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Abstract: Epilepsy is a complex phenomena of a system of highly intensive and synchronized neu-
rons simultaneously firing which can be traced to spatial and temporal patterns. Seizures are a well
known physical feature for all types of epileptic disorders. The rhythms, patterns, and oscillatory
dynamics explain the mechanistic nature of neurons especially in absence seizures. Previous models
such as Wilson-Cowan (1973), introduced brain models showing the dynamics of a network of neurons
consisting of excitatory and inhibitory neurons. Taylor et al. (2014) then adapted the Wilson-Cowan
model to epileptic seizures using a thalamo-cortical based theory. Fan et al. (2018) projects that thala-
mic reticulus nuclei control spike wave discharges specifically in absence seizures. We identify brain
activity patterns specific to Glucose (G1D) Transport Deficiency Epilepsy in a network model based
on electroencephalogram device (EEG) data. Additionally, we study the EEG patterns to identify the
plausible mechanism that causes G1D epileptic behavior. Our coupled thalamo-cortical model goes
beyond a connection in a logical unidirectional pattern shown by Fan or in a bidirectional small world
pattern. Our model is a network based on paired correlation of EEG signals more analogous to realistic
seizure activity. Using our model, we are able to study stability analysis for equilibrium and periodic
behavior. We also identify parameter values which cause synchronized activity or more stable activity.
Lastly, we identify a synchronization index and sensitivity analysis regarding parameters that directly
affect Spike Wave Discharges and other spiking behavior. We will show how our 32-unit data-driven
network model reflects G1D seizure dynamics and discuss the limitations of the model.
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1. Introduction

Epilepsy is a neurological disorder where neuron activity is highly intensive and synchronized
which causes seizures. The abnormal behavior is classically considered to originate from an ”im-
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balance between excitation and inhibition in a localized region, multiple brain areas or the whole
brain” [1]. Furthermore as described in animal models of epilepsy, epilepsy can be caused by persis-
tent long-term alterations in death of presynaptic connections in addition to synaptic fluid-filled vacuole
recycling. For children, epileptic activity lies in the process of how the brain matures. A brain that is
not fully formed or matured has the tendency to skew towards increased excitation, specifically mech-
anisms at the molecular level like the depolarization (increasingly non-negative voltage) of GABA and
overly expressive NDMA (N-methyl-D-aspartate) receptors which are responsible for memory and
learning impairments both cause excitation within the neuronal network. G1D Transporter Deficiency
Epilepsy, also known as the GLUT1 Deficiency Syndrome, is a disorder which affects the nervous
system. G1D is caused by mutations in the SLC2A1 gene. This gene gives instructions to produce
Glucose Transporter Protein type 1 (GLUT1). Most importantly, the GLUT1 protein moves glucose
between glia (cells within the brain), which protect and maintain neurons. G1D can be identified by
the high number of seizures during the infant stage which is accompanied by rapid and irregular eye
movement. Most are visually recognized when the size of the brain and skull grow at a very slow
rate. As a result, the patient usually has a smaller head size, otherwise known as microcephaly. Due to
microcephaly, G1D patients do experience developmental delays and mental/intellectual incapabilities.

Common Neurological issues are muscle tenseness which causes stiffness, ataxia or complications
with correlating body movements, dysarthria which are speech difficulties, lethargy, headaches, muscle
twitches mainly during times of fasting, and confusion.

GLUT1 then transports sugar into the cells from the blood or other cells to use as fuel. G1D is
diagnosed through a blood test. GLUT1 is responsible for moving glucose around as the brain’s main
energy source, specifically within the blood-brain barrier, which gravely affects developmental growth.
According to the National Institute of Health, G1D is a very rare disorder. Only about 500 cases have
been reported across the world since its discovery in 1991. However, many researchers believe that
this means the disorder is under diagnosed due to its similar symptoms to other neurological disorders.

Our starting point is considering full brain EEG from a patient with Glucose Transport Deficiency
Type I Epilepsy (G1D). G1D is a genetic disorder where epilepsy is the main symptom along with
microcephaly. G1D has a specific type of epilepsy where the patients suffer from absence seizures. We
developed an ODE model adapted from the Taylor model where we added correlation coefficients and
coupling strength terms. Our goal to understand how we can analyze G1D from an EEG data set aiming
to learn specific identifying characteristics due to its rarity and high risk of misdiagnosis. Finding a
standard set of data patterns is quite complex. We strive to give the fundamental characteristics of data
seen from EEG electrodes of a patient with G1D.

Clinically, researchers have found a way to produce imaging bio-markers of spike-and-wave dis-
charges from patients with G1D by using fMRI informed EEG data. In this case, with the use of
EEG data, we extract a correlation matrix and base our equations within the thalamocortical model
to give dynamic characters of the neuronal behavior. Our network relation is bidirectional due to the
correlation coefficients.

We want to study the neuron patterns [2] to identify synchronization mechanisms of this brain
disorder. Historically, all four neuronal populations (Pyramidal, Inhibitory, Thalamic Reticular, and
Specific Relay) communicate at different time scales. To verify our model, we will use the EEG data
in a case study where sample data was acquired in UT Southwestern Medical Center in Dallas) to
compare Spike Wave Discharges (SWD) and swindle neuronal behavior within real patient data given
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that an underdeveloped brain is reflected on EEG data.
In thalamic sleep rhythms and other neuronal systems in the brain [3–10], neurons have been

observed experimentally to engage in a rhythmic pattern of behavior referred to as bursting. In bursting,
neuronal activity alternates between active phases, characterized by large amplitude oscillations, and
quiescent phases, associated with oscillations of much smaller amplitudes (see Figures 5,6 below). In
this case, an absence seizure which also stems from the thalamus augments the burst a bit by adding
noise to the onset of a burst causing small and large oscillatory behavior.

Mathematically, the complications involved in busting are related to a dynamical phenomenon
known as delayed bifurcation or delay of stability loss, defined by Suczynski [11]. Very similar
activity is seen regarding the G1D model. Solutions behave differently with slowly changing param-
eters at each time step. In Figure 10, we see Thalamo-Cortical oscillations whereas no spike in the
coupled unit model. Whereas, as k6 grows larger, the coupled unit model exhibits very large oscila-
tory behavior and the single-unit model continues with periodic fast and low-threshold spiking. The
averages between the cortical or thalamical units tend to stay close to a steady state as time increases,
then spiking begins at t = 59s. Subsequently, after a substantial time delay, solutions jump away from
steady state.

De Vries and Sherman [12] both studied the electrical behavior of coupled pancreatic β-cells with
a focus on the beneficial influence of noise. However, small random perturbations may have dramatic
effects on dynamical systems and lead to the emergence of new dynamical behaviors [13]. Stochastic
resonance is a well-known example [14,15]. The term stochastic resonance is given to a phenomenon
that is manifest in nonlinear systems whereby generally feeble input information (such as a weak
signal) can be amplified and optimized by the assistance of noise [14].

It was suggested previously that stochastic fluctuations of ion channels in the plasma membrane
are responsible for disrupting bursting behavior and transforming isolated cells to spikers, but that the
effective sharing of channels by electrically coupled cells averages the noise and allows the bursting
phenomena to appear [15]. This was later analyzed in [15,16] using mathematical modeling. In [18],
the work of Pedersen and Sorensen supports previous investigations of the channel sharing hypothesis
by the application of two recent methods, which allow an analytic treatment of stochastic effects on
the location of the saddle-node and homoclinic bifurcations that are relevant to bursting activity. The
work of Su et al. [19] also analytically characterizes the influence of noise on phase switching, in the
case of elliptic bursting dynamics.

The order of this research paper is as follows, we begin to find the correlations between different
electrode-based EEG data and incorporate Fang model to build a full network model. The full net-
work with minimal and large coupling parameter. We will then use this information to analyze the
interference terms within the behavior of the full neuronal network.

2. Model formulation

We first import EEG recording data through an MNE-toolbox and Python interface, explained in
further detail in the next section. From the Python interface we can produce a correlation matrix
between different nodes. Each node of network is built from previous knowledge of how its four
neuronal populations are intertwined. The full brain data then leads to a branch point and node graph
produced from common connections seen from correlation matrix.
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2.1. Pre-Seizure data

Neuronal regions or electrodes will be used interchangeably as the electrodes represent a spatially
localized neuronal region and not individual neurons.

Neurons form a large yet complex network. Before developing the mathematical model, we must
first observe how the brain naturally communicates. Under the assumption of a seizure free state. The
goal is to visualize how each neuron signals target specific areas elsewhere in the brain. A detection of
activity is a pattern seen, specific to a patients brain during the resting or non-seizure state.

Figure 1. Pre-Seizure Correlation Plot where the voltage dynamics of 31 electrodes is cor-
related with those of the same set of electrodes. A central electrode is used as a baseline for
each EEG. To eliminate redundant mapping, the central electrode is removed when checking
correlation. If ρ ≥ 0.7, the two electrodes are highly correlated whereas if ρ ≤ −0.7, then the
electrodes are negatively correlated. The graph has 9 distinct sections and a ”t” shape, which
may be indicative of systematic behavior amongst the different neuron types.

In Figure 1, a correlation matrix is shown for the non-seizure data. We set the central voltage as
ground zero. The rest of the network dynamics is 31 nodes. The recording data is for 2 minutes. The
correlation matrix, A ∈ R31×31 matrix where each element of the matrix is calculated by the measure of
their linear dependence between the two values based from the Pearson Correlation equation.

There are two correlation coefficient formulas used to measure the strength of the relationship be-
tween two variables. In the case of seizure and non-seizure data, Pearson was used to gauge the linear
relationship between electrodes where r changes as the strength and direction of the relationship ad-
justs. Whereas the Spearman correlation can evaluate a monotonic relationship between two variables
— Continuous or Ordinal and it is based on the ranked values for each variable rather than the raw data.
Given our model is based from raw data, the Pearson correlation formula was deemed more applicable.
The following Matlab algorithm shows how the figure was produced:

s c c p = c o r r c o e f ( n o n s e i z u r e c o r r e l a t i o n ) ;
imagesc ( s c c p )
t i t l e ( ’ Pre−S e i z u r e C o r r e l a t i o n Matr ix ’ )
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ρ(X,Y) =
1

N − 1

N∑
i=1

(
Xi − µX

σX
)(

Yi − µY

σY
) (2.1)

where X = (Xi) and Y = (Yi).

The range of the correlation coefficient ρ(X,Y) ∈ [−1, 1] where 1 is a direct positive correlation and
−1 is a direct negative correlation.

Table 1. Symbols used in Pearson Correlation equation.

Symbol
ρ(X,Y) the correlation coefficient of the relationship between the variables X and Y

Xi the values of the X-variable in column i
µX mean of the values of the X-variable
σX standard deviation of the values of the X-variable
Yi the values of the Y-variable in column i
µY mean of the values of the Y-variable
σY standard deviation of the values of the Y-variable
N number of measurements taken for X and Y

The value indicates the strength of the relationship, specifically a(i, j) is the correlation between
the voltage in electrode i and the voltage in electrode j. In our case, each vector represents average
membrane voltage of a neuronal region recorded by the electrode over a period of time.

From this correlation matrix, we are able to see how each electrode is positively correlated by a
value greater than 0 or negatively correlated, a value less than zero. We then can produce a network,
starting with a data structure graph. In Figure 2, branch points and nodes diagram depicting how each
electrode builds its network.

Each node represents an electrode or neuronal region. The branches form between each node if the
correlation value a(i, j) is greater than 0.6 or less than −0.6, our assumption is that electrode i is highly
positively or negatively correlated to electrode j, converse is true as well.

On average, each electrode connects with 9.5 other electrodes in an excitatory fashion. On the
other hand, an average of 5.8 inhibitory connections take place within this patients brain pre-seizure
EEG data. The electrode mapping for positive and negative correlation is to show initial arguments
of how well the brain synchronizes or connects when seizures are not present. All connections are a
reflection of the EEG data which tracks electrical activity on the scalp. Deeper connections between
the thalamus and cortex cannot be accurately depicted through the EEG. The diagram above shows
symbolic excitatory and inhibitory relationships between the electrodes on a microscopic level.
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(a) Positive Correlation

(b) Negative Correlation

Figure 2. Connection Graph of Non-Seizure Data: a) Positive Correlation Graph of 31 elec-
trodes with connection strength rx,y ≥ 0.6. b) Negative Correlation Graph of 31 electrodes
with connection strength rx,y ≤ −0.6.

Looking further, regarding the positive correlation graph, there are several neuronal regions that are
central or commonly interactive to excitatory behavior:

Electrode: 11,25,13,15,7,31,10,30,6,24,26

Overall, electrodes 3, 4, 6, 8, 14, 20, 22, 24, 26, 27, 28, 29, 30, 31 are the 14 electrodes whom have above
average connections which are outer nodes to the central electrodes.

Whereas the graph for negative correlations is not as linear or uniform in pattern. In this case,
electrodes 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 21, 22, 25, 26, 27, 28, 29 are the 17 electrodes whom have above
average connections. Furthermore, only 9 electrodes are well above average, meaning their number
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of connection is greater than the variance of the set of number of total connections. We use this
information as a control, a way to compare brain activity at resting state to disease state.

2.2. Seizure data

In order to see how the neurons build up their seizure network, we produced a correlation color
plot. All data is based from the work of [2]. A spectral, visual representation of the correlation matrix.
As described in section 2.1, correlation is a mutual relationship or connection between two or more
neuronal regions. It shows the level of interdependence of variable quantities. In the figure below, we
see the correlation color plot for the patient’s seizure data, recorded in 2 minutes.

Seizure Correlation Matrix
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Figure 3. A Seizure Correlation Plot between 31 electrodes. Blue implies a strong negative
correlation between two electrodes whereas yellow qualifies a strong positive correlation.
On the x-axis, the 31 electrodes are listed in order of placement according to EEG from
left to right, and same for the y-axis, from top to bottom. The darker blue implies negative
correlation whereas the lighter yellow represents a strong positive correlation.

Two neuronal regions may work together to either inhibit or excite one another, producing an in-
hibitory relationship or an excitatory relationship. Voltage quantities for one region can increase oth-
erwise known as depolarize and cause the other to decrease in voltage or hyper-polarize.

Brain activity during a seizure produces a different pattern compared to the pre-seizure pattern. A
general circular pattern is seen for the positive correlation graph, Figure 4 (top) for the seizure period.

In summary, we find that our graphs do give a useful visual as to how well the brain is functionally
connected in a healthy or non seizure activity. Yet it may not give an effective or accurate analysis of
how synchronized various brain regions are connected before and during a seizure. Each electrode is
numbered a quantitative view of how the electrodes connect at one particular instant, in a healthy and
unhealthy state. We look for most electrodes to have above average connections yet our goal would be
to pinpoint more electrode connections made during a seizure. The reason for this occurrence is we
need to calculate only at the very brief time intervals of large spike waves during the epilepsy period,
rather than a fixed time period.
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1820

(a) Positive Correlation

(b) Negative Correlation

Figure 4. Connection Graph for Seizure Data: a) Positive Correlation Graph of 31 electrodes
with connection strength rx,y ≥ 0.6. b) Negative Correlation Graph of 31 electrodes with
connection strength rx,y ≤ −0.6.

3. Full system dynamics

Our overarching goal of characterizing the seizure will be achieved through several quantitative
studies. The answer is within the following two questions:

1. What is phase synchrony?
2. Once a phase has been defined, how does one know that all channels are in synch?

Seizures are characterized by highly synchronized neuronal activity across the brain, in localized
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regions, or multiple spatially localized regions simultaneously connecting with other regions.
The full network model is based on the early work of Fang [28], yet the coupling between each

thalami-cortical unit is based on data calculated in Section 2 for functional connectivity for seizure
recording. We consider the following 31-network model:

dPY j

dt
= (hp − PY j + κ1sig(PY j) − κ2sig(IN j) + κ3sig(TC j))τ1 (3.1)

+ λ1Σi, jA(i, j)(S RN j + α2TRN j),
dIN j

dt
= (hi − IN j + κ4sig(PY j))τ2, (3.2)

dS RN j

dt
= (ht − S RN j + κ5sig(PY j) −

κ6
2

(sTRN j))τ3 + λ2Σi, jA(i, j)(PYi + INi), (3.3)

dTRN j

dt
= (hr − TRN j + κ7sig(PY j) +

κ8
2

(sS RN j) −
κ9
2

(sTRN j))τ4 (3.4)

where PY, IN, SRN, TRN represent population average voltage, and j is the index for the number of
thalami-cortical units. The couplings between each units are based on calculated correlation coefficient
from brain EEG data during seizure periods. We avoid any additional assumptions.

For reference,

Table 2. Symbols and parameter values within G1D Model.

Symbol
PY , IN, S RN, TRN Firing rates (voltage)

hp,i,t,r additive input constants
-0.35, -3.4, -2.0, -5

u j external control input into response module
-0.3/-0.01, -0.3/-0.01, 0, 0

κ1,2,3,4,5,6,7,8,9 connectivity strengths within different neuronal populations
listed below

sigPY,IN,S RN,TRN activation functions for the cortical and thalamic modules
1/(1 + 250000−(u j))

τ1,2,3,4 time scale parameters for each neuronal population
26, 1.25*26, 26*0.1, 26*0.1

A correlation matrix
s approximation function

3.1. Simulations

The large network consists of 31 units with 4 neuronal populations each with coupled terms to
connect the total 124 equations. In order to analyze a system of this size, we used MATLAB function
ODE45 to solve the system of ordinary differential equations and Mathematica NDSolve function to
detect changes in neuronal activity and based our values from those listed in Table 3. With MATLAB,
the behavior is simulated within two minutes for 100 seconds of a neuronal process. Through many
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Figure 5. Resulting dynamic behavior of full 31-unit network model for coupling over time,
approximately at the Hopf-Bifurcation point, where k6 is just over the value of 4. A compar-
ison between the model based from healthy (right) and then G1D (left) data approximately
at the bifurcation. A) The spiking behavior consists of tonic spiking. B) Initial Tonic spiking
behavior followed by self regulation which led to no behavior. Coupling has a direct affect
on data with G1D whereas little to no effect regarding healthy data.

simulations and parameter sensitivity analysis, we have substantiated the fact that k6 is the altering
parameter as seen in the Taylor model.

The network is based on actual connectivity data for seizure brain, as described in section 2. Specifi-
cally, before and after the Hopf-Bifurcation point in order to highlight the major differences in behavior.
This Hopf-Bifurcation point is first realized through Fang et al. [28–30] which has a focus on one unit.
In this paper, a build up of the Fan study focuses on the comparison from non-seizure brain network to
seizure brain network is shown below then onto the Hopf-Bifurcation point delays or lack thereof with
coupling and other mathematical techniques.

4. Full system simulation & results

4.1. Network coupling strength increase reduces network oscillation frequency

In this section, we study how the neuronal spiking behavior changes as a result of parameter k6.
This particular parameter represents the relationship between Thalamic Reticular Nuclei and Specific
Relay Nuclei, both populations of neurons located in the thalamus. Our goal is to not only find exact
parameter values which drive these changes seen when adjusting the coupling strength but also to iden-
tify the induced transitions. Using values found in Table 3, the value of the k6 parameter is augmented
at each time step, k6 = k6,i + ϵt in order to highlight the varying spiking behavior that could occur. In
this section, see Figure 6, we investigate the specific range of parameter values that lead to transitions
of one phase to other firing rates that may be induced from inhibitory synaptic coupling strength from
TRN onto SRN.

For reference,
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Table 3. Table of parameter origins and values.

Parameter Origin Target Area Value
κ1 PY PY 1.8
κ2 IN PY 1.5
κ3 SRN PY 1
κ4 PY IN 4
κ5 PY SRN 3
κ6 TRN SRN varying
κ7 PY TRN 3
κ8 SRN TRN 10.5
κ9 TRN TRN 0.2

Table 4. Coupling Coefficient values for the full 31-network system.

Symbol Coupling Coefficient Starting Value Coupling Coefficient Final Value Increment Size
λ1 0.2 1.2 0.01
λ2 0.005 0.105 0.001
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Figure 6. Fixed Coupling strength terms λ1, λ2 at 0.2 and 0.005 respectively. Spiking activity
changes as Hopf-Bifurcation parameter increases from k6 = 4 over time. Changes viewed
as the coupling is heightened between the cortex and thalamus neuronal populations. A)
Spiking behavior interchanges between tonic, tonic bursts which began at t = 28. B) Spiking
behavior continues tonic bursts and spikes then lastly no activity at t = 70.

4.1.1. Numerical results

In Figure 6, we depict the average value of (PY j + IN j)/2, where j = 1, ..., 31 when λ1, λ2 are
increases slowly according to the time t and k6 = 4 is below the Hopf-Bifurcation point. We observe as
the coupling strength λ1, λ2 increase, the behavior of PY j, IN j reduces their oscillation frequency and
converges to steady states. These figures shows actual behavior seen from our mathematical model.
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Disease state spiking behavior which can be seen in three phases. The first phase is fast spiking
or inhibitory spiking, followed by a slower paced thalamocortical spiking with a bit of spike wave
discharges. And lastly, a periodic spindle episode with slower frequency of 0.1- 0.2 Hz that lay on top
of a low threshold spike then to end with a slow wave.

4.2. Stability analysis regarding parameter k6

Through extensive simulations and data analysis, Fan [28,29], projects that k6 is the key parameter
that alters stability for a linear or small world type model. We completed stability analysis with the use
of MATLAB and also found that within the full network system, k6 is still a key parameter even with
the addition of network structure from real data and a coupling strength term. We solve our system
of ODEs with MATLAB ODE45 which then simulates the brain rhythms during an epileptic seizure
within four minutes.

4.3. Network model under perturbations

We studied the changes seen when adding periodic perturbations while keeping the coupling coeffi-
cient at a fixed value, then varying the coupling coefficient along with the periodic perturbation as seen
below in section 4.3.1, based from adaptive resonance theory for brain processing information [10].
The model becomes Eqs 3.1–3.4 with an addition of ϵsin( πtf req ) to the PY j, S RN j equations in Eqs
3.1–3.4 as seen in Section 3.1.

4.3.1. Results

Where all equations and parameters remain the same as in section 3, Eqs (3.1–3.4), and the small
periodic forcing is a sine function with β = π, f req ∈ [0.0507, 0, 0508].

Periodic perturbation leads to dynamics in accordance to the resonance theory. Within neuronal
networks, the affect of increasing external periodic forcing is the spiking behavior altering from steady
state to small oscillations, large oscillations, bursting, and tonic behavior. In Figure 7 we see little to
no activity for the first 7 seconds then a sudden change occurs just before time t = 8. Simulation shows
the solution exhibiting continuous tonic behavior.

4.4. Adding noise

Secondly, we observed the changes to the system as white Gaussian noise was added. The coupling
coefficients were held constant, fixed at λ1 = 0.2 and λ2 = 0.005, as seen in Table 5, in order to view the
spiking changes or lack thereof without varying the coupling strengths although noise will be added
via W(t) as time progresses. The model becomes Eqs 3.1–3.4 with an addition of W(t) to the PY j,
S RN j equations in Eqs 3.1–3.4 as seen in Section 3.1. Where the W(t) term is the awgn(t) MATLAB
function which will add white Gaussian noise to the signal as the time variable t increases.

When noise is added, numerical computations [7, 20] and asymptotic methods [8] suggest that the
amount of delay due to Hopf-Bifurcation is significantly reduced as seen below in Figure 8. When
noise is introduced into a bursting system [8], depending on the amplitude of the noise, it was found
that there are regular patterns of alternations between a long active phase and a long silent phase,
regular patterns of alternations between short active and silent phases, as well as irregular patterns of
alternations of phases with various time durations. When the noise amplitude is set to be extremely
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close to zero, the irregular patterns give way to a pattern that strongly resembles deterministic bursting.
But even with a noise of quite small magnitude, the irregularity is significant. Kuske and Baer [31]
determine that this irregularity follows from random variation in the delay of stability loss, based on
an asymptotic approximation of the probability density function for the state of the system in the silent
phase and an asymptotic analysis of the effect of noise on transitions out of the active phase.
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(d) Periodic Perturbation

Figure 7. Dynamics of brain cortex activities (average of PY and IN) as λ1 = 0.2 and
λ2 = 0.005 with periodic perturbation increasing over time in the form of rising frequency
term. The parameter k6 is fixed at k6 = 4, just below the Hopf-Bifurcation point. A) The
frequency term changes with ongoing frequency of the model, increasing from 31.7 Hz to 34
Hz. B) Frequency increasing from 37 Hz to 40.3 Hz C) Frequency increasing from 40.6 Hz
to 43.9 Hz D) Frequency increasing from 58.6 Hz to 62 Hz. Additionally, the system shifts
from tonic spiking behavior to elliptic bursting as the frequency increases.
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Figure 8. Dynamics of brain cortex activities (average of PY and IN) as λ1 = 0.2 and
λ2 = 0.005 with periodic perturbation increasing over time in the form of rising frequency
term. The parameter k6 is fixed at k6 = 4, just below the Hopf-Bifurcation point which
occurs at k6 = 4.1. The large oscillation for 2 units model occurred at t=30 (i.e. k6 = 4.5)
which is delayed in comparison with the bifurcation diagram in Feng et al. [22]. A) The
frequency term changes with ongoing frequency of the model, increasing from 31.7 Hz to 34
Hz. The spiking behavior is quick transition from fast spiking to a low threshold spiking and
chattering. B) Frequency increasing from 37 Hz to 40.3 Hz producing only the mix of low
threshold spiking and chattering. C) Frequency increasing from 40.6 Hz to 43.9 Hz. This
section is an initial view of thalamocortical spiking. D) Frequency increasing from 58.6 Hz
to 62 Hz. Additionally, the systems consists of thalamocortical spiking and shifts into tonic
spiking behavior to elliptic bursting as the frequency increases.

4.5. Frequency analysis

A drive response mechanism is a result of synchronized brain activity commonly seen during an
epileptic seizure [7,9]. The first section show explicitly how we evaluate frequency analysis and define
phase synchrony and degree of synchrony.

The interest of frequency analysis of EEG data has become increasingly popular, as a result various
methods have been developed to evaluate amplitude and phase assessments in comparison to the var-
ious Fourier Transforms. Frequency domains have assumptions regarding tasks and physical state of
the matter involved. Various oscillations can be visualized in different parts of the brain. A particular
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task in association with a change in frequency character in brain network.
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Figure 9. Resulting frequency of full 31-unit network model for increasing noise levels as
time progresses, before and after Hopf-Bifurcation. The Hopf-Bifurcation is a result of k6

increasing from 3.5 to 4.5. A comparison between the model based from (a) healthy (red)
and then G1D (blue) data before the bifurcation and (b) after the bifurcation (right).

2 4 6 8 10

Time (s)

10

20

30

40

50

60

70

F
re

q
u
e
n
c
y
 (

H
z
)

Frequency before Hopf-Bifurcation

G1D

Healthy

2 4 6 8 10

Time (s)

0

10

20

30

40

50

60

F
re

q
u
e
n
c
y
 (

H
z
)

Frequency after Hopf-Bifurcation

G1D

Healthy

Figure 10. Resulting frequency of full 31-unit network model for increasing coupling
strength as shown in Table 5 and the time progresses, before and after Hopf-Bifurcation.
The result from k6 increasing from 3.5 to 4.5. A comparison between the model based from
(a) healthy (red) and then (b) G1D (blue) data.
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Figure 11. Resulting frequency of full 31-unit network model for increasing coupling
strength as the time progresses in Table 5, in addition to rising noise levels before and af-
ter Hopf-Bifurcation. A result from k6 increasing from 3.5 to 4.5. A comparison between the
model based from (a) healthy (red) and then (b) G1D (blue) data.

Figures 9–11 imply a drive response mechanism which is a result of synchronized brain activity
commonly seen during an epileptic seizure [7,9]. Given that we are continually processing signals from
EEG data, we must communicate vital information such as frequency, phase synchrony, general degree
of synchrony and instantaneous amplitude, frequency relation to gain insight of seizure mechanism.

For the full network without any changes to the model, we evaluated the frequency by counting
the number of spikes over a fixed duration of time as a control. The resulting frequency was used in
simulations regarding periodic perturbation.

This process was repeated for the 31-unit model with noise, increasing coupling strength, and a
combination of both noise and coupling strength. Our main focus is before and during the suspected
point of bifurcation.

A particular task can be viewed in change in frequency. The figures above show a comparison
before and after the Hopf-Bifurcation point specifically focused on frequency levels between seizure
and non-seizure data. There is a visible in the increased frequency level.

4.6. Phase Synchrony vs. Degree of Synchrony

Phase Synchrony is a process commonly used for full brain analysis due to its adaptability to time
resolution. It is a three-step technique used to give further neurophysiological information aside from
frequency analysis about a patients brain rhythms. The overarching goal is to interrelate the results to
cognitive processes, neurological connections, attentiveness, and much more.

The calculations of phase synchrony for the time series xi(t), i = 1, ..., n consists of:

(1) Hilbert Transform:

H[x1(t)] = 1
π
P.V.
∫ ∞
−∞

x1(τ)
t−τ dτ.

Where P.V. is the Cauchy Principal Value, a method used to assign a value to singular integrals
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with odd or even integrands (or neither) and non-symmetric intervals, under the assumption that
the limit converges at the same rate.

(2) Instantaneous Phase:

ϕ1(t) = arctan H[x1(t)]
x1(t)

(3) Mean Phase Coherence:

Computed in the complex plane
λ = 1

N |Σ
N
t=1e j[ϕ1(t)−ϕ2(t)]|

An averaging over the membrane potential, Xi between two electrode (signals) at time t, which
measures the oscillatory populations disposition to develop total synchrony [10].

A common practice in analyzing neurologically based models is to find the value of the level of
synchrony of a network of neurons or a comprehensive grouping of neurons within a network, a neu-
ronal synchrony measure. The value of neuronal synchrony lies between 0 and 1. To truly understand
the level of synchrony, one must define synchrony in terms of a group of neurons. A group of neurons
are in synch when all neurons fire action potential simultaneously, gaining a level of synchrony of 1.
Conversely, a degree of synchrony of 0 corresponds to asynchronization of action potentials.

Degree of synchrony is a very similar term in that pertains to a large grouping of neurons or network
but incorporates the signaling process. Locally found by evaluating two signals based on the direction
of their trajectory at time t. Some researchers use a geometrical approach to evaluate the angular
trajectory using cosine and sine waves while others define a measure χ(x,N) to calculate spatially
decaying relationships between electrodes. In our case, due to the narrow yet long data matrix, using
the method of comparing singular values was most suitable.

We complete the following steps with the use of MATLAB:

• Average four variable which represent the four neuronal populations within the 31-unit network,
then the separate excitatory and inhibitory populations, for a full 10 seconds.
• Find the singular value matrix, left singular matrix, and right singular matrix
• For each ms, the top 2 singular values we placed into a general singular value matrix, resulting in

200 singular values along the diagonal of the S matrix
• Evaluate a ratio of the singular values from the 31 electrodes for every ms

Explicit ratio formula for degree of synchrony (DOS) is:

DOS = (M/(M − 1))(L(31))/(L(1) − 1/M) (4.1)

where M is the number of electrodes and L is the list of singular values found along the diagonal of
matrix S . The resulting value lies between 0 and 1, with 1 representing fully synchronized versus 0
meaning no synchrony between the channels in question. Figure 12 shows the varying values between
0 and 1 as DOS is computed throughout the full length of seizure data along with various coupling
strengths. * We have found that multiple pathways of connection lead to various phases of syn-
chronizations between the network of neurons, including the degree of synchronization with specific
parameters.

*Full MATLAB code is available upon request.
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Figure 12. Degree of Synchrony within the 31-unit model with coupling based on seizure
data with level of forcing strength at (a) 0.0001 (b) 0.0005 (c) 0.001 (d) 0.005 (e) 0.01 (f)
0.05 (g) 0.1 (h) 0.5.
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4.7. Degree of Synchrony with increased periodic perturbation

Considering the full 31-unit model, we alter the periodic perturbation frequency and visualize the
resulting degree of synchrony. To do so, we calculated frequency with increasing time. A varying
κ6 value, which increases over time given the Hopf-Birfurcation point lies 4 < κ6 < 5. As seen
below, the increased forcing in addition to augmented k6 value, the degree of synchrony goes through
a phase of toggling between very gradual incline and relatively steep decline then an abrupt increase
that continues until the end of the time duration. In some cases, a sudden decrease occurs as t > 0.85,
indicates the end of seizure.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-1

-0.5

0

0.5

1

1.5

2

M
e
a
n
 E

,I

Coupling - 31 electrodes

(a) Coupling within Full Network Non-Seizure Data

0 1 2 3 4 5 6 7 8 9 10

Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

g
re

e
 o

f 
S

y
n

c
h

ro
n

y

Degree of Synchrony vs. Increasing Coupling Strength and Periodic Perturbation

(b) Resulting Degree of Synchrony of Non-Seizure Net-
work

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-1

0

1

2

3

4

5

6

M
e
a
n
 E

,I

Coupling - 31 electrodes

(c) Coupling within Full Network Seizure Data

(d) Resulting Degree of Synchrony of Seizure Network

Figure 13. A) Increased coupling through the full network based on non-seizure data. B)
Degree of Synchrony follow a very uncommon pattern within the 31-unit model with cou-
pling based on non-seizure. C) Seizure data used within full network model shows more
activity through Hopf-Bifurcation point and D) seizure data is more synchronized as a result
of increased coupling strength and periodic perturbation.
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The subgrapghs in Figure 13 are an indication of heightened synchrony within the full network
based upon seizure data. Range of the y-axis, Degree of Synchrony is the same for all graphs which
shows that the synchrony remains between (0.48, 0.52) with increasing noise levels due to the synchro-
nizing nature of a brain during a seizure. Coupling strength also enforces the synchronized behavior
within zeizure data.

5. Conclusions

Daci et al. [27] research concludes that a ketogenic diet - a diet high in fat and low in protein -
allows for a significantly lower consumption of glucose within the brain. Which then allows for an
alternaitve sources known as ketone bodies. Ketone bodies have an action through ”GABA synthesis
and reception”. This action mechanism results in ”neuroprotective effect and antiepileptogenesis”.
Daci et al. also make note of drug therapies which certain genes have been receptive to which means
pharmokinetics influence brain excitability. There were no identified biomarkers but extensive data
through various treatment options.

Several computational neurological models have been developed over the last 40 years for small
and large neuronal networks, cellular models for ion channel dynamics, and mathematical models to
visualize the effect of neuronal connections between the cortex and thalamus. In order to retrieve a
full picture of patterns seen in EEG data, it has been proven in literature that a thalamocortical coupled
model is best.

In Section 2.1 and 2.2, we found that our graphs do give a useful visual as to how well the brain
is connected in a healthy or non seizure activity. Yet it may not give an effective or accurate analysis
of how synchronized various brain regions are connected before and during a seizure. The correlation
plot will only give an average at just one time point considered rather than a fixed time period so
incorporating this information within the model was imperative. It was found that an absence seizure,
a sign of G1D, augments the elliptic burst a bit by adding noise to the onset of an elliptic burst, as
shown in section 4.3. Consequently, after a substantial time delay, solutions jump away from steady
state and Hopf-Bifurcations are formed. Our major results that coupling strength and self-interference
terms impact stability of the system in addition to delaying the Hopf-Bifurcation. Additionally, a
comparison of preseizure and seizure network as seen in section 4.5, we found that the seizure data
causes the system to be highly synchronized as coupling strength increases and the addition of noise.

In this study, we produced an ODE model comprised of four neuronal populations that are most
active in Glucose Transport Deficiency Type 1 Epilepsy. We characterized spiking behavior changes
seen as a result of varying coupling strength and noise. Overall, our research has given a better picture
of the dynamical properties seen from this form of epilepsy. This model described the spiking neuronal
activity seen an epileptic induced seizure network through. By dissecting the correlation association
of neuronal units or electrodes, the subpopulations of the cortex and thalamus in seizure data, certain
patterns were classified. Our model is versatile in the manner in which simulations can be produced
with a change in coupling and the addition of coupling strengths. The model is built to highlight the
connections in the network derived from data.

Neurons show significant variation in the presence and timing of action potentials across stimulus
trials, a phenomenon whose function and significance has been the subject of great interest. Cortical
activity is characterized by highly irregular interspike intervals.
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From our simulations, we are able to find specific parameter ranges that which cause a class or
classes of diseased state spiking neuron. t = 0−77 all signify a change in spiking neuron characterized
as tonic bursting, thalmaocortical oscillations, and spindles. One positive effect on noise and bifurca-
tion is they have modulated the synchronization of the network, both through delayed bifurcation and
noise, as a result of coupling.

More so, the role of the κ6 parameter originating from the TRN targeting SRN as the inhibition
of thalamic reticular to excitatory neurons in the Thalams is crucial in thalamus-cortex interaction.
A larger κ6 value causes more inhibition. The latency of signal transmission may provide a different
mechanism to induce synchronization in neuronal network [26]. Additionally, the setting of the math-
ematical results are very general, the mechanism is working for a large class of equations. However,
we were able to see a comparison of non-seizure and seizure network in this study, concluding that the
seizure is highly synchronized as coupling strength increases and the addition of noise.

6. Future work

We plan to continue our work by closely studying sensitivity analysis regarding parameters that
directly affect SWD and spindles using analysis such as Partial Rank Correlation Coefficient. We
would also consider neurological sensitivities with respects to the self- interference terms represented
by ci values in our model. Our large model could be more accurate with an increased data based model
comparison to more G1D patients. Lastly, we plan to perform analyzing a visual representation of
sparsity within the larger spatial inverse problem yielded from the source patterns.
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