three-dimensional problems (with complex domains) are possible
and will be our further study.
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