
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(6): 2018–2032.
DOI: 10.3934/era.2022102
Received: 04 March 2022
Revised: 25 March 2022
Accepted: 05 April 2022
Published: 13 April 2022

Research article

Improved collision detection of MD5 with additional sufficient conditions

Linan Fang1, Ting Wu2, Yongxing Qi2, Yanzhao Shen3,∗, Peng Zhang4, Mingmin Lin1 and
Xinfeng Dong5

1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China
2 Hangzhou Innovation Institute, Beihang University, Hangzhou 310020, China
3 Shandong Institute of Blockchain, Jinan 250102, China
4 Hangzhou Hikvision Digital Technology Company Limited, Hangzhou 310051, China
5 Science and Technology on Communication Security Laboratory, Chengdu 610041, China

* Correspondence: Email: shenyanzhao@sdibc.cn.

Abstract: One application of counter-cryptanalysis is detecting whether a message block is involved
in a collision attack, such as the detection of MD5 and SHA-1. Stevens and Shumow speeded up the
detection of SHA-1 by introducing unavoidable conditions in message blocks. They left a challenge:
how to determine unavoidable conditions for MD5. Later, Shen et al. found that the unavoidable
conditions of MD5 were the sufficient conditions located in the last round of differential paths. In
this paper, we made further work. We discover sufficient conditions in the second round that can also
be used as unavoidable conditions. With additional sufficient conditions, we subdivide three sets and
distinguish seven more classes. As a result, compared with Shen’s collision detection algorithm, our
improved algorithm reduces the collision detection cost by 8.18%. Finally, we find that they do exist
in the differential paths constructed by the automatic tool “HashClash”.

Keywords: counter-cryptanalysis; MD5; collision detection; unavoidable condition; sufficient
condition

1. Introduction

A hash function compresses messages of arbitrary size into a fixed-length bit array. It is one of the
basic components of security applications, for example, digital signatures and message authentication
codes. The design of many classical hash functions such as MD5 and SHA-1 is based on the
Merkle–Damgård construction [1, 2]. This construction operates on the padded input message using a
compression function and updating a fixed-size internal state (also called chaining value).

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022102


2019

A secure hash function must fulfill three properties, i.e., pre-image resistance, second pre-image
resistance, and collision resistance. Collision resistance means that it is practically impossible to find
two different messages with the same hash value. Much research has been carried out on the collision
resistance of commonly used hash functions over the past few years. In 2005, Wang et al. proposed an
identical-prefix collision attack on MD5 using modular differential [3]. This attack is based on
differential cryptanalysis, which is also an essential method for analyzing block ciphers. Linear
cryptanalysis, extensively used in attack block ciphers [4], is another powerful method. The key of the
attack of Wang et al. is constructing differential paths that are a description of how the differences
should propagate through chaining values. The limitation of the identical-prefix collision attack is that
the message blocks before the colliding message need to be identical. Later, Stevens et al. overcame
the shortcoming [5]. They introduced the chosen-prefix collision attack in that prefix message blocks
can be chosen arbitrarily. Such an attack is more dangerous than the identical-prefix collision attack
because they created two X.509 certificates with the same signature or even a rogue CA certificate [6].
Another proof of the harmfulness of the collision attack is Flame’s malicious certificate. It was forged
using the chosen-prefix collision attack on MD5 [7]. In addition, the adaptive chosen-prefix collision
attack was used to construct a distinguishing attack on HMAC/NMAC-MD5 with the
pseudo-collision [8].

To defend against collision attacks, Stevens introduced counter-cryptanalysis, namely detecting
whether a given message block is one of a carefully constructed colliding message pair [7, 9]. The
average complexity of Stevens’ algorithm to detect the collision of MD5 and SHA-1 is about 224
times and 15 times the hashing of a message block, respectively. Later, Stevens and Shumow greatly
reduced the detection complexity of SHA-1 utilizing the unavoidable bit conditions in the message
generated from disturbance vectors [10]. The complexity is only 1.96 times a hashing of SHA-1.
They left a public problem: how to determine unavoidable conditions for MD5. As a response, Shen
et al. analyzed the properties of the Boolean function of the last round of MD5 in detail [11]. They
concluded that the last round’s sufficient conditions combinations (SCCs) were appropriate as the
unavoidable conditions. According to SCCs, the 223 classes are divided into several sets, and 126
classes have adequate SCCs to be identified. As a result, their collision detection algorithm costs only
28.6% runtime of Stevens’ algorithm. With the existing SCCs, nine sets cannot be further subdivided,
and 79 classes cannot be classified. In particular, the undistinguishable 79 classes significantly affect
detection complexity. Thus, a challenging problem is subdividing sets and classifying more classes.

Our contribution. In this paper, we carefully study the properties of the Boolean function of the
second round and discover that the sufficient conditions (SCs) in the second round are also suitable
to be unavoidable conditions. Note that the closer to the first round of MD5, the more complex the
conditions are. There may be no SCs in the opening steps of the second round that can be used for
distinguishing classes. Thus, we only consider SCs between steps 31 and 28, termed the additional
sufficient conditions (ASCs). After analyzing all nine sets and 79 classes, we find that three sets
can be subdivided, and seven classes in the non-distinguishable set can be distinguished, as they have
enough SCs when combining ASCs and existing SCCs. We propose a new collision detection algorithm
implemented by integrating ASCs into Shen’s algorithm. Furthermore, we use “HashClash” to confirm
that the ASCs exist in the differential paths of MD5. Eventually, compared to Shen’s algorithm, the
complexity of our algorithm to detect collision of MD5 is reduced by 8.18%.

The remainder of the paper is organized as follows. In Section 2, we give a short description of

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2020

MD5 and summarize the related works. The properties of the Boolean function of the second round
and ASCs are discussed in Section 3. In Section 4, we present the verification of ASCs and the
complexity of the new detection algorithm. The paper is summarized in Section 5.

2. Preliminaries

Table 1. Comparison of collision detection methods for MD5.

Algorithm Method Complexity

Stevens’ algorithm Check 223 classes in sequence
224 times hashing a
message block

Shen’s algorithm

1) Use SCCs to classify 126 classes
into 22 elements

2) Determine the element according to
SCCs and check the classes in the
element

3) Check the remaining 76 classes

72.2949 times hashing a
message block (under our
experimental setting)

Our algorithm

1) Use SCCs and ASCs to classify 133
classes into 30 elements

2) Determine the element according to
SCCs and ASCs, check the classes
in the element

3) Check the remaining 69 classes

66.3834 times hashing a
message block

2.1. Description of MD5

MD5 is one of the classical hash functions. The compression function receives a 128-bit
intermediate hash value (IHVin = (a, b, c, d)) and a 512-bit message block M and outputs a new
128-bit intermediate hash value (IHVout). M is divided into consecutive 32-bit words
(m0,m1, . . . ,m15). The compression function consists of 64 steps which are split into four rounds that
contain 16 steps each. For t = 0, 1, . . . , 63 each step is as follows:

Ft = ft(Qt,Qt−1,Qt−2) (2.1)

Qt+1 = Qt + RL(Ft + Qt−3 + Ct + mt,Rt) (2.2)

where (Q0,Q−1,Q−2,Q−3) = (b, c, d, a) and IHVout = (a + Q61, b + Q64, c + Q63, d + Q62). In each step
t, ft is the corresponding Boolean function, Ct is a fixed constant, mt is the corresponding 32-bit word,
RL denotes left-rotation and Rt is the rotation constant. Qt−3 can be calculated using the following

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2021

formula in which RR denotes right rotation:

Qt−3 = RR(Qt+1 − Qt,Rt) − Ft − mt −Ct (2.3)

One can find more details of MD5 in [12].

2.2. Related works

This subsection discusses the related works and compares the related methods with our approach.
The comparison results can be found in Table 1.

2.2.1. Stevens’ collision detection algorithm

In [7, 9], Stevens introduced a collision detection algorithm. The algorithm builds on two
observations. One is that there are fewer message differences that can cause collision attacks. The
other is that the current differential path used in collision attacks has fixed differences in the working
state of some steps. For MD5, there are 223 classes of message difference δM, step t, and working
state δWS t = (Qt−3,Qt−2,Qt,Qt+1). One can find more details in Algorithm 1. The average detection
complexity is 224 times the complexity of the compression operator of MD5.

Algorithm 1 Stevens’ collision detection algorithm
Input: padded and split message blocks M0, ...,MN−1.
Output: True if a near-collision or pseudo-collision is detected and False otherwise.

1: Let IHV0 be the initial chaining values.
2: for k=0 to N-1 do
3: WS 0 = IHVk.
4: Calculate all working states WS 1, ...,WS 64 and IHVk+1 = IHVk + WS 64.
5: for each (δM, t, δWS t) do
6: Let M′

k = Mk + δM and WS ′t = WS t + δWS t.
7: Calculate WS ′t−1, ...,WS ′0 backward and WS ′t+1, ...,WS ′64 forward.
8: Let IHV ′k = WS ′0 and IHV ′k+1 = IHV ′k + WS ′64.
9: if IHV ′k+1 = IHVk+1 then

10: return True. //Mk and M′
k is a near-collision or pseudo-collision block pair

11: end if
12: end for
13: end for
14: return False

2.2.2. Shen’s collision detection algorithm

In [11], Shen et al. proposed an improved collision detection algorithm of MD5 using unavoidable
conditions. They used the properties of MD5 and found that the SCs in the last round can be seen
as unavoidable conditions. It is based on the observation that the corresponding SCs always remain
the same once the input differences are fixed. Based on the SCCs, the 223 different classes are split
into four sets, namely, distinguishable set (DS), individual checked set (ICS), non-distinguishable set
(NDS), and discard set. The classes within each element in DS have identical SCCs. The same applies

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2022

to the classes within each element in ICS. The SCs at the 31th bit are called main SCs (mSCs). The
SCs at the 5th, 9th, 14th, or 20th bit are called auxiliary SCs (aSCs). Elements in NDS do not have
enough SCs, and elements in the discard set are not appropriate for building a collision attack. The
details of the algorithm are described in Algorithm 2. 126 classes in DS and ICS contribute to reducing
the complexity of collision detection by 71.4%. Note that each working state difference is converted to
(δQ38, δQ39, δQ40, δQ41) = (0, 0, 0, 0) (type I difference) or (δQ38, δQ39, δQ40, δQ41) = (231, 231, 231, 231)
(type II difference) in [11], where δX = X′ − X is the modular difference for 32-bit words X and X′.
Elements containing multiple message differences are as follows:

1) DS1 using type II difference: δM = 0, δM = ± (δm11 = 2b) (b ∈ {0, . . . , 31}), and δM = ±

(δm4 = 2b) (b ∈ {20, 25, 31}).
2) DS2 using type II difference: δM = (δm8 = 231) and δM = ± (δm8 = 231,m11 = 221).
3) DS3 using type II difference: δM = (δm5 = 231) and δM = (δm5 = 231, δm11 = 231).
4) DS4 using type II difference: δM = (δm14 = 231) and δM = ± (δm11 = 215, δm4 = δm14 = 231).
5) DS9 using type I difference: δM = ± (δm2 = 28, δm14 = 231), and δM = ± (δm2 = 28, δm11 = 215,

δm4 = δm14 = 231).
6) DS13 using type I difference: δM = ± (δm5 = 210), δM = ± (δm5 = 210, δm11 = 221), and δM = ±

(δm5 = 210, δm11 = 231).
7) ICS2 using type I difference: δM = (δm14 = 231) and δM = ± (δm11 = 215, δm4 = δm14 = 231).
8) ICS3 using type I difference: δM = (δm5 = 231), δM = (δm5 = 231, δm11 = 231), and δM =

(δm5 = 231, δm8 = 231).
9) ICS8 using type II difference: δM = ± (δm5 = 210), δM = ± (δm5 = 210, δm11 = 221), and δM = ±

(δm5 = 210, δm11 = 231).

The classes in NDS are as follows:

1) Using type I difference: δM = ± (δm11 = 2b) (b ∈ {0, . . . , 31}), δM = ± (δm4 = 2b) (b ∈
{20, 25, 31}), δM = ± (δm8 = 2b) (b ∈ {25, 31}), and δM = ± (δm8 = 231, δm11 = 221).

2) Using type II difference: δM = ± (δm2 = 28, δm14 = 231), δM = ± (δm6 = 28, δm9 = δm15 = 231),
and δM = ± (δm2 = 28, δm11 = 215, δm4 = δm14 = 231).

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2023

Algorithm 2 Shen’s collision detection algorithm
Input: padded and split message blocks M0, ...,MN−1.
Output: True if a near-collision or pseudo-collision is detected and False otherwise.

1: Let IHV0 be the initial chaining values.
2: for k=0 to N-1 do
3: (Q−3,Q0,Q−1,Q−2) = IHVk.
4: Calculate Q1, ...,Q64 and IHVk+1.
5: Obtain mS Cs = Q46[31]‖...‖Q59[31] and aS Csb = Q46[b]‖...‖Q59[b] (b = 5, 9, 14, 20).
6: if mSCs is one of the SCs of a element E in DS or mSCs and aS Csb are one of the SCs of a

element E in ICS then
7: for each (δM, δWS 41) in E do
8: Calculate IHV ′k+1 and IHVk+1 using δM and δWS 41.
9: if IHV ′k+1 = IHVk+1 then

10: return True.
11: end if
12: end for
13: end if
14: for each element E in NDS do
15: for each (δM, δWS 41) in E do
16: Calculate IHV ′k+1 and IHVk+1 using δM and δWS 41.
17: if IHV ′k+1 = IHVk+1 then
18: return True.
19: end if
20: end for
21: end for
22: end for
23: return False

3. Improved classification

3.1. Properties of MD5

In this subsection, we describe the properties of the Boolean function of the second round. Let
F(A, B,C) = (C ∧ A) ⊕ (C ∧ B) and F(A′, B′,C′) = (C′ ∧ A′) ⊕ (C′ ∧ B′) where A, B, C, A′, B′ and C′

are 1-bit Boolean variables. Let ∆K = K′ − K (K ∈ {A, B,C}) and ∆F = F(A′, B′,C′) − F(A, B,C). We
can get the following property.
Property 1. If ∆A , 0, ∆B = 0, and ∆C = 0, then ∆F = 0 if and only if C = C′ = 0. If ∆A = 0,
∆B , 0, and ∆C = 0, then ∆F = 0 if and only if C = C′ = 1. If ∆A = 0, ∆B = 0, and ∆C , 0, then
∆F = 0 if and only if A = B. If ∆A , 0, ∆B , 0, and ∆C , 0, then ∆F = 0 if and only if ∆A , ∆B,
∆F = 1 or −1 if and only if ∆A = ∆B.

Proof. According to the truth table of ∆F, the property is easily derived. Note that ∆A = ∆B means
that A = B and A′ = B′; ∆A , ∆B means that A , B and A′ , B′.

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2024

When bit length is extended to 32-bit, the properties of the Boolean function F(Qt,Qt−1,Qt−2) =

(Qt−2∧Qt)⊕(Qt−2∧Qt−1) can be summarized as follows based on property 1. Let ∆X = (X′[i]−X[i])N−1
i=0

be the signed bitwise difference and X[i] indicate to take the i-th bit of X.
Property 2. If (δQt, δQt−1, δQt−2) = (2b, 0, 0) and δFt = 0, then Qt−2[b] = 0.

Proof. (δQt, δQt−1, δQt−2) = (2b, 0, 0) means that ∆Qt[b] , 0, ∆Qt−1[b] = 0 and ∆Qt−2[b] = 0. δFt = 0
means that ∆Ft[i] = 0 (0 ≤ i ≤ 31). According to property 1, Qt−2[b] = 0.

Property 3. If (δQt, δQt−1, δQt−2) = (0, 2b, 0) and δFt = 0, then Qt−2[b] = 1.

Proof. (δQt, δQt−1, δQt−2) = (0, 2b, 0) means that ∆Qt[b] = 0, ∆Qt−1[b] , 0 and ∆Qt−2[b] = 0. δFt = 0
means that ∆Ft[i] = 0 (0 ≤ i ≤ 31). According to property 1, Qt−2[b] = 1.

Property 4. If (δQt, δQt−1, δQt−2) = (0, 0, 2b) and δFt = 0, then Qt[b] = Qt−1[b].

Proof. (δQt, δQt−1, δQt−2) = (0, 0, 2b) means that ∆Qt[b] = 0, ∆Qt−1[b] = 0 and ∆Qt−2[b] , 0. δFt = 0
means that ∆Ft[i] = 0 (0 ≤ i ≤ 31). According to property 1, Qt[b] = Qt−1[b].

Property 5. If (δQt, δQt−1, δQt−2) = (2b, 2b, 2b) and δFt = 0, then ∆Qt[b] , ∆Qt−1[b].

Proof. (δQt, δQt−1, δQt−2) = (2b, 2b, 2b) means that ∆Qt[b] , 0, ∆Qt−1[b] , 0 and ∆Qt−2[b] , 0.
δFt = 0 means that ∆Ft[i] = 0 (0 ≤ i ≤ 31). According to property 1, ∆Qt[b] , ∆Qt−1[b].

Property 6. If (δQt, δQt−1, δQt−2) = (2b, 2b, 2b) and δFt = ± 2b, then ∆Qt[b] = ∆Qt−1[b].

Proof. (δQt, δQt−1, δQt−2) = (2b, 2b, 2b) means that ∆Qt[b] , 0, ∆Qt−1[b] , 0 and ∆Qt−2[b] , 0.
δFt = ± 2b means that ∆Ft[b] , 0. According to property 1, ∆Qt[b] = ∆Qt−1[b].

3.2. Additional sufficient conditions

The conditions in the differential path must be satisfied for a collision attack. Thus, the success
probability of a collision attack depends on the number of conditions. It is easy to fulfill almost all
conditions in the first 25 steps with message modification techniques. Conditions in the remaining steps
are randomly satisfied. We only choose SCs between steps 31 and 28 as ASCs. Because conditions in
the second round are more complex than conditions in the last round, we choose the part with relatively
few simple conditions. In this subsection, we describe how to deduce ASCs.

Due to the fixed chaining value difference, we start from step 40 using Eq (2.3) to calculate the Qt−3

reversely with linearizing step 40 to step 32, and we deduce the conditions from step 31 to step 28. In
Eq (2.3), if δQt+1 − δQt , 0 then RR(δQt+1 − δQt,Rt) will rotate the difference to another bit position,
which may increase the number of conditions. In the following, we refer to δQt+1 − δQt , 0 as the
subtraction difference. Support δQt = ± 2b and δQk (k ∈ {. . . , t− 1} ∪ {t + 1, . . .}) is the chaining values
adjacent to Qt. There are roughly two ways to deal with the subtraction difference:

1) If there is no difference at bit position b in δQk, then a good choice is to eliminate the difference
± 2b at steps t + 2, t + 1, and t according to properties 2–4, respectively. If not eliminated, the
number of conditions will increase owing to the introduced difference at bit position b. Note that
the subtraction difference occurs twice in either case.

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2025

2) If there are consecutive differences at bit position b in δQk, then we can eliminate the subtraction
difference according to properties 5 and 6, namely, keeping the difference at bit position b. Thus,
no conditions will be introduced because of the subtraction difference except for the initial and
last subtraction difference.

According to the two ways, we deduce the conditions of a high probability differential path with
properties 2 to 6. Note that the high bit position conditions may be eliminated because of carrying
expansion.

Depending on ASCs, we find that DS9, ICS2, and ICS3 can be subdivided. DS1, DS2, DS3, DS4,
DS13, and ICS8 cannot be subdivided. The reasons are as follows. The conditions of elements in DS1
are too complicated. After removing the repeated SCs, the number of remaining conditions of elements
in DS2, DS3, and ICS8 is less than two. Besides, DS4 and DS13 have less than three SCs.

The elements in NDS that have enough SCs to be distinguished are as follows: δM = ± (δm8 = 225)
including two classes using type I difference, δM = (δm8 = 231) including one class using type I
difference, δM = ±(δm6 = 28, δm9 = δm15 = 231) including two classes using type II difference, and
δM = ± (δm2 = 28, δm14 = 231) including two classes using type II difference. All of them may have
SCs located at the 31th, 27th, 22th, 17th, 11th, or 8th bits. The ASCs at the 31th bit are called main
ASCs. The ASCs at other bit locations are called auxiliary ASCs. The other elements in NDS do not
have enough SCs. The conditions of δM = ± (δm11 = 2b) (b ∈ {0, . . . , 31}), δM = ± (δm4 = 2b) (b ∈
{20, 25, 31}), and δM = ± (δm8 = 231, δm11 = 221) (b ∈ {0, . . . , 31}) using type I difference are too
complex, and the number of SCs is less than four. δM = ± (δm2 = 28, δm11 = 215, δm4 = δm14 = 231)
using type II difference has just four SCs.

3.2.1. The subdivided set

We add the classes in DS9, ICS2, and ICS3 to the subdivided set, and the details are as follows.

1) DS9 element has four classes and uses type I difference. It is divided into two subsets:

(a) DS9 1. For the message differences δM = ± (δm2 = 28, δm14 = 231), chaining value
differences are δQt = 231 (31 ≤ t ≤ 32), δQt = 0 (t ∈ {30, 28}), δQ29 = ± 227, δQ27 = ± 217,
and unavoidable sufficient conditions are Q30[27] = Q31[27], Q27[8] = Q28[8], Q28[27] = 1.
Note that at step 29, RR(δQ30 − δQ29, 9) = ± 218 and δQ27 can be eliminated or retained;
δm2 = ± 28 is introduced. Therefore, δQ26 = ± 218 ± 217± 28 or ± 218± 28. δQ25 has ± 222

because of δQ28 − δQ27 , 0.
(b) DS9 2. For the message differences δM = ± (δm2 = 28, δm11 = 215, δm4 = δm14 = 231),

chaining value differences are δQt = 231 (27 ≤ t ≤ 35), δQ26 = 231± 28, δQ25 = ± 231, and
unavoidable sufficient conditions are Qt[31] = Qt+1[31] (27 ≤ t ≤ 30), Q27[8] = Q28[8].

2) ICS2 element has three classes and uses type I difference. It is divided into two subsets:

(a) ICS2 1. For the message difference δM = (δm14 = 231), chaining value differences are
δQt = 231 (31 ≤ t ≤ 32), δQt = 0 (t ∈ {30, 28}), δQ29 = ± 227, δQ27 = ± 217, and unavoidable
sufficient conditions are Q30[27] = Q31[27], Q28[27] = 1. Note that the calculation of δQ26

and δQ25 is similar to the calculation in DS9 1 except for no δm2 = ± 28.
(b) ICS2 2. For the message difference δM = ± (δm11 = 215, δm4 = δm14 = 231), chaining

value differences are δQt = 231 (25 ≤ t ≤ 34), and unavoidable sufficient conditions are
Qt[31] = Qt+1[31] (27 ≤ t ≤ 30).

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2026

3) ICS3 element has three classes and uses type I difference. It is divided into three subsets:

(a) ICS3 1. For the message difference δM = (δm5 = 231), chaining value differences are
δQt = 0 (t ∈ {30, 31}), δQt = 231 (27 ≤ t ≤ 29), δQ26 = 231 ± 222, δQ25 = 231, and
unavoidable sufficient conditions are Q30[31] , Q31[31], Qt[31] = Qt+1[31] (27 ≤ t ≤ 28),
Q27[22] = Q28[22].

(b) ICS3 2. For the message difference δM = (δm5 = 231, δm11 = 231), chaining value
differences are δQt = 231 (26 ≤ t ≤ 27, 29 ≤ t ≤ 31), δQ28 = 231 ± 211, δQ25 = 231 ± 26, and
unavoidable sufficient conditions are Qt[31] = Qt+1[31] (27 ≤ t ≤ 30), Q29[11] = Q30[11],
Q27[11] = 1, Q26[11] = 0.

(c) ICS3 3. For the message difference δM = (δm5 = 231, δm8 = 231), chaining value differences
are δQ30 = 231, δQ27 = ± 217, δQ26 = ± 222, δQt = 0 (t ∈ {25, 28, 29, 31}), and unavoidable
sufficient conditions are Q29[31] = 1, Q28[31] = 0, Q28[17] = Q29[17], Q26[17] = 1.

3.2.2. The new individual checked set

We add seven classes to the new individual checked set (NICS). The SCs of each element consist of
the SCCs in the last 16 steps and ASCs to ensure enough SCs. The details of the new elements are as
follows:

1) NICS1 element has two classes and uses type I difference. Message difference is δM = ± (δm8 =

225). Chaining value differences are δQt = 231 ( 57 ≤ t ≤ 59), δQt = ± 225 ( 29 ≤ t ≤ 30).
Unavoidable sufficient conditions are Q57[31] , Q59[31], Q56[31] = 1, Q55[31] = 0, Q28[11] =

Q29[11], Q26[11] = 1. Note that δQ27 has ± 211 owing to δQ31 − δQ30 , 0. Because at step 31, we
get δQ28 = ± 225 or 0, the differences of δQt ( 25 ≤ t ≤ 28) at 25th bit are uncertain.

2) NICS2 element has one class and uses type I difference. Message difference is δM = (δm8 = 231).
Chaining value differences are δQt = 231 (25 ≤ t ≤ 26, 28 ≤ t ≤ 30), δQt = ± 25 (57 ≤ t ≤ 59),
δQ27 = 231 ± 217. Unavoidable sufficient conditions are Q57[5] , Q59[5], Q56[5] = 1, Q55[5] = 0,
Qt[31] = Qt+1[31] (27 ≤ t ≤ 29), Q28[17] = Q29[17], Q26[17] = 1.

3) NICS3 element has two classes and uses type II difference. Message difference is δM = ±

(δm6 = 28, δm9 = δm15 = 231). Chaining value differences are δQ59 = ± 223± 29, δQ58 = ±

29, δQt = 231 (25 ≤ t ≤ 43). Unavoidable sufficient conditions are Q57[9] = 1, Q56[9] = 0,
Qt[31] = Qt+1[31] (27 ≤ t ≤ 30).

4) NICS4 element has two classes and uses type II difference. Message difference is δM = ±

(δm2 = 28, δm14 = 231). Chaining value differences are δQt = 231 (30 ≤ t ≤ 47), δQ29 = 231 ± 227,
δQ27 = ± 217, δQ26 = ± 28, δQ25 = ± 222. Unavoidable sufficient conditions are Q49[31] = 0,
Q48[31] = 1, Q30[27] = Q31[27], Q28[27] = 1, Q27[8] = Q28[8]. The difference on 31th bit of
δQt (25 ≤ t ≤ 28) are uncertain. Because at step 29, δQ27 = ± 217 can be eliminated or retained,
the differences of δQ26 at 17th bit are undetermined.

3.3. Our new algorithm and implementation

In this subsection, we discuss how ASCs can be integrated into Shen’s algorithm. Our new
algorithm is described in Algorithm 3. Details are as follows. In [11], all possible bit values are listed
in a table using a hexadecimal representation; the key bits determine the rest of the bits; the bit mask
indicates those positions where the SCs are. We use the same method to represent ASCs. Because

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2027

there are only 6 bits, we use binary to represent them. The most significant bit is δQ26[b], and the
least significant bit is δQ31[b] (b ∈ {31, 27, 22, 17, 11, 8}). For example, ASCs of ICS 2 are
Qt[31] = Qt+1[31] (27 ≤ t ≤ 30). They are respected by two binary values, 0b000000 and 0b011111.
The bit mask is 0b011111. We choose Q30[31] and Q31[31] as key bits. Obviously,
Q30[31] = Q31[31] = 0 indicates 0b000000; Q30[31] = Q31[31] = 1 indicates 0b011111. Two bits are
used as they determine up to four different values.

Algorithm 3 Algorithm integrated with ASC
Input: padded and split message blocks M0, ...,MN−1.
Output: True if a near-collision or pseudo-collision is detected and False otherwise.

1: Let IHV0 be the initial chaining values.
2: for k=0 to N-1 do
3: (Q−3,Q0,Q−1,Q−2) = IHVk.
4: Calculate Q1, ...,Q64 and IHVk+1.
5: Obtain mS Cs = Q46[31]‖...‖Q59[31], aS Csb = Q46[b]‖...‖Q59[b] (b = 5, 9, 14, 20) and AS Csb =

Q26[b]‖...‖Q31[b] (b = 31, 27, 22, 17, 11, 8).
6: if mSCs is one of the SCs of a element E in DS or mSCs and aS Csb are one of the SCs of a

element E in ICS or mS Cs, aS Csb and AS Csb is one of the SCs of a element E in NICS then
7: if E belongs to the Subdivided Set then
8: according to AS Csb, choose δM and δWS 41 and calculate IHV ′k+1 and IHVk+1.
9: if IHV ′k+1 = IHVk+1 then

10: return True.
11: end if
12: else
13: for each (δM, δWS 41) in E do
14: Calculate IHV ′k+1 and IHVk+1 using δM and δWS 41.
15: if IHV ′k+1 = IHVk+1 then
16: return True.
17: end if
18: end for
19: end if
20: end if
21: for each element E in NDS do
22: for each (δM, δWS 41) in E do
23: Calculate IHV ′k+1 and IHVk+1 using δM and δWS 41 in E.
24: if IHV ′k+1 = IHVk+1 then
25: return True.
26: end if
27: end for
28: end for
29: end for
30: return False

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2028

For the elements in the subdivided set, conditions are specified using key bits according to the table
of SCCs in [11]. Then, ASCs are used to determine which message difference these conditions belong
to. Therefore, it is no longer necessary to calculate the IHVout of all messages difference, in turn, to
detect a collision. ASCs of the subdivided set are listed in Table 2. The column where the value of
SCs is located is determined by the key bits. For instance, the key bits are 11, which means column 3.
Note that the condition Q27[8] = Q28[8] exists both in DS9 1 and DS9 2, so it is not used. DS9 and
ICS2 conditions are identical in Table 2, so they share a 2×5 array in implementation. ICS3 conditions
are saved in a 6 × 5 array. For the key bits, ICS3 1∗ and ICS3 2† are Q29[b] and Q30[b]; ICS3 1† and
ICS3 3† are Q27[b] and Q28[b]; ICS3 3∗ are Q28[b] and Q29[b]; all others are Q30[b] and Q31[b].

Table 2. ASCs of the subdivided set.

Element C[i][0] C[i][1] C[i][2] C[i][3] Bit mask

DS9 1 0b001000 -1 -1 0b001011 0b001011

DS9 2 0b000000 -1 -1 0b011111 0b011111

ICS2 1 0b001000 -1 -1 0b001011 0b001011

ICS2 2 0b000000 -1 -1 0b011111 0b011111

ICS3 1∗ 0b000001 0b000010 0b011101 0b011110 0b011111

ICS3 1† 0b000000 -1 -1 0b011000 0b011000

ICS3 2∗ 0b000000 -1 -1 0b011111 0b011111

ICS3 2† 0b010000 -1 -1 0b010110 0b110110

ICS3 3∗ -1 0b000100 -1 -1 0b001100

ICS3 3† 0b100000 -1 -1 0b111000 0b111000
∗ is the main ASCs. † is the auxiliary ASCs. -1 denotes that there is no value.

We add NICS to the end of ICS in the original algorithm. Namely, after checking ICS, the algorithm
will process the elements in NICS. SCs in NICS are listed in Table 3. Note that the values of NICS1‡

and NICS1† are identical to NICS2‡ and NICS2†, respectively. They are merged in the implementation.
For the key bits, NICS1†, NICS2∗, NICS2† and NICS3∗ are Q28[b] and Q29[b]; NICS4∗ are Q29[b] and
Q30[b]; NICS4† are Q27[b] and Q28[b]; NICS1‡ and NICS2‡ are Q57[b] and Q59[b].

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2029

Table 3. SCCs and ASCs of the new individual checked set.

Element C[i][0] C[i][1] C[i][2] C[i][3] Bit mask

NICS1‡ -1 0x00009 0x0000c -1 0x0001d

NICS1† 0b100000 -1 -1 0b101100 0b101100

NICS2‡ -1 0x00009 0x0000c -1 0x0001d

NICS2∗ 0b000000 -1 -1 0b011110 0b011110

NICS2† 0b100000 -1 -1 0b101100 0b101100

NICS3‡ 0x00004 -1 -1 -1 0x00004

NICS3∗ 0b000000 -1 -1 0b011111 0b011111

NICS4‡ 0x20000 -1 -1 -1 0x20000

NICS4∗ 0b001000 -1 -1 0b001011 0b001011

NICS4† 0b000000 -1 -1 0b011000 0b011000

‡ is the SCCs of the last 16 steps.

4. Experiments

4.1. Verification of ASCs

We use “HashClash” developed by Stevens to verify whether ASCs exist in the differential path.
“HashClash” using the MIT License is a tool to construct differential paths for MD5 and SHA-1, also
including the chosen-prefix collision attack on MD5. It consists of three parts, i.e., forward extension,
backward extension, and connection. One can find the source code of “HashClash” in [13].

To achieve the maximum complexity of conditions as much as possible, we set the parameter as
follows:

1) Autobalance = 1, 000, 000. The parameter limits the maximum number of paths that can be saved
per step;

2) Estimate = 4. The program will evaluate the maximum number of conditions under 4×1, 000, 000
available paths.

3) Maxweight = 32 and Maxsdrs = 2000. Maxweight controls the carrying extension length;
Maxsdrs limits the total number of ∆Q. Such a setting means no limitation to carrying extension
of δQ.

Other parameters are the default values. The backward program of MD5 is used to construct
differential paths starting from step 40 to step 16. After observing the paths with the minimum and
maximum conditions, we found that all ASCs existed. This result suggests that the conditions found
are sufficient. One can find the results and our new algorithm code in https://github.com/

Finsenty54/Improved-Collision-Detection-Of-MD5.

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2030

4.2. Complexity

The algorithm of Shen et al. takes 78.44 times the runtime of hashing a message block to detect
collisions in theory. In this paper, as seven classes can be distinguished which make a major
contribution to improving the detection efficiency, the total complexity of the new collision algorithm
is about 71.44 times of computing the MD5 hash of a message block. Compared with the original
algorithm, the complexity is reduced by 8.92%.

Table 4. Comparison of the original and our new algorithm.

Experiments
Generate random
message [×
106/ms]

Standard MD5
hash [× 106/ms]

Collision detection
[× 108/ms]

Average check number
[multiples of one
hashing operation]

Original
test1

3.27323 5.11324 1.35930 72.0957

Original
test2

3.27849 5.10581 1.35466 72.3395

Original
test3

3.26173 5.09832 1.36322 72.4496

New test1 3.22541 5.07214 1.26397 66.6971

New test2 3.25677 5.11430 1.27354 66.4313

New test3 3.21775 5.07999 1.26165 66.0214

The C++ code of the collision detection algorithm with ASCs was compiled by g++ 10.2.1 under -
O3 optimization and was run on AMD Ryzen 5 2600 at 3.40 GHz under Parrot OS 4.11. We conducted
three experiments on the original code of Shen et al. and our code, respectively. The total number of
messages generated is 224. The results are shown in Table 4. The average checks number of the original
algorithm is 72.2949 in contrast to 66.3834 of our new algorithm. The experiments show that it reduces
the runtime by 8.18% with ASCs.

5. Conclusions

In this paper, we derive the sufficient conditions between steps 31 and 28 of MD5 based on the
properties of the Boolean function of the second round and describe the reverse deduction ways.
Combining the additional sufficient conditions, we improve Shen’s detection algorithm by
subdividing three sets and distinguishing seven more classes. After adding the subdivided set and
NICS to their algorithm, we get our new detection algorithm. The cost of collision detection of MD5
is reduced by 8.18%. This study further supports the idea of using unavoidable conditions to
accelerate collision detection in previous research. The experimental results of Shen’s algorithm differ
from those claimed in [11]. This inconsistency may be due to the various experimental setting.

Electronic Research Archive Volume 30, Issue 6, 2018–2032.



2031

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China [Grant
No. LQ20F020019] and the Technology on Communication Security Laboratory [Grant No.
6142103190105].

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. I. B. Damgård, A design principle for hash functions, in Advances in Cryptology —
CRYPTO’ 89 Proceedings (ed. G. Brassard), Springer, New York, NY, (1990), 416–427.
https://doi.org/10.1007/0-387-34805-0 39

2. R. C. Merkle, One way hash functions and DES, in Advances in Cryptology —
CRYPTO’ 89 Proceedings (ed. G. Brassard), Springer, New York, NY, (1990), 428–446.
https://doi.org/10.1007/0-387-34805-0 40

3. X. Wang, H. Yu, How to break MD5 and other hash functions, in Advances in
Cryptology – EUROCRYPT 2005 (ed. R. Cramer), Springer, Berlin, Heidelberg, (2005), 19–35.
https://doi.org/10.1007/11426639 2

4. A. D. Dwivedi, S. Dhar, G. Srivastava, R. Singh, Cryptanalysis of round-reduced fantomas, robin
and iSCREAM, Cryptography, 3 (2019), 4. https://doi.org/10.3390/cryptography3010004

5. M. Stevens, A. Lenstra, B. de Weger, Chosen-prefix collisions for MD5 and colliding X.509
certificates for different identities, in Advances in Cryptology - EUROCRYPT 2007 (ed. M. Naor),
Springer, Berlin, Heidelberg, (2007), 1–22. https://doi.org/10.1007/978-3-540-72540-4 1

6. M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, et al., Short
chosen-prefix collisions for MD5 and the creation of a rogue CA certificate, in Advances
in Cryptology - CRYPTO 2009 (ed. S. Halevi), Springer, Berlin, Heidelberg, (2009), 55–69.
https://doi.org/10.1007/978-3-642-03356-8 4

7. M. Stevens, Counter-cryptanalysis, in Advances in Cryptology – CRYPTO 2013 (eds. R. Canetti
and J. A. Garay), Springer, Berlin, Heidelberg, (2013), 129–146. https://doi.org/10.1007/978-3-
642-40041-4 8

8. X. Wang, H. Yu, W. Wang, H. Zhang, T. Zhan, Cryptanalysis on HMAC/NMAC-MD5 and MD5-
MAC, in Advances in Cryptology - EUROCRYPT 2009 (ed. A. Joux), Springer, Berlin, Heidelberg,
(2009), 121–133. https://doi.org/10.1007/978-3-642-01001-9 7

9. M. Stevens, Attacks on hash functions and applications, Ph.D thesis, Leiden University in Leiden,
2012. https://doi.org/10.6100/ir749233

10. M. Stevens, D. Shumow, Speeding up detection of SHA-1 collision attacks using unavoidable
attack conditions, in 26th USENIX Security Symposium (USENIX Security 17), USENIX
Association, Vancouver, BC, (2017), 881–897. https://doi.org/10.5555/3241189.3241259

Electronic Research Archive Volume 30, Issue 6, 2018–2032.

http://dx.doi.org/https://doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/https://doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/https://doi.org/10.1007/11426639_2
http://dx.doi.org/https://doi.org/10.3390/cryptography3010004
http://dx.doi.org/https://doi.org/10.1007/978-3-540-72540-4_1
http://dx.doi.org/https://doi.org/10.1007/978-3-642-03356-8_4
http://dx.doi.org/https://doi.org/10.1007/978-3-642-40041-4_8
http://dx.doi.org/https://doi.org/10.1007/978-3-642-40041-4_8
http://dx.doi.org/https://doi.org/10.1007/978-3-642-01001-9_7
http://dx.doi.org/https://doi.org/10.6100/ir749233
http://dx.doi.org/https://doi.org/10.5555/3241189.3241259


2032

11. Y. Shen, T. Wu, G. Wang, X. Dong, H. Qian, Improved collision detection of MD5 using sufficient
condition combination, Comput. J., (2021). https://doi.org/10.1093/comjnl/bxab109

12. R. L. Rivest, The MD5 message-digest algorithm, RFC, 1321 (1992), 1–21.
https://doi.org/10.17487/RFC1321

13. M. Stevens, Project HashClash - MD5 & SHA-1 cryptanalytic toolbox [Internet]. Available from:
https://github.com/cr-marcstevens/hashclash.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 6, 2018–2032.

http://dx.doi.org/https://doi.org/10.1093/comjnl/bxab109
http://dx.doi.org/https://doi.org/10.17487/RFC1321
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Description of MD5
	Related works
	Stevens’ collision detection algorithm
	Shen’s collision detection algorithm


	Improved classification
	Properties of MD5
	Additional sufficient conditions
	The subdivided set
	The new individual checked set

	Our new algorithm and implementation

	Experiments
	Verification of ASCs
	Complexity

	Conclusions

