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Abstract: The paper is concerned with a singular limit for the bistable traveling wave problem in a
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1. Introduction

We investigate the reaction—diffusion system

ou= 0,(di)(u,v)owu+d,u,v)ow)
+hyy (u,v) 0yu + hyp (1, v) 0v
+ug(u,v) — kw(u,v),

oyv=0,(dy1 (u,v)0u+ dyyu,v)o,w)
+hy 1 (U, v) Oyu + hyp (1, v) 0,v

(1.1)

+vga(u,v) — akw(u, v),

where ¢ is a real time variable, x is a one-dimensional real space variable, u(¢, x) and v(z, x) are two
population densities, D = (d; ;)1<; j<> 1s a matrix of self- and cross-diffusion rates *, H = (h; ;)i<; j<x 1S a

*Although the word “rate” might be misleading, in the whole paper, rates are not necessarily constant and are in general functions of

(u,v).
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matrix of self- and cross-advection rates, g = (g;)1<i<> 1S a vector of growth rates per capita accounting
for a saturation effect, w is an interpopulation competition operator and k > 0 and ak > 0 are constant
interpopulation competition rates exerted respectively by v on u# and by u on v.

The three main examples of such systems that we have in mind are the classical Lotka—Volterra
competition—diffusion system,

o = 0 u+ u(l —u)— kuy, (12)
0,v =dov + rv(l —v) — akuv, ‘
the Potts—Petrovskii competition—diffusion—cross-taxis system [1],
Ot = Oyt — y10, (U0, v) + u(l — u) — kuv, (13)
0,v = d0o,,v —y,0, vou) + rv(l —v) — akuv, '
and the Shigesada—Kawasaki—Teramoto competition—cross-diffusion system [2],
O = 0y, (u(dy + aru + apv)) + u(l — u) — kuv, (1.4)
0y = 0y (V(da + azu + az,v)) + rv(l — v) — akuy. '

In the above systems, the various parameters are all positive constants, except y; and y, that might be
of any sign.

Our abstract framework is justified by the fact that we want to deal with all these systems simulta-
neously. We also want to encompass generalizations of (1.4) of the form

Ot = Oy (u(dl +ap P+ al’zvg‘vz)) + u(l —u) — kuv,
O =0,y (v(dz + ap U + ag,zvﬁzvz)) + rv(l —v) — akuv,

with arbitrary positive exponents (Bi, j) e that have been considered in the literature [3]. Moreover,

<i,j<
we want to be able to replace the logislt_iéjjgrowth terms u(1 — u) and rv(1 — v) above by more general
monostable reaction terms, for instance with a weak Allee effect (e.g., u(u + 6)(1 — u) with 8 € [0, 1)).

More precisely, we are interested in the singular limit k — +oo of the associated traveling wave
system satisfied by entire solutions of the form (u,v) : (¢, x) = (¢,¥) (x — ct), where (¢, ¥) is the wave
profile and c is the wave speed. From now on, we denote ¢ = x — cf the wave variable and ® = (¢, ¢)

the wave profile vector. The traveling wave system reads, in vector form,

- (D(@)D') — (H(®) + c)®" = @ o g(®) — kw(D) (Cly) . (1.5)
The notation o above stands for the component-by-component product of two vectors, namely the
so-called Hadamard product.

The singular limit k — +oco of the traveling wave system for (1.2) was studied by the first author
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and G. Nadin in [4]. There, it was proved that the singular limit of the solution (¢, ¥, ¢x) of

¢, — ¢ = o1 — i) — kdii,
—=dy] — ey = rgi(1 = i) — ek,
lim_,, ®; = (1,0),

lim, ., ®; = (0, 1),

¢, <0,

g, >0,

(1.6)

is

(o Yor €0) = (@72, 27, ¢,
where z* = max(z, 0) and z~ = max(—z, 0) are respectively the positive and negative part of the function
z and where (z, ¢) is the unique (up to shifts of z) solution of

[ Qo+ dlc)?Yx —c [2x = [@ (1 -2 -rz (1 +2) forally € L'(R),
lim_ .z = a,

lim,o, z = -1,

7 <0.

The integral equality is the equation —((150 + d1.<0)z') — ¢z’ = z°(1 = £) — rz (1 + z) tested against
test functions in L'(R) and where the divergence-form second order term, the first order term and the
zeroth order term are all in L*(R). Consequently, z is smooth and a classical solution away from the
point z7!(0) and Lipschitz-continuous at z~!(0).

Roughly speaking, the preceding result follows from the combination of ¢y, — 0 (spatial segre-
gation) and an equation that does not depend explicitly on k:

—ag; +dy — ci (g, — ) = agi(1 — ¢) — i (1 =) .

In the present work, we will show that the singular limit k — +oco of (1.5) is similarly given, under
reasonable assumptions, by the unique (up to shifts) solution of

[-d@2Yx = [(c+h@)Zx = [y forally € L'(R),
lim_o 7 = @,

1.7
lim,e z = -1, (L7
7 <0.
where .
d:zesdy (5,0) Lo + doa (0, ~2) 1<, (1.8)
hezes (§0) Lo + 122 (0, -2) 1.0, (1.9)
gz 7' (§0) 720, —2). (1.10)
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1.1. Minimal speeds of the underlying monostable problems

In order to state more precisely the assumptions and the results, we need to introduce ¢} € R the
minimal speed of classical traveling wave solutions of

—(d(2)z') = (c + M2))Z" = g(2),

lim .z = @,
lim,z=0,
7 <0,

and ¢, € R the minimal speed of classical traveling wave solutions of

—(d@)7) = (c + h(z2))7' = g(2),
Iim_,z=-1,

lim,,z=0,

7 >0.

Both are well-defined provided d, i and g are continuous away from O and d is positive away from
0 [5].
1.2. Standing assumptions
The standing assumptions follow.
(A) De%([0,11%),H € £([0,11%), g € €([0,1]%), w € €([0, 1]?).
(A;) d,, and d, are positive in [0, 1]°.
(A3) d12(0,e),d, (e,0), h15(0,e) and h, (e, 0) are identically zero in [0, 1].
(A4) g1(e,0) and g,(0, ) are positive in (0, 1) and g;(1,0) = g,(0,1) = 0.
(As) wis positive in (0, 1]* and identically zero on {0} x [0, 1] U [0, 1] x {0}.
(Ag) ¢ > —c5.

(A7) There exists k* > 0 such that, for all k > k*, the system (1.5) admits a classical solution (®, c;)
with nonincreasing ¢, nondecreasing ¢, lim_., ®; = (1, 0), lim,,, ®; = (0, 1).

(Ag) Any family of wave speeds (ci )ik 1s bounded in R.
(Ag) Any family of wave profiles (®; )i+ is locally relatively compact in a Holder space.

Note that the systems (1.2), (1.3), (1.4) all satisfy directly the assumptions (A;)—(As). As will be ex-
plained in the discussion (cf. Section 3.2.6), they also satisfy (Ag). It will be explained in the discussion
(cf. Section 3.2.9) that (Ay) is satisfied for (1.2), (1.4) and (1.3) if min (yy, y,) > O (attractive—attractive
case). Finally, (A7) and (Ag) are satisfied for (1.2) [6, 7] but are, to the best of our knowledge, im-
portant open problems for the strongly coupled systems (1.3) and (1.4) that have been solved only in
special perturbative cases (cf. Sections 3.2.7 and 3.2.8). Solving these problems away from any such
perturbative regime is way outside the scope of this paper.
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1.3. Statement of the main result

The main result follows. The limiting profiles and their basic properties — spatial segregation and
free boundary relation — are illustrated on Figure 1.

Theorem 1.1. Assume (A;)—(Ao).
Then there exists co, € R and ®., € €*(R\ {0}) N W'°(R) such that, up to shifting (®)isk+,

Ll(R)) =0.

The limit satisfies ¢tfoo = 0 and the pair (. — V¥, Co) is the unique solution (z,c) of (1.7)
satisfying z(0) = 0.
Consequently,

Jim (jey = el + 1@ = Pusllioe) + @] ~ L,

1. the profiles ¢, and Y, are respectively decreasing in (—oo,0) with limit 1 at —oco and increasing
in (0, +o0) with limit 1 at +oo;

2. the free boundary relation reads

~d11(0.0)a Jim ¢/,(¢) = d22(0,0) Jim v, (€):

3. the speed c., satisfies —c, < ceo < CL;

4. l'fhl,l = hz,z = hy € R, then

1
2dr5(0,2) g2 (0,2)dz
sign (cu + o) = sign|a? — b 222 2 (1.11)

fol zdy1(2,0) g1 (z,0)dz

Below, we specify the theorem for the three main examples. It turns out that (1.2) and (1.3) have
the same singular limit whereas (1.4) has a different limit.

Corollary 1.2 (“Disunity is strength” [4]). Assume (1.1) has the form (1.2).
Then there exists c., € R and ®., € €*R\ {0}) N W'°(R) such that, up to shifting (®)ik+,

Ll(R)) =0.

The limit satisfies ¢otfoo = 0 and the pair (AP — Yo, Co) IS the unique solution (z, ¢) of

kl_l)lgo (|Ck = Cool + | @ = Poolloow) + ||(I);< - @

J =0+ dlc)?Yx —c [2x = [@ (1 =2 —rz (1 + 2
for all y € L'(R),

lim_o 7z = @,

lim,e z = —1,

7 <0,

z(0) = 0.

Consequently,
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A ¢?llb
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Figure 1. The segregated limiting profiles in the moving frame & = x — ¢t

1. the profiles ¢, and Y, are respectively decreasing in (—oo,0) with limit 1 at —co and increasing
in (0, +00) with limit 1 at +oo;

2. the free boundary relation reads

—a lim ¢(,(&) = d Jim v/.(&):

3. the speed c« satisfies =2 Nrd < ce < 2;
4. sign(c.,) = sign (a2 - rd).

Corollary 1.3. Assume (1.1) has the form (1.3) and assume furthermore (A7)—(Ag) and, if min (yy, y,) <
0, assume (Ao).
Then all the conclusions of Corollary 1.2 remain true.

Remark 1.1. The above statement is consistent with the fact that (Ag) is automatic in the attractive—
attractive case (miny; > 0), as explained in Section 3.2.9.

Corollary 1.4. Assume (1.1) has the form (1.4) and assume furthermore (A7)—(Asg).
Then there exists co € R and ®., € €*(R\ {0}) N W'°(R) such that, up to shifting (®)isk+,

klirfloo (|Ck = Coo| + [|®f = Dol o) + ||‘I’1'< - @ L‘(R>) =0.
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The limit satisfies ¢otfoo = 0 and the pair (AP — Y, Co) IS the unique solution (z, ¢) of

[ =@ + ar12)150 + (da + a220)L.c)?Vx — ¢ [y = [@ (1= 2) = rz (1 + )y
forall y € L\(R),

lim_o 7 = a,

lim,e z = —1,

7 <0,

z(0) = 0.

Consequently,

1. the profiles ¢, and Y., are respectively decreasing in (—oo,0) with limit 1 at —oco and increasing
in (0, +00) with limit 1 at +o0;

2. the free boundary relation reads
~dyar lim ¢,(&) = da Jim L. (6);

3. the speed c., satisfies —c, < ¢« < c§, where c} is the minimal speed of monotonic traveling wave
solutions of

N/ ’ Z
~(@ + a2y — et =z(1-2), ) =0 z4e) =0,
and c is the minimal speed of monotonic traveling wave solutions of
—((dr+ a202)7) —cZ =rz(l =2), z(-0) =1, z(+0)=0;

4. sign(c.,) = sign (az(dl +ap) —r(dy + az,z)).

Remark 1.2. In the preceding corollary, if d; > a,, then z — (d; + a;,2)z(1 — z) is concave and

therefore the speed c? is linearly determined [5]: ¢t = 2 vVd,. Similarly, if d, > a,,, then c; = 2 Vrd,.

1.4. Organization of the paper

In Section 2 we prove the main result. In Section 3 we discuss at length the literature, the assump-
tions and the results.

2. Proof of Theorem 1.1
For clarity, we divide the proof in several parts.

2.1. Existence of limit points

Proof. Up to extraction, the bounded family (c;)i-s+ converges to some limit ¢, (Whose uniqueness is
unclear at this point).
Now, we fix a family of shifts for the profiles:
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1. if cw < 3(c} — ¢}), the family (@) is shifted so that ¢(0) = 1;
2. if coo > %(cj — ¢}), the family (®);-+ is shifted so that ¥ (0) = %

Next, since the family of profiles is locally relatively compact in some Holder space, up to another
(diagonal) extraction, (®;);-;+ converges locally uniformly to some limit ®,, (whose uniqueness is
also unclear at this point).

Since the families of profile derivatives are uniformly bounded in L!(R), by the Banach—Alaoglu
theorem, up to another extraction, the families (¢;d&)i-i+ and ()i~ converge in the weak-* topol-
ogy of the set of bounded Radon measures to some limits, d¢., and di, respectively, which are sup-
ported in the support of ¢, and ¥, respectively.

We deduce from such a convergence that ¢., and ¢, are continuous, valued in [0, 1], nonincreasing
and nondecreasing respectively and with (distributional) derivatives that are bounded Radon measures
of total mass smaller than or equal to 1. Subsequently, ¢., and ¥, have limits at +co. i

2.2. Segregation of the limiting supports

Proof. Testing for all k > k* one of the two equations of (1.5), say the first one, against any smooth
and compactly supported test function y € Z(R) and using the dominated convergence theorem as well
as estimates of the form

[ a0 | < sl Wi [ 1
= ”dLZHLw([O,l]Z)“/\f,”L""(R)fl;wllc

= ||d1’2||L°°([0,1]2) ”X'HLD“(R) ’

where K C R is the support of y, we find that w(®;) converges to 0 in the space of distributions.
By continuity of w, w(®,) = 0, whence at any & € R, ¢,(§) = 0 or ¥(£) = 0. Consequently, the
following equalities are true pointwise in R:

1. 0o = (@eo — Woo)
2. '7000 = (CZ¢0<, - l/loo)_-

Recall that di/., is supported in the support of i, namely the closure of ! ((0,1]). Note that
w1 ((0,1]) € ¢ ({0}). Since @, and d, , are continuous with d; (0, e) = 0,

f &A@, = f 120, ), = 0.
R Y (0,1DUaW L ((0,1]))

Note that this calculation does not require the absolute continuity of d¢., with respect to the Lebesgue
measure, which is unclear a priori. Repeating this argument, we discover that the equalities

f d > (@ )dy = f i a (@), = f 1 (®)ds = f I @d6e =0 (2.1)
R R

R R

are all true. o
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2.3. The limiting equation

Proof. For all k > k*, the scalar equation

1
—(D(®)D}) — (H(®;) + DD, — Dy 0 g(D;) + kaw(Dy) (a)] ' (_a 1) =0

is equivalent to

[-(D(@)D) — (H(®Y) + ;DD — D 0 g(PY)] - (_al) =0. (2.2)

The equation (2.2) does not depend explicitly on k. Our aim is to pass to the limit in this equation.
Therefore we test this equation against a smooth and compactly supported test function y € Z(R)
and we subtract from the result the equation (1.7) tested against the same y. Working in the space of
distributions, we can write ¢/ and ¢/ without abuse of notation.

The zeroth-order terms converge to 0 by the dominated convergence convergence.

The first-order terms converge to 0 by estimates of the form

f(hl,Z((I)k)'vl’]’g — hi (@Y )| < ||h1,2((1)k) - hl,Z((I)OO)||Loo(K) D1l () f |l//1’<
R K

+

fR I (@) (W, — 0)

(where the compact set K C R is the support of y). The first term on the right-hand side converges to 0
by fK |W§<| < 1 and locally uniform convergence of the profiles whereas the second term converges to 0
by weak-x convergence of the derivatives (the test function |h1,2(d)m))(| is indeed continuous and zero
at infinity).

The second-order terms converge to 0 by similar estimates with y replaced by y’.

Eliminating all the terms that are actually zero (2.1), we find that (z, ¢) = (¥ —¥w, C) 18 a solution
of

f d)Zx - f (c+hz)7x = f g(z)y forall y € Z2(R), (2.3)

where the functions d, i and g are defined above in (1.8), (1.9), (1.10).
Note that, when identifying the terms, it can be useful to cut all integrals into three parts: the
integral over the set 7! ((0, @]), the one over z~! ({0}) and the one over z~! (-1, 0)). By monotonicity

of z, these three sets are intervals, ordered from left to right. Also, some of these sets might be empty
(at this point). It turns out that all integrals over the closed interval z~! ({0}) are zero. Indeed,

1. if this interval is empty or a singleton, then the set is negligible;
2. if this interval is neither empty nor a singleton, then z = 7’ = 0 there.
O

Remark 2.1. In [4], the limiting equation (of the form —(@p. —d¥ )" — (AP — o) = g(AP — o) IN
2'(R), with a constant diffusion rate d > 0) was used to deduce directly the continuity of (@¢e, —di¥,)’,
just by taking the antiderivative of the equation. Let us emphasize that here the situation is not so easy:
indeed, at this point of the proof, we do not know that the distributional derivative 7’ is sufficiently

Electronic Research Archive Volume 30, Issue 5, 1748—1773.



1757

regular to write the chain rule 4(z)7" = (H(z))’ (where H is a Lipschitz-continuous antiderivative of h).
Therefore more care is needed to obtain the regularity at the free boundary and subsequently the free
boundary relation. In order to complete the proof, we will use ideas from [8], where the free boundary
problem was also more delicate, due to the spatial periodicity of the setting there.

2.4. Non-triviality, piecewise-smoothness and limits at infinity of the limit points
Proof. By pointwise convergence,
L. if coo < 3(c} — 1), e(0) = 3
2. if coo > %(c: — 1) Ue(0) = %
Note that, by (Ag),
—c, < %(C: —c,) <cy. (2.4)

We define &t = sup¢_'((0,1]) and &~ = infy'((0, 1]). These two quantities, a priori defined in
R, satisfy & < & by virtue of pothoo = 0. Moreover, & > 0 if co < %(C: —cy)and & < 0if
Coo > %(c: - c3).

We are going to prove now the following claim:

£ ER, o € C7((-0,67), Yoo € €7 (€7, +)), lim s = limyrs = 1. (2.5)

Assume for instance ¢, < 3(c} — ¢;), so that & > 0.
From the equation (2.3) tested against test functions supported in (—o0, &™), where ., is identically
zero, we find that ¢, is a weak solution of

= (d1,1($0, 0)4.)" = (Coo + h1,1(Peo, 0Ly = Peo81(Peo, 0)  in (=00, 7). (2.6)

By standard elliptic regularity [9], ¢, is then € in (—oo, 7).

Since (—o0, &™) is not empty and ¢, is non-increasing and larger than or equal to 1/2 in (—c0, 0),
its limit C at —co is well-defined and larger than or equal to 1/2. Let (£,),an be a sequence such that
&, = —ooasn — +oo and define, for alln € N, ¢ : & = ¢.(& + &,). By standard elliptic estimates, up
to extraction of a subsequence, the sequence (¢, ),en converges in 42 . By uniqueness of the limit, the
limit in Cflic is also the constant C > 1/2. By (2.6), invariance by translation and convergence in (Klgc
we directly deduce that C > 1/2 satisfies Cg(C, 0) = 0, whence C = 1 by (Ay).

In order to prove the finiteness of £*, assume by contradiction £ = +oco0. Then i, = 0 identically
and ¢.,(¢) > 0 at any ¢ € R. Hence ¢, is a positive weak solution, and then a positive classical solution
by elliptic regularity, of

—(d1,1(Poos DPL,) = (Coo + 111 (Do, 0P, = Poo&1(Pe0,0)  InR.

Repeating the argument, the limit of ¢, at +oco is then 0. Hence (7, x) = ¢o(x —coot) 1s a traveling wave
solution with speed ¢, and by (2.4), c., < ¢}, which contradicts the analysis of monostable equations
by Malaguti and Marcelli [5]. Therefore £* < +o0, or in other words ¢* € R.

Next, integrating the equation satisfied by ¢, in (£* — 1,£7), we infer that the left-sided limit of ¢/,
at £* is finite and, by the Hopf lemma, negative. Since £~ € [£F, +o0], we infer similarly that one, and
only one, of the following two claims is true:
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1. & = +oo,
2. Yo is €% in (€7, +00) with 1 as limit at +co and a finite and positive right-sided limit of ¢/, at £~.

Integrating the equation (2.3) over R with an arbitrary test function y € Z(R) and using the fact that
z=01in (¢*,£&7), we obtain:

0= f (6 + (e + RN x — dZx]

—+00

= f 8@y + (coo + M(2)Z x —d()Z)'] + f (8@ + (Coo + M(2)Zx — d(2)Z )]
—c0 &

Integrating by parts the terms f_ ’i —d(z)7’ )’ and f o —d(2)7’x’, we deduce:

d22(0,0x(¢7) f_y_rgm Uo(&) if & < +oo,

= di1(0,0 (e lim ¢,(§) = { 2.7)
§-£70 0

if & = +oo0.
By positivity of the left-hand side, necessarily £~ < +oco, or in other words ¢~ € R. We have thus
proved the claim (2.5) in the case ¢, < %(c: -c).

Repeating the argument with the roles of ¢., and ¢, reversed, we find that the claim (2.5) remains
true even if ¢, < 3(c} — ¢3), that is for any possible value of ce. ]

2.5. Triviality of the free boundary, the free boundary relation and regularity of the first derivatives
Proof. 1t follows from (2.7) that

di,1(0, 0y (E)e (— f_grgo_ %(é)) = d>(0, 0))((6_)6_1}_130+ /(3]

with limg_g+ 0 ¢1,(€) < 0 < limg_g—,0+ YL (£).

We first check that £* = ¢7. Indeed, if £* < &7, we can choose the test function y so that its support
contains & but not ¢7, and then the above equality becomes an equality between a positive term and a
zero term, which is contradictory. Therefore &* = ¢7.

Next, choosing y so that its support contains £ = &~ and dividing by y(¢%) # 0, we find

d11(0,00 (— Jim ¢;<§>) = dy(0.0)_lim /().

In other words, d(z)z’ is a well-defined continuous function in R.
In order to simplify the notations, we work from now on with the shifted profiles so that ™ = ¢~ = 0.
With this convention, the free boundary relation reads

—d,1(0,0)a é:lg(r)l $o(&) = d22(0,0) flg(r)l V(&)

Since the limits of d(z)z" at +oo are zero, we also obtain d(z)z" € L*(R). We deduce the piecewise-
continuity and global boundedness of z’. Hence the distribution z is a well-defined function in W'*(R),
or in other words a well-defined Lipschitz-continuous, piecewise-%!, function in R.

Since z has no jump discontinuity at 0, a standard result of distribution theory yields the identifica-
tion 7'dé = ad¢., — dy,. This proves that the measures d¢., and dy,, are absolutely continuous with
respect to the Lebesgue measure, or in other words that the derivatives ¢/, and ¢/ are well-defined
functions in L'(R). |

Electronic Research Archive Volume 30, Issue 5, 1748—1773.



1759

2.6. Regularity of the second derivatives
Proof. From the equality
(d@)7) = —(c+ @) —g) inZ'R),

and the fact that the right-hand side is a well-defined function in L*(R), we infer that (d(z)z’)" € L™ (R)
(in other words, d(z)z’ is Lipschitz-continuous).
We are now in a position to rewrite (2.3) with less regular test functions: by density,

f —(d@)7) x - f (c+hz))x = f g(z)y forall y € L'(R).

2.7. Uniqueness of the limit point

Proof. The uniqueness (up to shifts) of the limit point is a direct consequence of the uniqueness (up to
shifts) of the bistable traveling wave (Theorem A.1).

By a classical compactness argument, the uniqueness of the limit point implies the convergence of
the full initial family (®y, ¢ )i+ (as defined before any extraction of subsequence). |

2.8. Estimates on co

Proof. Similarly, the estimates —c;, < ¢ < c} follow directly from Theorem A.1.
The sign of the effective wave speed if h; = h,, = hy € R (which implies & = hy) is obtained by
testing (1.7) against d(z)z’. After an integration by parts and a change of variable, we find

1 1
cothy) [ = [ @08 EOE- [ 00800
R 0 0

so that the effective wave speed c., + hy has indeed the sign of the right-hand side. Note that since
7 € L'\(R)N L®(R), clearly 7’ € L*(R). O

2.9. Improvement of the convergence

Proof. In view of the limits at +oo of ¢, and ¥, the equalities f ¢, = —1 and f ;= 1 are true for all
k € (k*, +00]. From this remark, it follows that:

1. by a result sometimes known as the second Dini theorem 7, the convergence of the families of
monotonic functions (¢y )i, and (Y )i+ 18 actually uniform in R;

2. by the Prokhorov theorem, the convergence of the tight families of probability measures
(=0, dE) >+ and (Y dE)i-i+ actually occurs in the weak-* topology of the set of probability mea-
sures in R (i.e., the measures converge when tested against any fixed continuous bounded function
from R to R). Since the limits —¢’ d¢ and ¢/ d¢ are absolutely continuous with respect to the
Lebesgue measure, this implies the strong convergence of (®) )+ in L'(R) (testing as usual the
weak-x convergence against the test function 1y).

O

"The second Dini theorem states that a sequence of nondecreasing functions that converges pointwise in a closed interval of R to a
continuous function converges uniformly in this interval; when +co belong to the interval, the assumption is naturally understood as the
convergence of the limits at +oo to the limits at +oco of the continuous limit.

Electronic Research Archive Volume 30, Issue 5, 1748—1773.



1760

3. Discussion

Our focus is on the effect of D and H. For g and w, we mostly have in mind the special Lotka—
Volterra case:
1-¢

g(®) = (r(l _ )

) and w(®) = ¢y (3.1)

3.1. On the literature

To the best of our knowledge, this paper is the very first to consider the spatial segregation limit
of traveling waves for general fully nonlinear competitive systems and to show the connection with
general fully nonlinear scalar equations.

3.1.1. Fully nonlinear strongly coupled competitive systems

The semilinear competition—diffusion system (1.6) was studied by the first author and G. Nadin
in [4] (refer also to [8] for an extension to space-periodic media). The spatial segregation limit was
used to characterize the sign of the wave speed: c., has in such a case the sign of a? — rd. This
was interpreted as a “Unity is not strength”-type result (and, actually, as a “Disunity is strength”-type
result): if @ = r = 1, so that the two species only differ in diffusion rate, then the invader is the fast
diffuser (that is, with pure Brownian motion, the winning strategy is to disperse rapidly instead of
remaining concentrated). The problem of the sign of the wave speed for finite values of k is the object
of a recent survey paper by the first author [10].

The paper [4] used extensively the ideas of the wide literature on the spatial segregation limit of
parabolic or elliptic competition—diffusion systems in bounded domains (e.g., [11-17] and references
therein).

These ideas were also used in a collection of works by Liu and various collaborators [18-20] study-
ing the spatial segregation limit of the strongly coupled elliptic system (1.4) with self- and cross-
diffusion of Shigesada—Kawasaki—Teramoto type [2], where (3.1), H = 0,

M(dl +apu+ a1,2V) dl + 2611,11/! +appv ajpu
D = Jac = ,

V(d2 +apu+ (12’2\/) az v d2 +apu+ 2612’2\/‘

all parameters above being constant and positive. The main idea there was to change variables in order
to recover an elliptic system with linear diffusion. We point out that although our system can be seen
as an elliptic one, the unboundedness of the domain and the generality of the functions D and H make
the problem quite different. Although the Cauchy problem for the cross- and self-diffusion system in
an unbounded domain has been studied more than ten years ago by Dreher [21], we believe that the
traveling wave problem is still largely open (e.g., [22]).

Bistable traveling waves for the competition—diffusion—cross-taxis system (1.3), where

B 1 —-Yiu
3.1, H=0, D_(—ygv 1).

and with finite, but large, values of k were numerically investigated by Potts and Petrovskii in [1]. The
cross-taxis is attractive if y; > 0 and repulsive if y; < 0. The point there was to show that appropriate
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choices of y; can change the sign of the wave speed, or equivalently the invader: roughly speaking,
aggressivity can compensate unity. The authors called this conclusion a “Fortune favors the bold”-type
result. The well-posedness of this system with y; = y;(u,v) and y, = 0 was studied independently in
a collection of works by Wang and various collaborators [23-26] (refer also to [27] for a case where v
does not diffuse at all).

We also point out a recent analytical and numerical study by Krause and Van Gorder [28] of travel-
ing wave solutions to a closely related non-local system with advection toward resource gradients and
where each resource density solves an elliptic PDE involving the two population densities (modeling
the consumption of resources). Since the resource density converges to a linear combination of both
population densities in the vanishing viscosity limit, our model (1.1) can be understood as a singular
limit of that model (see [28, Section 2.1]).

3.1.2. Fully nonlinear scalar equations

Equations of the form
—(d(@)Z) = (c + h(2)Z = g(2),

are the object of a specific wide literature (e.g., [5,29-37] and references therein). Generically, the
important features of the semilinear equations (existence and uniqueness of waves, estimates for the
minimal wave speed, etc.) are recovered but in a loose sense.

We point out that in this literature, it is typically assumed that d, g and h are at least continuous.
This is true in our case when considering the underlying monostable fronts (i.e., connecting 0 and «
or 0 and —1) but, when considering the bistable fronts (connecting @ and —1), our functions d and h
have a jump discontinuity at z = 0. It turns out this obstacle can be easily overcome and we will show
in Appendix A how the previously known results can be extended to such cases. Our method of proof
uses extensively the results of Malaguti and her collaborators [5,33] to characterize the singular limit.

3.2. On the standing assumptions
3.2.1. (Ay)

This is a very standard regularity assumption. Although it seems to us that the results might remain
true with less regularity, our aim here is not to focus on regularity issues and we prefer to assume that
everything is “smooth enough”. Besides, our proof really needs the continuity of D, H, g and w. The
continuous differentiability of D is not explicitly used in our proof but is required for the continuity
result of [34] (which is used in the proof of Theorem A.1).

3.2.2. (Ay)

This is a very standard ellipticity assumption. Although the main part of our proof does not rely
upon the sign of d;; and d,,, we need a strong characterization of the limit points (uniqueness in
particular) that is available indeed in the elliptic framework but might be unavailable in a degenerate
elliptic or aggregative framework. Furthermore, the compactness assumption (Ag) is natural in the
elliptic framework but might be contradictory in an aggregative framework.

We believe that our results, and especially the formula (1.11), remain true in a weakly degenerate
setting. On the very special case where d; ;(e,0) vanishes at O and at O only, we refer for instance to
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[35-37], and references therein. We point out that our results would extend indeed to such a degenerate
diffusivity provided a result analogous to Theorem A.1 can be established.
Finally, we point out that there are no sign conditions on the cross-diffusion rates d;, and d5 ;.

3.2.3. (Ay)

This assumption ensures that the system (1.1) is well-posed in the following sense: if # = 0 initially,
it should not spontaneously appear, so that

—0,(d;2(0,v)0,v) — hy2(0,v)0,v =0 for all v.

Taking for instance V(x) = v — x2, for some v € [0, 1], and evaluating at the maximum x = 0, we get
d;2(0,v) = 0. Subsequently, we deduce h;,(0,v) = 0. Similarly, d, ;(u,0) = hy(u,0) = O for any u.
Naturally, all applications we have in mind satisfy this assumption.
Note that with such an assumption, D and H are constant if and only if they are constant and
diagonal.

3.24. (Ay)

This is a loose monostability assumption, ensuring that if v = 0 then u follows a monostable equa-
tion, and vice versa. The instability of 0 and the stability of 1 are not understood here in the linear
sense (hyperbolicity of the equilibrium), but truly in the nonlinear sense (say, a-limit set and w-limit
set of the associated ODE u’ = ug(u, 0)). It is also in that sense that the function g is of bistable type.

The fact that both carrying capacities are unitary is assumed without loss of generality, up to a
nondimensionalization of both densities.

Recall that monostable reaction terms can be either of Fisher—KPP type (g is maximal at 0, e.g.,
8(z) = 1 — ) or have a weak Allee effect (max( ;g > g(0), e.g., g(z) = z(1 — 2)).

3.2.5. (As)

This assumption generalizes the interpopulation competition of Lotka—Volterra type, where
w(u,v) = uv. In view of the proof, it might in fact be weakened in several ways. However, we do
not know any reasonable model that satisfies only such a weakened assumption. Since w does not play
an important role in the paper and since we mostly have in mind w(u,v) = u’v? with p,q > 1, we
choose to keep the more explicit stronger assumption.

3.2.6. (A)

The assumption —c, < ¢ is very natural and we actually expect it to be necessary, in the sense
that if it is not satisfied, the existence of bistable waves (A7) should fail, as will be discussed below in
Section 3.2.8.

This assumption basically means that, in a situation where the species u comes from x ~ —oo and
the species v comes from x =~ +o0, with negligible strong couplings due to the distance between the two
species, their invasion fronts move one toward the other and will eventually meet and form a bistable
traveling wave.
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Marcelli and Papalini [35] recently showed that the minimal wave speeds ¢} and ¢, satisfy the
following upper estimates:

1 (7
¢t <2/ sup —f 2l )d(z)dz— inf —f (S, 0)dz,
z€(0,0] Z €0 0 07

1 1
c, < 2\/ sup — g2(0,-2)d(z)dz + sup — h,2(0, =2)dz.
2! Z

€[-1,00 =% J; z€[-1,0) =%

Therefore (Ag) fails if, for instance, h,, is a large negative constant whereas h,; is a large positive
constant. Having in mind the preceding heuristics, this is natural: such an advection term % slows
down the invasion of both u# and v so strongly that the two fronts never meet, with a buffer zone that
is linearly increasing in time. Instead of a traveling wave, this describes the formation of what is
nowadays called a propagating terrace [38]. Such a phenomenon is standard in bistable dynamics and
was first reported by Fife and McLeod [39].

On the contrary, various simple conditions can ensure —c, < c¢}. Indeed, Malaguti and Marcelli [5]
established the following lower estimates:

¢y 2 24/d11(0)g1(0,0) — h11(0,0), ¢ = 2+/d>2(0)82(0,0) + h22(0,0).

For instance, —c, < ¢} as soon as h;; = hy, = 0 (no self-advection), g1(0,0) > 0 and g,(0,0) > 0. In
particular, the systems (1.2), (1.3), (1.4) all satisfy (Ag).

327, (A)

This is the first truly restrictive assumption. Indeed, for a system as general as (1.1), the existence
of bistable traveling waves connecting (1,0) and (0, 1) is a completely open and difficult problem and
it might very well be false in full generality.

More precisely, although the existence of traveling waves (u, v)(t, x) = (¢,¥)(x — ct) connecting
(1,0) and (0, 1) is to be expected under fairly reasonable assumptions, we expect that in some cases
their profiles ¢ and y will not be monotonic. In general, non-monotonic traveling waves connecting
(1,0) and (0, 1) do not satisfy any uniform L bounds or L' bounds for the profile derivatives. Clearly,
from our proof, we need such bounds. We also used several times the fact that the profile derivatives
do not change sign. In particular, the monotonicity of the profiles implies (almost directly) that the
free boundary is a point or an interval. With non-monotonic profiles, the free boundary problem will
be in general much more difficult. Even though we believe our approach can be successful when
studying some specific non-monotonic traveling waves, for which convenient bounds can be a priori
established, the setting in the present paper is already quite abstract and we deliberately choose to
exclude non-monotonic traveling waves.

It seems to us that there are mainly three ways to solve, at least partially, this problem of existence
of monotonic traveling waves.

1. Direct construction: this is what was done in the scalar case by Malaguti, Marcelli and Matucci
[33]. However the proof there relies upon phase-plane arguments and therefore does not extend
easily to systems.
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2. Perturbative arguments starting from the semilinear case with (3.1): using a standard implicit
function theorem approach for bistable waves in monotone systems (presented in detail in, for
instance, [40, 41]), this approach would give the existence of a neighborhood of any constant
pair (D, H) in which traveling waves exist (see also [22] for another type of perturbative result).
However the diameter of this neighborhood will depend on k and it is quite difficult to bound it
from below. Therefore such an approach is hardly suitable if our ultimate goal is to pass to the
limit k — +o0.

3. Homotopy arguments starting from the limit k = +o0: such an approach has been used repeatedly
in the literature on strongly competitive systems (e.g., [14,42]). It requires first a good knowledge
of the limit. The present paper can therefore be understood as a first step toward existence results
proved with this approach.

Consequently, the proof of existence is left as a difficult but interesting open problem and, in this paper,
we simply assume a priori the existence.

3.2.8. (Ag)

This is a technical assumption that should always be satisfied as soon as traveling waves exist (A7).
Indeed, it is a quite general feature of bistable waves that their speed is stuck between the minimal
wave speeds of the two underlying monostable problems (e.g., [6,7,33,43]). Here, these two bounds
are precisely ¢} and —c;. In other words, we actually expect that —c, < ¢, < ¢} is true for all k > k*.

Nevertheless, since the existence of waves is unclear and since the system does not satisfy the
comparison principle (which is the main tool used to prove the above inequalities in the semilinear
competition—diffusion case (1.2)), we have no choice but to add this likely superfluous assumption.

3.2.9. (Ay)

This is the second truly restrictive assumption. It is for instance satisfied if an leoc estimate on @,

can be proved, but it seems that in general such an estimate is false. Below we give important examples
where such an estimate can be proved indeed.

1. If both d; ; and d, ; are nonpositive (this applies in particular to the system (1.3) with min(y;, y2) >
0), then we can multiply the first, respectively second, equation of the system (1.5) by ¢xz,
respectively ¥ xr, where yg is a cut-off function equal to 1 in [-R, R], smooth and valued in (0, 1)
in[-R—-1,-R]JU[R,R+ 1], and equal to O in R\(-R — 1, R + 1). Just as in [4], a few integrations
by parts lead to an L?>([—R, R]) estimate on @, respectively ;. For completeness, the detailed
calculation for the first equation — where subscripts R and k are dropped for ease of reading —
follows. Together, the inequality f di2(P)W'¢d'y > 0 (where dy, < 0 and ¥'¢’ < 0 are used) and
the equality

fdl,l((p)¢,¢,X+fdl,l(q))(ﬁ,(ﬁ)(’+fdl,2(q))w,¢l)(+fdl,Z((I))l//‘pX,
- f (@) dy f I (@YW By — ¢ f & by
= f g1 (@) — k f W(®)py
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imply
R
f dy 1 (®@)(¢')* S_fdl,l(q))¢,¢X,_fdl,z(q))l/”(p)(,
R

. f (@) by + f o (O by

+c f ¢ dx + f ¢°g1(D)y.

It just remains to verify that each term on the right-hand side is bounded uniformly with respect
to k. The last term is bounded as follows:

] f ¢*g1( @)y < f |#°g1(@)x|

2
< ||81||L°°([0,1]2)||¢ IIL°°(R)|IX||L1(R)
= ||g1||L°°([o,1]2)||/\,/||L'(R)-

All the other terms are handled similarly, using the facts that (¢ )i+ is bounded (Ag) and that ¢’
and ¢ both have a unitary L'(R)-norm. For instance,

< f ldy (@0 0|

< ||d1,2||L°°([0,1]2)||¢||L°°(R)|D(’||L°°(R)||W||L1(R)

f a2 ( @)W by

= lldy 2l o, I ey

In the end, using the boundedness from below of d; 1, there exists a constant C > 0 that does not
depend on k or R such that

R
f (¢') < Clxllwreomy + lxlliw))-
R

Remark that necessarily ||y|lw1~ + ||x|[z1 depends on R. We also point out that further integration
by parts are possible but do not improve the estimate.

2. If (3.1) and D is the Jacobian matrix of a ¢*-diffeomorphism
d : [0, +c0)> — [0, +00)?,

then we can multiply the first, respectively second, equation by d;(®;)yr, respectively d(®y)xr,
and discover similarly an L?*([—R, R]) estimate on (d(®;))’, that is on @, by invertibility of d. This
idea is borrowed from [18-20]. As such, this applies to the system (1.4).

A very important remark is required here: similar estimates cannot be obtained for the general
evolution parabolic problem or for the general diffusion—advection elliptic problem, as here we heavily
use the monotonicity and the L*-boundedness of the profiles for the calculations. More details on the
difficult estimates for the evolution problem can be found for instance in [3,21] and references therein.

Actually, the monotonicity of the profiles and the uniform L* bounds induced by the traveling wave
form, that are heavily used in the above calculations, directly yield some regularity, compactness and
convergence properties. Unfortunately, these are not sufficient to derive the limiting problem and (Ag)
seems to be truly required. Still, for possible future reference, we list some of these properties below.
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1. Since the wave profiles are all of bounded variation and uniformly bounded, we can directly
apply Helly’s selection theorem: up to extraction, (®;);-,+ converges pointwise and locally in L!
to some limit ®,. This does not depend on the equations.

2. The families (—¢,dé)i> i+ and (Y d&) i+ are families of probability measures in R. By the Banach—
Alaoglu theorem, a bounded family of Radon measures in R is relatively compact in the weak-»
topology of the set of bounded Radon measures, namely the topology of pointwise convergence
on the space of continuous functions in R that converge to 0 at +co. Again, this does not depend
on the equations.

3. A monotone function is differentiable almost everywhere, with a number of discontinuities at
most countable, and each discontinuity is a jump discontinuity.

3.3. On the results
3.3.1. The limiting equation

The limiting equation in (1.7) does not have classical solutions (namely, solutions of class €?) in
general. In fact, the unique weak solution z is of class %! if and only if the left-sided and right-sided
limits of d at 0 coincide (that is d; ;(0,0) = d,,(0,0)) and of class € if and only if it is of class €
and the left-sided and right-sided limits of % at O coincide (that is 4, 1(0,0) = h,,(0, 0)). Nevertheless,
since the equation implies that d(z)7” € W'*(R), d(z)z’ is at least Lipschitz-continuous. This is where
the free boundary relation comes from.

As they are defined in (1.8) and (1.9), the functions d and & both have a zero at z = 0. However,
Theorem 1.1 does not depend on how the piecewise-continuous functions d and 4 are defined at z = 0.
This is classical in such problems (e.g., [4,13,15]).

Note that the positivity of the left-sided and right-sided limits of d at O, that is the positivity of the
essential infimum of d, still matters.

3.3.2. The convergence

The space where the convergence of the profiles occurs might be improved by bootstrap in special
cases, using more deeply the structure of the equations. We point out that, in view of the regularity of
the limit, the best that can be proved is a uniform Lipschitz bound (implying convergence in all Holder
spaces €°7) for (@), and (D(®,)®, ), This is consistent with the literature on the semilinear problem
(refer to Soave—Zilio [17] for a detailed review).

3.3.3. The sign of the effective wave speed when the self-advection is constant

The formula (1.11) is the extension of the “Disunity is strength”-type result for the semilinear
competition—diffusion system (1.2) established in [4].

It shows for instance that, if hy = 0, g1(e,0) = £(0,e), @ = 1 and d;(e,0) < d»,(0, ), so that
the two populations differ only in diffusivity and the diffusivities obtained in absence of the other are
strictly ordered, then ¢, < 0: again, a strong diffusivity is a competitive advantage.

Quite interestingly, the formula (1.11) does not depend on the cross-diffusion rates d,, and d, |,
on the cross-advection rates h;, and h,; and on the competition rate w. In fact, it only depends on
the parameter @ and on the dynamics of each population in absence of the other: although the system
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is arbitrarily strongly coupled, its spatial segregation limit is mostly decoupled (more precisely, it is
coupled only at the free boundary).

In order to illustrate more directly our result, below, we apply the formula (1.11) to the specific
cases studied in the aforementioned earlier literature [1, 3, etc.]. This mostly amounts to comparing
dispersal strategies, but clearly we can also use the formula (1.11) to compare growth strategies and
determine, for instance, the effect of a weak Allee effect.

First, we consider self- and cross-diffusion systems with logistic growth, namely systems general-
izing (1.4), where (3.1) holds, H = 0 and D(u, v) is the following Jacobian matrix:

u(d, + ap P + aj P12
D, v) = Jac (di +ai; f 12V712)
V(d2 +ax U 21 4 a2,2v52~2)
_(di + ani(Bia + Dt + a2 ar o 127!
B a1 Ba vt ! dy + ayo(Ban + IWVP22 + ap P |

In such a case, the formula (1.11) reads

. . odi o anBia+ 1) dy  ap(Brp+1)
sign(ce) =sign|a@” | —+ =———F——|—-r + ]
6 ﬂ%’] + Sﬁl,l +6

6 ﬂg’z + Sﬂz,z +6

In the special case 811 = B2, = 1, this reads
sign (ce) = sign (a/2 (di+aiy)—r(d+ 02,2))-

Hence the sign of the wave speed is determined by the self-diffusivities in absence of the other and
at carrying capacity. This illustrates quite interestingly the fact that the coupling at the free boundary
is not just local but takes also into account what happens far away from the free boundary. The above
formula also shows that there are cases where a population wins despite a smaller linear diffusivity
(say, forinstance, @ =r =1,d, + a;; > d, + a,p and d| < d,).

Note that we can apply formally the formula to the case d; = 0 or d, = 0 (no linear diffusion, just
porous-medium type self-diffusion). Although our proof does not apply in such a case (see (A;)), we
conjecture that this formula is indeed the correct one.

Second, we consider cross-taxis systems with logistic growth, namely systems of the form (1.3),
where (3.1) holds, H = 0 and

D(u,v) = ( & _71”) .
vy

It turns out that for such a system, we recover exactly the same formula as in the case of constant
D: the sign of ¢, is that of a’d, — rd,. The values of ¥, and y, have no effect. Hence “Disunity is
strength” again, whatever the strength or the sense (attraction or repulsion) of the cross-taxis.

This conclusion is in sharp contrast with the “Fortune favors the bold” conclusion suggested numer-
ically by Potts and Petrovskii in [1]. The contrast is not contradictory and is explained by the fact that
their simulations take finite values of kK whereas we focus on the limit £k — +oo, where the effect of the
aggressive taxis becomes negligible due to spatial segregation.

Let us end this discussion by relating this work to the wide literature on mathematical models for
the evolution of dispersal in nature (we refer for instance to [44, Chapter 11] and references therein).
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Adopting such a viewpoint, our result tends to show that, for a species trying to survive a strong
competitor, the formation by means of mutations of an aggressive phenotype — in the cross-taxis sense
of Potts and Petrovskii —, or more generally of a phenotype whose dispersal strategy accounts for
the competitor, should actually not help, and therefore such a mutant should not be selected. This
might seem counter-intuitive at first, yet it can be explained heuristically at the individual scale: the
infinite competition limit means that as soon as two individuals of adversary populations meet, both
die, instantaneously. Since no one will ever survive such an encounter, even for the tiniest amount
of time, it is therefore useless to try to learn how to deal with these encounters. As a matter of fact,
according to the model, the fittest mutations in such a situation are those that improve the diffusion of
the species, be it linear diffusion or nonlinear self-diffusion. This is of course in sharp contrast with
the well-known “Unity is strength”-type result in spatially heterogeneous environments without strong
competitor proved by Dockery et al. [45] and this might lead to evolutionary traps, as explained by the
first author in [10, Section 3.5].

A. The fully nonlinear bistable scalar equation with piecewise-continuous diffusion and
advection rates

In this appendix, we sketch briefly the proof of the following theorem that confirms that the func-
tions d and /& can be defined arbitrarily at 0. This theorem extends the main result of Malaguti—
Marcelli-Matucci [33].

Theorem A.1. Let U, € R such that U_ < 0 < U, and let

1. d:[U_,U,] — R be continuously differentiable and positive in [U_, U, ]\ {0} with positive limits
at 0%;

2. h:[U_,U,] = R be continuous in [U_, U]\ {0} with limits at 0*;

3. g:[U_,U,] = R be continuous with g(U_) = g(0) = g(U,) =0and g < 0in (U_,0)and g > 0
in (0,U,).

Let ¢ be the minimal wave speed of nonincreasing classical solutions (z, c) of
—(d@)7) = (c + h(@)Z = g2) (A.1)

with limits 0 at +o0 and U, at —oo.
Then, if —c, < c}, the equation (A.1) supplemented with the constraints

1. z admits U, and U_ as limits at —co and +oo respectively;
2. z is nonincreasing;
3. z is continuous;

admits a unique (up to shifts) weak solution (z, c), and its wave speed c satisfies —c, < ¢ < c}.
Conversely, if —c, > c}, no such solution exists.
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Proof. The existence of the wave, its monotonicity, its continuity and its limits when —c, < ¢} directly
follow from a standard regularization of the functions d and A, from a locally uniform L? estimate on
the regularized profile derivative (see [4] or Section 3.2.9 above) and from the continuity with respect
to d and h of the minimal wave speed for monostable equations [34]. When passing to the limit, the
nontriviality of the limit z has to be verified, as in the main proof of the paper. In order to do so, a
normalization z(0) = %Ui depending on the limiting wave speed can be used, as in the main proof of
this paper. Note that at this point, we have —c, < ¢ < ¢} but not the strict inequalities.

In the sequel, we will need the continuity of d(z)z’. Although it is not assumed a priori, it can be
established by integrations by parts, exactly as in the main proof of this paper. In fact, our proof actually
shows that any monotonic continuous traveling wave weak solution necessarily satisfies d(z)z’ € €' (R).

The uniqueness (up to shifts) can be established by contradiction, assuming that there are two
different nonincreasing continuous waves (z;, ¢;) and (z,, ¢;) with, for instance, ¢; < ¢,. Then we have
two different positive semi-waves (z{, c;) and (z3, c;) or two different negative semi-waves (—z;,¢;)
and (-z;, ¢3). The positive semi-waves are solutions of

—(d(@)7") = (c+h(2)7 =g(@) in(-0,0)
z2(0)=0
z>0 1in(-00,0)

lim_z=U,
and the negative semi-waves are solutions of

—(d()7) — (c+ h(z))7 = g(z) in (0, +c0)
z(0)=0

z<0 1in (0, +00)

lim,,,z=U_

For both sub-problems, the functions d and & are continuous, so that the uniqueness result for semi-
waves [33, Lemma 10] implies directly that ¢; < ¢;, and then the comparison principle [33, Lemma 10]
implies
0> }i%l d(z) Qi%l z;(&) > Zlg(g} d(z) Qi%l 2,(8),
li lim z li lim Z
0> lim d(z) Jim %) > lim d(z) Jimy 21(&),
so that the continuity of either d(z;)z] or d(z,)z} is contradicted:

lilnz—>0+ d(Z) _ lim§—>0+ Z’l(f) > lirnf—)o+ le(é:) _ limz_,0+ d(Z)
lim,_o dz) limeo 2@~ limeg 25&)  lim g d(z)’

The strict inequalities —c, < ¢ < ¢} are obtained with the same argument (the uniqueness result
[33, Lemma 10] does not distinguish semi-waves and regular traveling waves, so that the two cannot
coexist).

The nonexistence when —c;, > ¢} follows similarly from [33, Lemma 10]. m]
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